JPH0342144A - Method for cooling mold for continuous casting and mold thereof - Google Patents

Method for cooling mold for continuous casting and mold thereof

Info

Publication number
JPH0342144A
JPH0342144A JP17301089A JP17301089A JPH0342144A JP H0342144 A JPH0342144 A JP H0342144A JP 17301089 A JP17301089 A JP 17301089A JP 17301089 A JP17301089 A JP 17301089A JP H0342144 A JPH0342144 A JP H0342144A
Authority
JP
Japan
Prior art keywords
cooling
zone
mold
cooling water
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17301089A
Other languages
Japanese (ja)
Inventor
Saburo Moriwaki
森脇 三郎
Yoshihisa Kitano
嘉久 北野
Masaru Shibata
勝 柴田
Yuki Nabeshima
祐樹 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17301089A priority Critical patent/JPH0342144A/en
Publication of JPH0342144A publication Critical patent/JPH0342144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent deformation and crack of mold copper plate and to prevent breakout of a cast slab by forcedly cooling the prescribed zone at position corresponding to meniscus level in the mold or lower and weakly cooling the upper zone from the position corresponding to the meniscus level. CONSTITUTION:In the water cooling mold 1 arranging a long side face copper plate 2 having plural cooling water passages 3 formed with slit extending in longitudinal direction, in order to forcedly cool neighborhood of the meniscus, cross sectional area of the water cooling passage 3 at the zone of lower part of about 150 mm from the meniscus level 9 is made small. Then, flowing velocity V1 of cooling water is increased so as to come to the prescribed times of the flowing velocity V2 in the cooling water passage 3 at the other part. On the surface of copper plate 2 in the upper zone of about 130 mm from the meniscus level 9, Ni plating 12 is applied. In such way, by forcedly cooling the zone just below the meniscus in the mold and weakly cooling the upper and lower zones, the development of surface defect in the cast slab is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造用鋳型の冷却方法およびその鋳型に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for cooling a continuous casting mold and the mold.

(従来の技術) 一般に、鋼の連続鋳造用水冷鋳型は、第3図に示すよう
に、鋳型lの内面を熱伝導率の高い銅版2で構成し、こ
の銅板背面に設けた複数個のス°J7ト又は礼状冷却水
通路3内に高速の冷却水を矢4で示すように通水するこ
とによって冷却するよう構成されている。この水冷鋳型
1内に図示しないタンデイツシュから溶鋼が浸漬ノズル
5により注入される。銅板2は冷却水4により冷却され
、鋳型1内の溶鋼6の上部には銅板2とシェルフの摩擦
力軽減のためにスラグ8が定期的に投入され、メニスカ
ス9の保温、溶鋼6から浮上分離する介在物の吸収など
の役目もあわせて行っている。かかる、鋼の連続鋳造用
水冷鋳型のメニスカス近傍を第4図に拡大して示してお
り、強冷却鋳型では、メニスカスレベル9での銅板2の
変形は見られないが、メニスカス部でのスラグ8のうち
溶融層8a部において銅板2と熔融層8aとの境界で溶
融層が凝固し、スラグリムと言われるヒモ状の凝固スラ
グlOが生じる。このスラグリム10とメニスカス部の
シェルフと銅板2との間に生じる隙間11を通して溶融
スラグの流入が生じる。
(Prior art) In general, water-cooled molds for continuous casting of steel, as shown in FIG. It is configured to cool by passing high-speed cooling water into the cooling water passage 3 as shown by arrow 4. Molten steel is injected into this water-cooled mold 1 from a tundish (not shown) through an immersion nozzle 5. The copper plate 2 is cooled by cooling water 4, and slag 8 is periodically added to the top of the molten steel 6 in the mold 1 to reduce the frictional force between the copper plate 2 and the shelf, which keeps the meniscus 9 warm and floats it apart from the molten steel 6. It also plays the role of absorbing inclusions. The vicinity of the meniscus of such a water-cooled mold for continuous casting of steel is shown in an enlarged manner in FIG. In the molten layer 8a portion, the molten layer solidifies at the boundary between the copper plate 2 and the molten layer 8a, and string-like solidified slag lO called slag rim is produced. Molten slag flows through a gap 11 formed between the slag rim 10, the meniscus shelf, and the copper plate 2.

このような連続鋳造用水冷鋳型の内壁板として用いられ
る銅板は操業中メニスカスレベルでの熱負荷が最も大き
く、この熱負荷の大きい部分で銅板が変形しやすい。銅
板が変形すると、メニスカス部でのシェルと銅板の隙間
が不均一になり、この部分からシェルと銅板間へ流入す
る溶融スラグが不均一となる。シェルの成長速度はモー
ルド壁面を通過する熱量により決定されるが、シェルと
銅板の隙間の少ない部分はシェル厚みが厚くなり、隙間
の大きい部分はシェル厚みが薄くなる。一方、シェルに
はシェル自体の収縮力が作用し、またシェルにかかる静
鉄圧とシェルと銅板(正しくはスラグ膜)の摩擦による
シェル収縮抗力が作用することから、シェルには引張り
応力が作用するためにシェル厚の薄い部分で容易にシェ
ルが変形し、割れを生じ、スラグストリークと言われる
局部的に厚いスラグ膜部には、シェルの割れを伴うこと
が非常に多い。
The copper plate used as the inner wall plate of such a water-cooled mold for continuous casting has the largest heat load at the meniscus level during operation, and the copper plate is easily deformed in the area where the heat load is large. When the copper plate is deformed, the gap between the shell and the copper plate at the meniscus becomes uneven, and the molten slag that flows from this area between the shell and the copper plate becomes uneven. The growth rate of the shell is determined by the amount of heat passing through the mold wall surface, and the shell thickness is thicker in areas where there is less gap between the shell and the copper plate, and thinner in areas where there is a larger gap. On the other hand, tensile stress acts on the shell due to the shrinkage force of the shell itself, as well as the shell shrinkage resistance due to the static iron pressure applied to the shell and the friction between the shell and the copper plate (correctly, the slag film). As a result, the shell easily deforms and cracks occur in the thin parts of the shell, and shell cracks are very often accompanied by locally thick slag film parts called slag streaks.

従来、上述した形式の連続鋳造用水冷鋳型において、例
えば、実開昭49−49113号公報および実開昭59
−180838号公報に開示されているように、鋳型に
複数個のスリット状冷却水通路を縦方向に延長して設け
、メニスカスレベル近傍における冷却水通路断面積をそ
れより下方の部分の冷却水通路断面積よりも小さくして
メニスカスレベル近傍で冷却水通路断面を絞ることによ
りメニスカスレベル近くでの冷却水の流速を増大させて
熱伝達を良好にすることによりメニスカス部における鋳
型の抜熱能を増加させ、鋳型の局部的温度上昇による局
部的変形および割れの発生を防止することが提案されて
いる。
Conventionally, in the water-cooled mold for continuous casting of the above-mentioned type, for example, Japanese Utility Model Application Publication No. 49-49113 and Japanese Utility Model Application No. 59-49
- As disclosed in Japanese Patent No. 180838, a mold is provided with a plurality of slit-shaped cooling water passages extending in the vertical direction, and the cross-sectional area of the cooling water passage near the meniscus level is reduced to the cooling water passage in the portion below the meniscus level. By narrowing the cross-section of the cooling water passage near the meniscus level by making it smaller than the cross-sectional area, the flow velocity of the cooling water near the meniscus level is increased and heat transfer is improved, thereby increasing the heat removal ability of the mold at the meniscus area. , it has been proposed to prevent local deformation and cracking caused by local temperature increases in the mold.

上述した従来技術におけるように、鋳型の冷却を局部的
に強化することは銅板の変形を防止するための有効な手
段の1つであると考えられるが、広い範囲のメニスカス
部の強冷はメニスカス上部の溶融スラグの壁面での冷却
強化となり、スラグリムの大型化のためシェルと銅板間
へのスラグ流人が阻害され、銅板と鋳片間の摩擦が増大
し、又銅板と鋳片間のスラグフィルム層が薄いためシェ
ルが強冷されシェルの収縮量が大きくなり、割れが生し
やすいという問題や、スラグリムの不均一な形成等のた
めに溶融スラグの不均一流入が生して表面欠陥になると
いう問題がある。
As in the prior art described above, locally strengthening the cooling of the mold is considered to be an effective means of preventing deformation of the copper plate, but intense cooling of a wide area of the meniscus The cooling of the upper molten slag is strengthened on the wall surface, and the slag rim becomes larger, which obstructs the flow of slag between the shell and the copper plate, increases the friction between the copper plate and the slab, and increases the slag between the copper plate and the slab. Because the film layer is thin, the shell is strongly cooled and the amount of shell shrinkage increases, making it easy to crack, and uneven formation of slag rim causes uneven inflow of molten slag, resulting in surface defects. There is a problem with becoming.

従来から水冷鋳型の冷却方法に関して多くの研究がなさ
れているが、銅板の冷却□を制御する手段が確立されて
いないために上述したような間理が生じていた。
Although many studies have been conducted on cooling methods for water-cooled molds, the above-mentioned problems have occurred because no means have been established to control the cooling of the copper plate.

(発明が解決しようとする課題) 本発明は、上述した問題をなくすための制御冷却方法お
よび本発明による冷却方法を実施するためスラグ層に対
応する上方帯域、メニスカス部に対応する帯域およびこ
れより下方の帯域の個々の冷却強さを正確に制御するこ
とを可能にする水冷鋳型を提供しようとするものである
(Problems to be Solved by the Invention) The present invention provides a controlled cooling method for eliminating the above-mentioned problems, and an upper zone corresponding to the slag layer, a zone corresponding to the meniscus portion, and the like. The aim is to provide a water-cooled mold that allows precise control of the individual cooling intensity of the lower zone.

(課題を解決するための手段) 本発明によれば、連続鋳造用鋳型のメニスカスレベル相
当部位以下の所定帯域を強冷却し、メニスカスレベル相
当部位より上方帯域をメニスカスレベル相当部以下の所
定帯域に比べて弱冷却する。
(Means for Solving the Problems) According to the present invention, a predetermined zone of a continuous casting mold below a portion corresponding to the meniscus level is strongly cooled, and a zone above the portion corresponding to the meniscus level is turned into a predetermined zone below the portion corresponding to the meniscus level. Compared to this, it cools down slightly.

また、本発明によれば、メニスカスレベル(゛口当部位
以下の強冷却帯域より下方帯域をも強冷却)()域に比
べて耐冷却するのがよい。
Further, according to the present invention, the cooling resistance is better than that at the meniscus level (strongly cooling the zone below the strong cooling zone below the mouth part) ().

本発明を実施するに際しては、強冷却帯域二こおける冷
却水通路内に流れる冷却水の流速を弱冷却帯域における
冷却水の流速より大にするよう制御するのがよい。
When carrying out the present invention, it is preferable to control the flow rate of the cooling water flowing into the cooling water passages in the two strong cooling zones to be higher than the flow rate of the cooling water in the weak cooling zones.

また、本発明を実施するに際して、強冷却帯域における
冷却水通路内に流れる冷却水の水量を弱冷却帯域におけ
る冷却水の水量より大にするのがよい。
Further, when carrying out the present invention, it is preferable that the amount of cooling water flowing into the cooling water passage in the strong cooling zone be larger than the amount of cooling water flowing in the weak cooling zone.

また、本発明によれば強冷却帯域と弱冷却帯域とにおけ
る溶鋼と接する鋳型表面に熱伝導率の異なる材質をメツ
キ等により被覆することによって鋳型の抜熱能を変える
ことによって冷却差を生せしめることができる。
Furthermore, according to the present invention, the surface of the mold in contact with molten steel in the strong cooling zone and the weak cooling zone is coated with materials having different thermal conductivities by plating or the like, thereby changing the heat removal ability of the mold, thereby producing a cooling difference. I can do it.

また、本発明によれば、冷却帯域と弱冷却帯域とにおけ
る冷却水通路の表面に熱伝導率の異なる材質をメツキ等
で被覆することによって冷却差を生せしめることができ
る。
Further, according to the present invention, a cooling difference can be created by coating the surfaces of the cooling water passages in the cooling zone and the weak cooling zone with materials having different thermal conductivities using plating or the like.

また、本発明によれば、連続鋳造用鋳型の縦方向に互に
分離された複数個の水平方向に延びる冷却水通路を設け
、メニスカスレベル相当部位以下の強冷却帯域における
水平冷却水通路の冷却水流路断面積を上方および下方弱
冷却帯域における水平冷却水通路の冷却水路断面積より
大とするのがよい。この場合、メニスカス部の強冷却帯
域における冷却水の流速は、上下弱冷却帯域の冷却水の
流速より相当大きくすることが必要である。
Further, according to the present invention, a plurality of horizontally extending cooling water passages are provided which are separated from each other in the longitudinal direction of the continuous casting mold, and the horizontal cooling water passages are cooled in a strong cooling zone below a portion corresponding to the meniscus level. It is preferable that the water flow passage cross-sectional area is larger than the cooling water passage cross-sectional area of the horizontal cooling water passage in the upper and lower weak cooling zones. In this case, the flow rate of the cooling water in the strong cooling zone of the meniscus portion needs to be considerably higher than the flow rate of the cooling water in the upper and lower weak cooling zones.

(作 用) 本発明によれば、水冷鋳型のメニスカス帯域とその上方
帯域を別個に制御して冷却し、鋳型の高さ方向の冷却を
正確に制御することにより、メニスカスレベルより上方
の溶融スラグ層に接する上方帯域においては、冷却を緩
和し、これにより鋳型壁面上のスラグリムの形成をなく
すことができ、あるいは、スラグリムが形成されても僅
少とすることができ、シェルの割れを防止することがで
きる。
(Function) According to the present invention, by separately controlling and cooling the meniscus zone and the zone above the meniscus zone of the water-cooled mold, and by accurately controlling the cooling in the height direction of the mold, the molten slag above the meniscus level can be cooled. In the upper zone in contact with the layer, the cooling is moderated, thereby eliminating the formation of slag rim on the mold wall, or minimizing the formation of slag rim, thereby preventing cracking of the shell. I can do it.

また、メニスカス近傍の熱負荷の大きい帯域を強冷する
ことにより鋳型の局部的変形を防止し、鋳型壁面の割れ
を防止する。
In addition, by strongly cooling the zone near the meniscus where the heat load is large, local deformation of the mold is prevented and cracking of the mold wall surface is prevented.

さらに、鋳型下方帯域では、熱負荷が小さく最早メニス
カス直下のように強冷する必要がなく、例えば、メニス
カスレベルから150 m下方の下方帯域の冷却を緩和
して、スラグフィルムの溶融厚みを増すことにより、銅
板と鋳片との摩擦を軽減し、かつ、鋳片表面温度の過度
の低下を防止し、良好な鋳片表面性状を得ることができ
る。
Furthermore, in the lower zone of the mold, the heat load is small and it is no longer necessary to strongly cool the zone directly below the meniscus. For example, cooling in the lower zone 150 m below the meniscus level can be relaxed to increase the melting thickness of the slag film. This reduces the friction between the copper plate and the slab, prevents an excessive drop in the slab surface temperature, and provides good slab surface properties.

(実施例) 第1図に示すように縦方向に延びるスリットで形成され
た複数個の冷却水通路3を有する長辺面w4仮2を設け
た水冷鋳型1を用いて重量でC: 0.06%、Mn 
: 0.26%、P : 0.021%、Si : 0
.015%、A e : 0.020%の低炭アルミキ
ルド鋼をスラブサイズ250 mm X 1600mr
Qの鋳片に鋳造速度1.5m/min二こて連続鋳造し
、その表面欠陥の発生状況を調査した。
(Example) As shown in FIG. 1, a water-cooled mold 1 provided with a long side surface W4 having a plurality of cooling water passages 3 formed by longitudinally extending slits 2 was used to produce a mold with a weight of C: 0. 06%, Mn
: 0.26%, P: 0.021%, Si: 0
.. 015%, Ae: 0.020% low carbon aluminum killed steel, slab size 250 mm x 1600 mr
A slab of No. Q was continuously cast with two trowels at a casting speed of 1.5 m/min, and the occurrence of surface defects was investigated.

本実施例ではメニスカス近傍を強冷却するために、メニ
スカスレベル9より150 mm下方までの帯域の冷却
水通路3の断面積を小さくして冷却水の沃速v、壱他の
部分の冷却水通路3内の冷却水の速度v2の1.7倍に
なるよう;こ流速を増大させた。
In this embodiment, in order to strongly cool the vicinity of the meniscus, the cross-sectional area of the cooling water passage 3 in the zone up to 150 mm below the meniscus level 9 is reduced to reduce the cooling water velocity v, 1. The flow velocity was increased to 1.7 times the velocity v2 of the cooling water in 3.

メニスカスレベル9より130 mrnの上部帯域にお
ける銅板2の表面には厚さ7馴のNiメツキ12を施し
た。
The surface of the copper plate 2 in the upper zone of 130 mrn from the meniscus level 9 was coated with Ni plating 12 with a thickness of 7 mrn.

このようにして鋳型のメニスカス直下帯域を強冷し、上
方および下方帯域を弱冷して鋳造した結果、鋳造鋳片の
表面欠陥は第5図に示すようにほぼなくなった。また、
鋳造鋳片のオツシレーションマークの深さは第6図に示
すように従来鋳型の1八となりオツシレーションマーク
の深さに起因する横割れ等の表面欠陥も著しく改善され
た。
As a result of casting by strongly cooling the zone directly below the meniscus of the mold and weakly cooling the upper and lower zones, the surface defects of the cast slab were almost eliminated as shown in FIG. 5. Also,
As shown in FIG. 6, the depth of the oscillation marks on the cast slab was 18 times greater than that of the conventional mold, and surface defects such as transverse cracks caused by the depth of the oscillation marks were significantly improved.

第2図は本発明方法を実施するのに用いられる鋳型の他
の実施例を示す。本例では、複数個の水平方向に延びる
冷却水通路3を縦方向に互に分離して鋳型1に設け、メ
ニスカスレベル相当部位以下の約150 anの範囲の
強冷却帯域aにおける冷却水通路3aの断面積を上方お
よび下方弱冷却帯域すおよびCにおける冷却水通路3b
および3cの断面積より大きくしている。本例の鋳型は
冷却水通路3aの冷却水の流速が冷却水通路3bおよび
3cの冷却水の流速より相当大きくlるよう制御して冷
却される。
FIG. 2 shows another embodiment of a mold used to carry out the method of the invention. In this example, a plurality of cooling water passages 3 extending in the horizontal direction are vertically separated from each other and provided in the mold 1, and cooling water passages 3a in a strong cooling zone a in a range of about 150 an below the area equivalent to the meniscus level are provided. The cross-sectional area of the cooling water passage 3b in the upper and lower weak cooling zones and C
and 3c. The mold of this example is cooled by controlling the flow rate of the cooling water in the cooling water passage 3a to be considerably higher than the flow rate of the cooling water in the cooling water passages 3b and 3c.

(発明の効果) 本発明によれば、鋳型銅板の変形および割れが防止でき
、鋳片のブレークアウトを防止でき、オンシレージョン
マークの深さを減少でき、表面欠陥のない良品質の鋳片
の製造が可能である。
(Effects of the Invention) According to the present invention, deformation and cracking of the mold copper plate can be prevented, breakout of the slab can be prevented, the depth of oncillation marks can be reduced, and high quality slabs without surface defects can be produced. It is possible to manufacture

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による鋳型の一例を示す部分縦断面図、 第2図は本発明による鋳型の他の実施例を示す部分縦断
面図、 第3図は従来例による水冷鋳型を用いて鋳片を連続鋳造
している状態を示す概略縦断面図、第4図は第3園に示
すメニスカス部分の拡大断面図、 第5図は第1図に示す本発明の鋳型を使用した実施例に
よる鋳片の表面割れ発生率を従来例と比較して示すグラ
フ、 第6図は第1図に示す本発明の鋳型を使用した実施例に
よる鋳片のオツシレーション深さを従来例と比較して示
すグラフである。 ・・・鋳型 ・・・冷却水通路 ・・・浸漬ノズル ・・・シェル ・・・メニスカスレベル 2・・・銅板 4・・・冷却水 6・・・?容鋼 8・・・スラグ lO・・・スラグリム
FIG. 1 is a partial vertical cross-sectional view showing an example of a mold according to the present invention, FIG. 2 is a partial vertical cross-sectional view showing another embodiment of the mold according to the present invention, and FIG. 3 is a partial vertical cross-sectional view showing an example of a mold according to the present invention. A schematic vertical cross-sectional view showing the state in which pieces are continuously cast; Figure 4 is an enlarged cross-sectional view of the meniscus portion shown in Figure 3; Figure 5 is an example using the mold of the present invention shown in Figure 1. A graph showing the incidence of surface cracks in slabs in comparison with conventional examples. Figure 6 is a graph showing the oscillation depth of slabs in an example using the mold of the present invention shown in Figure 1 in comparison with conventional examples. This is a graph showing. ... Mold ... Cooling water passage ... Immersion nozzle ... Shell ... Meniscus level 2 ... Copper plate 4 ... Cooling water 6 ...? Yongsteel 8...Slag lO...Slag rim

Claims (1)

【特許請求の範囲】 1、鋳型のメニスカスレベル相当部位以下の所定帯域を
強冷却し、メニスカスレベル相当部位より上方帯域をメ
ニスカスレベル相当部位以下に比べて弱冷却することを
特徴とする連続鋳造用鋳型の冷却方法。 2、前記強冷却帯域より下方帯域を強冷却帯域に比べて
弱冷却することを特徴とする請求項1記載の冷却方法。 3、前記強冷却帯域における冷却水通路内に流れる冷却
水の流速を弱冷却帯域における冷却水の流速より大にす
ることを特徴とする請求項1または2記載の冷却方法。 4、前記強冷却帯域における冷却水通路内に流れる冷却
水の水量を弱冷却帯域における冷却水の水量より大にす
る請求項1または2記載の冷却方法。 5、溶鋼に面する側の鋳型表面および/または冷却水通
路の表面の熱伝導を前記弱冷却帯域に比べて前記強冷却
帯域において良くした請求項1または2記載の冷却方法
。 6、鋳型の縦方向に互に分離された複数個の水平方向に
延びる冷却水通路を具え、メニスカスレベル相当部位以
下の強冷却帯域における水平冷却水通路の冷却水流路断
面積を上方および下方弱冷却帯域における水平冷却水通
路の冷却水路断面積より大としたことを特徴とする連続
鋳造用鋳型。
[Claims] 1. For continuous casting, characterized in that a predetermined zone of the mold below the area corresponding to the meniscus level is strongly cooled, and a zone above the area corresponding to the meniscus level is cooled weakly compared to the area below the area equivalent to the meniscus level. How to cool the mold. 2. The cooling method according to claim 1, characterized in that a zone below the strong cooling zone is cooled weakly compared to the strong cooling zone. 3. The cooling method according to claim 1 or 2, characterized in that the flow rate of the cooling water flowing into the cooling water passage in the strong cooling zone is made higher than the flow rate of the cooling water in the weak cooling zone. 4. The cooling method according to claim 1 or 2, wherein the amount of cooling water flowing into the cooling water passage in the strong cooling zone is made larger than the amount of cooling water flowing in the weak cooling zone. 5. The cooling method according to claim 1 or 2, wherein the mold surface facing the molten steel and/or the surface of the cooling water passage have better heat conduction in the strong cooling zone than in the weak cooling zone. 6. A plurality of horizontally extending cooling water passages separated from each other in the vertical direction of the mold are provided, and the cooling water flow cross-sectional area of the horizontal cooling water passage in the strong cooling zone below the area equivalent to the meniscus level is divided upwardly and downwardly. A mold for continuous casting, characterized in that the cross-sectional area of the horizontal cooling water passage in the cooling zone is larger than that of the cooling water channel.
JP17301089A 1989-07-06 1989-07-06 Method for cooling mold for continuous casting and mold thereof Pending JPH0342144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17301089A JPH0342144A (en) 1989-07-06 1989-07-06 Method for cooling mold for continuous casting and mold thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17301089A JPH0342144A (en) 1989-07-06 1989-07-06 Method for cooling mold for continuous casting and mold thereof

Publications (1)

Publication Number Publication Date
JPH0342144A true JPH0342144A (en) 1991-02-22

Family

ID=15952526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17301089A Pending JPH0342144A (en) 1989-07-06 1989-07-06 Method for cooling mold for continuous casting and mold thereof

Country Status (1)

Country Link
JP (1) JPH0342144A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526869A (en) * 1994-09-29 1996-06-18 Gladwin Corporation Mold for continuous casting system
US5927378A (en) * 1997-03-19 1999-07-27 Ag Industries, Inc. Continuous casting mold and method
EP1206986A1 (en) * 2000-11-16 2002-05-22 SMS Demag AG Continuous casting mould, especially for casting billet strands and blooms
WO2003035306A1 (en) * 2001-10-18 2003-05-01 Sms Demag Aktiengesellschaft Method and device for optimizing the cooling capacity of a continuous casting mold for liquid metals, particularly for liquid steel
JP2006326653A (en) * 2005-05-27 2006-12-07 Jfe Steel Kk Water-cooled mold for continuous casting
CN104722724A (en) * 2013-12-23 2015-06-24 Posco公司 Mold for continuous casting and cooling method thereof
US11906940B2 (en) 2022-03-08 2024-02-20 xMEMS Labs, Inc. Two-tier feedback control system and related method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526869A (en) * 1994-09-29 1996-06-18 Gladwin Corporation Mold for continuous casting system
US5927378A (en) * 1997-03-19 1999-07-27 Ag Industries, Inc. Continuous casting mold and method
EP1206986A1 (en) * 2000-11-16 2002-05-22 SMS Demag AG Continuous casting mould, especially for casting billet strands and blooms
WO2003035306A1 (en) * 2001-10-18 2003-05-01 Sms Demag Aktiengesellschaft Method and device for optimizing the cooling capacity of a continuous casting mold for liquid metals, particularly for liquid steel
JP2006326653A (en) * 2005-05-27 2006-12-07 Jfe Steel Kk Water-cooled mold for continuous casting
CN104722724A (en) * 2013-12-23 2015-06-24 Posco公司 Mold for continuous casting and cooling method thereof
US11906940B2 (en) 2022-03-08 2024-02-20 xMEMS Labs, Inc. Two-tier feedback control system and related method

Similar Documents

Publication Publication Date Title
US5176197A (en) Continuous caster mold and continuous casting process
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPH0710423B2 (en) Open channel type continuous casting method and apparatus
JPH0570537B2 (en)
EP0448773B1 (en) Continuous caster mold and continuous casting process
JPH0819842A (en) Method and device for continuous casting
JPH01113164A (en) Method and apparatus for producting unidirectionally solidified ingot
EP0387006A2 (en) Dual plate strip caster
JPS609553A (en) Stopping down type continuous casting machine
JP2825988B2 (en) Method of preventing longitudinal cracks in continuous casting of thin cast slab
JP3101069B2 (en) Continuous casting method
RU2419508C2 (en) Mixer
JPH052417B2 (en)
JP3216476B2 (en) Continuous casting method
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
JPH03193245A (en) Method for continuously casting strip
JPH0646598Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JPH07214255A (en) Continuous casting operation method with lessened slag inclusion and tundish therefor
EP0342020A2 (en) Method and apparatus for continuous strip casting
JPH0347660A (en) Method for preventing longitudinal crack in cast slab in high speed casting
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPS61186153A (en) Continuous casting method of thin strip by solidifying it below molten metal surface
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JPH04178240A (en) Continuous casting method for stainless steel