JPH03118943A - Mold and method for continuously casting low and medium carbon steel - Google Patents

Mold and method for continuously casting low and medium carbon steel

Info

Publication number
JPH03118943A
JPH03118943A JP25404189A JP25404189A JPH03118943A JP H03118943 A JPH03118943 A JP H03118943A JP 25404189 A JP25404189 A JP 25404189A JP 25404189 A JP25404189 A JP 25404189A JP H03118943 A JPH03118943 A JP H03118943A
Authority
JP
Japan
Prior art keywords
mold
carbon steel
casting
cooling
medium carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25404189A
Other languages
Japanese (ja)
Inventor
Toshitane Matsukawa
松川 敏胤
Susumu Yuhara
油原 晋
Hajime Umada
馬田 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25404189A priority Critical patent/JPH03118943A/en
Publication of JPH03118943A publication Critical patent/JPH03118943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable high velocity casting of different steel kinds with the same single mold by constituting a continuous mold for continuous casting, in which a cooling water passage is built, with upper part of the mold for forming intense heat absorbing zone and middle and lower parts of the mold for forming slow heat absorbing zone. CONSTITUTION:Molten steel 4 in a tundish 2 is poured into a mold 8 composed of a copper plate 8A, in which the detour cooling water passage 10 is built, through a dipped nozzle 6 to continuously cast a steel slab 14. Then, the mold 18 (8) is constituted of the upper part 18-1 of mold for forming the intense heat absorbing zone with the cooling water passage 10 approached to the inner wall of mold and the middle and lower parts 18-2 of mold for forming the slow heat absorbing zone with the cooling water passage 10 formed apart from the inner wall of mold. Then, the inner wall thickness of cooling water passage 10 at the intense heat absorbing zone is made to 15-20mm, and the inner wall thickness of cooling water passage 10 at the slow heat absorbing zone is made to 30-35mm, and at the time of casting low carbon steel having <0.08wt.% C content, the molten steel surface level is controlled at the intense heat absorbing zone and at the time of casting medium carbon steel having 0.08-0.14wt.% C content, the molten steel surface level is controlled at the slow heat absorbing zone. By this method, the intense cooling and slow cooling to the molten steel 4 are executed with the same single mold 18.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は低、中炭素鋼用連鋳鋳型およびその鋳造方法に
係り5特に単一鋳型による低炭素鋼および中炭素鋼のそ
れぞれを最適冷却速度で鋳造可能の鋳型およびこの鋳型
による鋳造方法に関し、連続鋳造分野で広く利用されて
いる。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a continuous casting mold for low and medium carbon steels and a casting method thereof.5 Particularly, the present invention relates to a continuous casting mold for low and medium carbon steels and a casting method thereof. The present invention relates to a mold that can be cast at high speed and a casting method using this mold, and is widely used in the continuous casting field.

〔従来の技術〕[Conventional technology]

鋼の連続鋳造においては、第3図に示すように、タンデ
イツシュ2に溜められた溶鋼4は、浸漬ノズル6を介し
て鋳型8に注入される。鋳型8は粁曲した冷却水路10
を内蔵した銅板8Aより成り、浸漬ノズル6を介して鋳
型8に注入された溶鋼4は、急速に冷却されて凝固殻1
2を形成する。凝固殻12は鋳型8の内周面に接触する
近傍の溶鋼4から形成され始め、鋳型8の内部に未凝固
の溶鋼が存在する鋳片14は徐々に引抜かれると共に鋳
型8の下方に設けられたスプレー水の噴射により、更に
冷却されて凝固殻12が厚くなり鋳片14を形成する。
In continuous casting of steel, as shown in FIG. 3, molten steel 4 stored in a tundish 2 is injected into a mold 8 through an immersion nozzle 6. The mold 8 has a curved cooling channel 10
The molten steel 4 injected into the mold 8 through the immersion nozzle 6 is rapidly cooled and solidified into a solidified shell 1.
form 2. The solidified shell 12 begins to be formed from the molten steel 4 in the vicinity of contact with the inner peripheral surface of the mold 8, and the slab 14 in which unsolidified molten steel exists inside the mold 8 is gradually drawn out and placed below the mold 8. The solidified shell 12 is further cooled by spraying water, and the solidified shell 12 becomes thicker to form a slab 14.

ところが、近年、生産性の向上と省エネルギーの目的か
ら鋳片14を高速で鋳造する高速鋳造が一般化されるよ
うになった。この場合、鋳型8での冷却能が従来と同様
であると、凝固殻12の厚みが十分成長する前に鋳片1
4が鋳型8から引き抜かれるので、鋳型8内での凝固殻
12が薄くなる。この場合には鋳片14に割れや亀裂等
の品質不良を生ずることが多いので、高速鋳込の場合に
は鋳型8内で従来よりも強冷却する必要がある。
However, in recent years, high-speed casting, in which the slab 14 is cast at high speed, has become common for the purpose of improving productivity and saving energy. In this case, if the cooling capacity of the mold 8 is the same as in the past, the slab 1
4 is pulled out of the mold 8, the solidified shell 12 within the mold 8 becomes thinner. In this case, quality defects such as cracks and cracks often occur in the slab 14, so in the case of high-speed casting, it is necessary to cool the slab 8 more strongly than in the past.

しかしながら、鋳型8内での冷却は鋼種によって、それ
ぞれ異なる適正冷却度にする必要がある。
However, cooling within the mold 8 needs to be performed at a different appropriate cooling degree depending on the type of steel.

例えば低炭素鋼では出鋼温度も高く強冷却する必要があ
るのに対し、中炭素鋼では包晶反応によす凝固初期に鋳
型8の内表面と凝固殻12との間に、不均一な間隙を生
ずるために、溶鋼4の湯面近傍が不均一に冷却されると
いう問題がある。
For example, in the case of low carbon steel, the tapping temperature is high and strong cooling is required, whereas in the case of medium carbon steel, non-uniformity occurs between the inner surface of the mold 8 and the solidified shell 12 during the early stage of solidification due to the peritectic reaction. Because of the gap, there is a problem in that the vicinity of the surface of the molten steel 4 is cooled unevenly.

このような不均一な冷却が生じると凝固殻の厚みが不均
一となって応力の集中により割れを発生しやすい、従っ
てかかる不均一な冷却を防止するために比較的時間をか
けて緩冷却する必要がある。
When such non-uniform cooling occurs, the thickness of the solidified shell becomes non-uniform and cracks are likely to occur due to stress concentration.Therefore, in order to prevent such non-uniform cooling, slow cooling is performed over a relatively long period of time. There is a need.

かくの如く、単一鋳型を使用して冷却能を異にする溶鋼
を鋳込む鋳型装置の従来技術として、特開昭62−18
3938がある。この発明の要旨とするところは次の如
くである。すなわち、「箱型の鋳型本体と、この鋳型本
体に鋳片引抜き方向に沿って複数個配置され相互に溶鋼
の冷却能が異なる冷却調節部材とを有することを特徴と
する連続鋳造機の鋳型、」である。
As described above, as a conventional technology of a molding device that uses a single mold to cast molten steel with different cooling capacities, Japanese Patent Application Laid-Open No. 62-18
There are 3938. The gist of this invention is as follows. That is, "a mold for a continuous casting machine characterized by having a box-shaped mold body and a plurality of cooling adjustment members arranged in the mold body along the slab drawing direction and having mutually different cooling abilities for molten steel," ”.

上記要旨の如く、この発明は鋳型の上下方向に冷却能の
異なる複数個の冷却調節部材を配置した鋳型であって、
例えば鋳型上部は低熱伝導率の銅板とし、下部は高熱伝
導率の銅板として、中炭素鋼の如き緩冷却を要する鋼種
の鋳造に際しては、鋳型内の溶鋼湯面を低熱伝導率の銅
板が配置されている鋳型上部に位置せしめ、低炭素鋼の
如く強冷却を要する鋼種に対して、鋳型中部の高熱伝導
率銅板が配置されている位置に、溶鋼湯面を位置させる
ことにより、単一鋳型によって鋳込溶鋼の緩冷却を可能
とした鋳型である。
As summarized above, the present invention is a mold in which a plurality of cooling adjustment members having different cooling capacities are arranged in the vertical direction of the mold,
For example, the upper part of the mold is a copper plate with low thermal conductivity, and the lower part is a copper plate with high thermal conductivity.When casting steel types that require slow cooling, such as medium carbon steel, a copper plate with low thermal conductivity is placed on the surface of the molten steel in the mold. For steel types that require intense cooling, such as low carbon steel, by positioning the molten steel surface at the position where the high thermal conductivity copper plate is located in the middle of the mold, it is possible to cool the steel with a single mold. This mold allows for gradual cooling of molten steel.

しかし、この鋳型は高伝導率の芯材の鋳型に。However, this mold is a mold with a high conductivity core material.

低伝導率の冷却調節部材を接合させる等によって形成さ
れているので、t4型内面上部の低伝導率の冷却調節部
材が剥離し易く、鋳型寿命が短いという問題があるほか
、その剥離過程で、コーテイング材が反ると、この部分
に間隙が発生し、ブレークアウトの原因となり品いとい
う問題がある。
Since it is formed by joining a low-conductivity cooling adjustment member, the low-conductivity cooling adjustment member on the upper part of the inner surface of the T4 mold easily peels off, shortening the mold life.In addition, in the peeling process, When the coating material warps, gaps are created in this area, causing breakouts and resulting in quality problems.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、単一鋳型による溶鋼の強冷却。 The purpose of the present invention is to strongly cool molten steel using a single mold.

もしくは緩冷却可能な上記従来鋳型の問題点を解決し得
る低・中炭素鋼用鋳型を提供し、併せて、該鋳型による
効果的な鋳造方法を提供せんとするものである。
Another object of the present invention is to provide a mold for low/medium carbon steel that can be slowly cooled and which can solve the problems of the conventional molds described above, and also to provide an effective casting method using the mold.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による連鋳鋳型は、従来技術の問題点を鋳型の冷
却構造によって解決したもので、その要旨とするところ
は次のとおりである。すなわち、(1) 冷却水路を内
蔵する銅板より成る連鋳鋳型において、前記冷却水路が
前記鋳型内壁に近接して強抜熱域を形成する鋳型上部と
、前記冷却水路が前記鋳型内壁から離れて緩抜熱域を形
成する鋳型中・下部と、を有して成ることを特徴とする
低、中炭素鋼用連鋳鋳型。
The continuous casting mold according to the present invention solves the problems of the prior art by using a mold cooling structure, and the gist thereof is as follows. That is, (1) in a continuous casting mold made of a copper plate with a built-in cooling channel, the cooling channel is located close to the inner wall of the mold and forms a strong heat extraction area, and the cooling channel is located away from the inner wall of the mold. A continuous casting mold for low and medium carbon steel, characterized by having a middle and lower part of the mold forming a slow heat removal area.

(2) 前記強抜熱域の冷却水路の内壁厚みは15〜2
0■であり、前記緩抜熱域の冷却水路の内壁厚みは30
〜35mである上記(1)に記載の低、中炭素鋼用の連
鋳鋳型。
(2) The inner wall thickness of the cooling channel in the above-mentioned strong heat extraction area is 15 to 2
0 ■, and the inner wall thickness of the cooling waterway in the slow heat removal area is 30
The continuous casting mold for low and medium carbon steel according to (1) above, which has a length of ~35 m.

更に、上記鋳型による鋳造方法の要旨とするところは次
の如くである。
Furthermore, the gist of the casting method using the mold described above is as follows.

(3)C含有量が0.08重量%未満の低炭素鋼の鋳込
に際しては前記強抜熱域に湯面レベルを制御し、C含有
量が0.08〜0.14重量%の中炭素鋼の鋳込に際し
ては前記緩抜熱域に湯面レベルを制御する低、中炭素鋼
用連鋳鋳型による鋳造方法。
(3) When casting low carbon steel with a C content of less than 0.08% by weight, the level of the hot water should be controlled within the above-mentioned forced drawing heat range, and the C content should be within the range of 0.08 to 0.14% by weight. When casting carbon steel, a casting method using a continuous casting mold for low and medium carbon steel, which controls the molten metal level to the above-mentioned slow heat extraction region.

(4)前記中炭素鋼鋳込の湯面レベルにおける前記冷却
水路の内壁厚みをt8とし、前記強抜熱域の下端から該
中炭素鋼鋳込の湯面レベルまでの距離をt、とすれば、 t2≦t。
(4) Let t8 be the inner wall thickness of the cooling channel at the hot water level of the medium carbon steel casting, and let t be the distance from the lower end of the forced heat extraction zone to the hot water level of the medium carbon steel casting. If, t2≦t.

である上記(3)に記載の低、中炭素鋼用鋳型による鋳
造方法、 である。
The casting method using the mold for low and medium carbon steel according to (3) above.

本発明の詳細を第1〜2図を参照して説明する。The details of the present invention will be explained with reference to FIGS. 1 and 2.

連鋳鋳型18は内部に杆菌した冷却水路10を有する銅
板18Aより成るが、本発明による鋳型18は、鋳型内
壁が薄く冷却水路10が溶鋼4と接触する鋳型内壁に近
接して強抜熱域を形成する鋳型上部18−1と、鋳型内
壁が厚く冷却水路1oが鋳型内壁から離れて緩抜熱域を
形成する鋳型中、下部18−2から成っている。
The continuous casting mold 18 is made of a copper plate 18A having a molded cooling channel 10 therein, and the mold 18 according to the present invention has a thin mold inner wall and a strong heat extraction area in the vicinity of the mold inner wall where the cooling channel 10 contacts the molten steel 4. The mold consists of an upper part 18-1 forming a mold, and a lower part 18-2 having a thick inner wall and a cooling water passage 1o separated from the inner wall of the mold to form a slow heat removal area.

連続鋳型は通常銅板で製作されているが、溶鋼4と直接
接触する内壁面は、鋳込回数の増加により徐々に溶損し
て残厚が10mとなった段階で安全のため交換する6本
発明における強抜熱域の鋳型上部18−1は、この残厚
10m5+に改削式5alを加え少くとも15mmを初
期に確保する。しかし20mを越すと抜熱量が低下して
本発明の目的が達成できないので、第2図に示す如く強
抜熱域の内壁厚みt工を15〜20mに限定する。
Continuous molds are usually made of copper plates, but the inner wall surface that comes into direct contact with the molten steel 4 is gradually eroded as the number of pours increases, and when the remaining thickness reaches 10 m, it is replaced for safety reasons6. The upper part of the mold 18-1 in the strong extraction heat area is initially secured at least 15 mm by adding the revised thickness 5al to this remaining thickness of 10 m5+. However, if the length exceeds 20 m, the heat extraction amount decreases and the object of the present invention cannot be achieved, so the inner wall thickness t of the strong heat extraction area is limited to 15 to 20 m, as shown in FIG.

次に緩抜熱域の鋳型中、下部18−2内壁厚みt2は通
常の厚みの30〜35mmとし下端まで一定の厚さとす
る。
Next, in the mold in the slow heat extraction region, the inner wall thickness t2 of the lower part 18-2 is set to the normal thickness of 30 to 35 mm, and is constant to the lower end.

次に上記の如き本発明による連続鋳型18を使用する鋳
造方法について説明する。
Next, a casting method using the continuous mold 18 according to the present invention as described above will be explained.

C含有量が0.08重量%未満の低炭素鋼は、それ自体
の溶融点が高く、従って転炉からの出鋼温度も高いので
高速鋳造するためには、鋳型18内で急速冷却する必要
がある。そのためかかる低炭素鋼の溶鋼4の鋳型内湯面
メニスカスは、第1図において鋳型内壁の薄い強抜熱域
の鋳型上部18−1に位置する如く制御する。また、C
含有量が0.08〜0.14重量%の中炭素鋼では、先
に説明した如く、包晶反応により溶鋼の湯面近傍が不均
一に冷却されるので緩冷却する必要がある。そのため、
上記C濃度の中炭素鋼の鋳込に際しては、鋳型内壁厚み
が30〜35■の緩抜熱域の鋳型中、下部18−2にメ
ニスカスが位置する如く制御する。しかし鋳込凝固殻の
厚さから、なるべく鋳型上部に湯面を位置させた方がよ
いので。
Low carbon steel with a C content of less than 0.08% by weight has a high melting point and therefore has a high tapping temperature from the converter, so it is necessary to cool it rapidly in the mold 18 in order to cast it at high speed. There is. Therefore, the meniscus of the low carbon steel molten steel 4 in the mold is controlled so that it is located in the mold upper part 18-1 in the thin forced-drawing heat area of the mold inner wall in FIG. Also, C
In medium carbon steel with a content of 0.08 to 0.14% by weight, as explained above, the vicinity of the surface of the molten steel is non-uniformly cooled due to the peritectic reaction, so slow cooling is required. Therefore,
When casting the medium carbon steel with the above C concentration, control is performed so that the meniscus is located in the lower part 18-2 of the mold in the slow heat removal range where the inner wall thickness of the mold is 30 to 35 cm. However, due to the thickness of the solidified casting shell, it is better to position the molten metal level as high as possible at the top of the mold.

具体的には第2図に示す如く、低炭素鋼の場合は鋳型1
8の頂部から内壁厚みの最も薄いA領域が望ましく、鋳
込湯面の制御安全のために少くとも50++nの範囲と
する。
Specifically, as shown in Figure 2, in the case of low carbon steel, mold 1
Region A with the thinnest inner wall thickness from the top of No. 8 is desirable, and should be in the range of at least 50++n for safe control of the pouring surface.

また、中炭素鋼の溶鋼湯面は、杆菌した冷却水路10の
強抜熱域18−1の影響をt、たけ外したB領域の上限
M−M線以下とすることが望ましい、M−M線における
鋳型内壁厚みをt2とすれば、上記t、はt2≦t、と
して位置付けることが望ましい、従って第2図において
A領域の下端とB領域の上端とのレベル差は100■を
基準とする。かくの如く高速鋳込を確保するために、低
炭素鋼の場合は、その湯面位置を鋳型18の頂部から下
方へ50閣の範囲のA領域とし、中炭素鋼の場合はA領
域の下端より少くとも100mm下方のM−M線以下の
B領域が望ましい。しかし、B領域における中炭素鋼溶
鋼湯面がM−M線より下方に位置し、A領域の下限から
150−を越えると、中炭素鋼の鋳込湯面が鋳型18の
下方に位置することとなり、鋳型直下に引抜かれた鋳片
の凝固殻12の厚さが不足し、バルジングを多発し、ブ
レークアウトの危険が大となるのでA領域の下限から1
501下方のB領域の位置は、中炭素鋼湯面の下限とす
べきである。
In addition, it is desirable that the molten steel level of medium carbon steel is below the upper limit M-M line of the B area, which is t, which removes the influence of the forced heat extraction zone 18-1 of the cooling water passage 10 containing bacteria. If the mold inner wall thickness along the line is t2, it is desirable to position the above t as t2≦t.Therefore, in Fig. 2, the level difference between the lower end of area A and the upper end of area B is based on 100 ■. . In order to ensure high-speed casting as described above, in the case of low carbon steel, the level of the hot water is set at the area A within a range of 50 degrees downward from the top of the mold 18, and in the case of medium carbon steel, the level is set at the lower end of area A. Region B below the M-M line at least 100 mm below is desirable. However, if the medium carbon steel molten steel level in area B is located below the M-M line and exceeds 150 - from the lower limit of area A, the pouring liquid level of medium carbon steel will be located below the mold 18. Therefore, the thickness of the solidified shell 12 of the slab drawn directly under the mold is insufficient, causing frequent bulging and increasing the risk of breakout.
The position of region B below 501 should be the lower limit of the medium carbon steel hot water level.

〔作用〕[Effect]

本発明は上記構成のとおり、連鋳鋳型自体の構造を変革
して、上部に鋳型内壁厚の薄い強抜熱域を形成し、鋳型
中、下部は通常の厚さとして緩抜熱域を形成し、しかも
低炭素鋼鋳込みに際しては強抜熱域に、その湯面を制御
することにより急速冷却を実施した。また、中炭素鋼鋳
込に際しては緩抜熱域の、特に上部の強抜熱域の影響を
避ける安全な緩抜熱域に湯面を制御し緩冷却を確実に実
施し得る湯面位置に制御することにした。
As described above, the present invention changes the structure of the continuous casting mold itself to form a strong heat extraction area in the upper part with a thin inner wall thickness of the mold, and a slow heat extraction area with a normal thickness in the lower part of the mold. Moreover, when casting low carbon steel, rapid cooling was achieved by controlling the molten metal level in the extreme heat range. In addition, when casting medium carbon steel, the hot water level is controlled to a safe slow heat removal area that avoids the effects of the slow heat removal area, especially the upper part of the strong heat removal area, and the hot water level is positioned so that slow cooling can be reliably carried out. I decided to control it.

更に具体的には、低炭素l!鋳込みに際しては、第2図
A領域の5oIII11の範囲とし、中炭素鋼鋳込に際
しては、A領域の下限から100mo+離れたM−M線
以下のB領域に限定し、その下限をA領域の下限から1
50mm以内のB領域に制御することが最も望ましい。
More specifically, low carbon l! When casting, the range is 5 o III 11 of the A area in Figure 2, and when casting medium carbon steel, it is limited to the B area below the M-M line, which is 100 mo+ away from the lower limit of the A area, and the lower limit is the lower limit of the A area. from 1
It is most desirable to control it within region B of 50 mm.

かくの如く、連鋳鋳型の構成と、鋳造方法の確実な制御
によって、C50,08%の低炭素鋼および0.08%
<C<0.14%の中炭素鋼とを。
In this way, with the configuration of the continuous casting mold and reliable control of the casting method, low carbon steel with C50.08% and 0.08%
<C<0.14% medium carbon steel.

単一鋳型の使用によっても、それぞれ高速鋳込ですぐれ
た鋳片を製造することができた。
Even by using a single mold, it was possible to produce slabs of high quality with high speed casting.

〔実施例〕〔Example〕

湾曲半径12m+の湾曲型連鋳機を使用し、スラブサイ
ズ220m+厚X90C)a〜1900m5幅のスラブ
鋳造に際し、連鋳鋳型を従来の鋳型内壁厚みが上下均一
の30nm厚のものを使用した時と、本発明による第2
図A領域の強抜熱域の最少肉厚18m、緩抜熱域のB領
域肉厚35++m均一の両鍔型を使用し、C50,08
%の低炭素鋼およびC含有量0.08〜0.14%の中
炭素鋼溶鋼の鋳込の比較試験を実施した。それぞれの鋳
造速度は第1表のとおりであった。
When casting a slab with a width of 220 m + thickness x 90 C) a ~ 1900 m5 using a curved continuous casting machine with a curving radius of 12 m +, when using a continuous casting mold with a conventional mold inner wall thickness of 30 nm with uniform top and bottom thickness. , the second according to the invention
Using a uniform double-flange type with a minimum wall thickness of 18 m in the strong heat extraction area in the figure A area and 35++ m in thickness in the B area of the slow heat extraction area, C50,08
% low carbon steel and medium carbon steel molten steel with a C content of 0.08-0.14%. The respective casting speeds were as shown in Table 1.

第  1  表 上記実施例から明らかな如く1本発明による鋳型および
鋳造方法による場合は、従来法よりも低炭素材で0.1
1I/win、中炭素材では実に0.3m/l1inの
鋳造速度が増加でき、安全な高速鋳造が可能となった。
Table 1 As is clear from the above examples, when the mold and casting method of the present invention is used, the carbon material is lower than that of the conventional method by 0.1
1I/win, and for medium carbon materials, the casting speed could be increased by 0.3m/l1in, making safe high-speed casting possible.

〔変形例〕[Modified example]

本発明による技術思想から第3図に示す如き連鋳鋳型に
おいても、本発明の目的が達成される。
Based on the technical concept of the present invention, the object of the present invention can also be achieved in a continuous casting mold as shown in FIG.

すなわち、鋳型28の内壁28Aの厚みを、第2図に示
した鋳型18の頂部の強抜熱域18−1の下限寸法t1
の上下均一厚さとし、従って冷却水路20は広くなるが
、上部に突起22を形成し冷却水路20を局部的に狭く
する。
That is, the thickness of the inner wall 28A of the mold 28 is the lower limit dimension t1 of the strong extraction heat area 18-1 at the top of the mold 18 shown in FIG.
The upper and lower sides of the cooling channel 20 are made uniform in thickness, so that the cooling channel 20 becomes wide, but a protrusion 22 is formed on the upper part to locally narrow the cooling channel 20.

かくの如き構成の鋳型28を設けることにより。By providing the mold 28 having such a configuration.

突起22と鋳型内壁28Aとの冷却水路は局部的に狭い
ので流速が大となり強抜熱域を形成し、鋳型の中部およ
び下部は鋳型内壁28Aは薄いが冷却水路20の断面積
が大であるので、冷却水の流速は緩慢となり、緩冷却域
を形成する。
Since the cooling water channel between the protrusion 22 and the mold inner wall 28A is locally narrow, the flow velocity is high and a strong heat extraction area is formed.In the middle and lower part of the mold, the mold inner wall 28A is thin but the cross-sectional area of the cooling water channel 20 is large. Therefore, the flow rate of the cooling water becomes slow, forming a slow cooling region.

かかる構成の鋳型28によって、低炭素鋼の湯面および
中炭素鋼の湯面を第2図にて説明した鋳造方法に準じて
実施することによっても1本発明の目的である単一鋳型
による異鋼種の高速鋳造が可能である。
By using the mold 28 having such a configuration, the melt surface of low carbon steel and the melt surface of medium carbon steel can be cast in accordance with the casting method explained with reference to FIG. High-speed casting of steel grades is possible.

〔発明の効果〕〔Effect of the invention〕

本発明は、上下均一厚みの従来鋳型を廃して。 The present invention eliminates the conventional mold with uniform thickness on the top and bottom.

上部は冷却水路と鋳型内壁を近接せしめて強抜熱域を形
成し、鋳型中、下部は鋳型内壁から離れた均一厚さとし
て緩冷却域を形成する如く、鋳型の冷却構造を上下にて
異なる構成とし、この鋳型を使用して低炭素材を鋳込む
場合は、その溶鋼湯面を上記強抜熱域に位置する如く制
御し、中炭素材を鋳込む場合には、その溶鋼湯面を緩冷
却域に位置する如き鋳造方法を採ったので次の如き効果
を挙げることができた。
The cooling structure of the upper and lower molds is different, with the upper part bringing the cooling channel and mold inner wall closer together to form a strong heat removal area, and the lower part of the mold having a uniform thickness away from the mold inner wall to form a gentle cooling area. When using this mold to cast a low-carbon material, the molten steel surface is controlled to be in the above-mentioned strong extraction heat range, and when a medium-carbon material is cast, the molten steel surface is Since we adopted a casting method that placed the casting in the slow cooling region, we were able to achieve the following effects.

(イ) 同一の単一鋳型で異鋼種の高速鋳造が可能とな
った。
(b) High-speed casting of different steel types is now possible using the same single mold.

(ロ) 低炭素鋼は強抜熱域の適正位置に湯面を制御し
、中炭素鋼は緩抜熱域の適正位置に湯面を制御する鋳造
方法をとるだけであり、しかも制御範囲はいずれも50
III!1程度の範囲であるので操業は極めて容易であ
る。
(b) For low carbon steel, the casting method is simply to control the molten metal level at an appropriate position in the strong heat extraction range, and for medium carbon steel, the casting method is simply controlled to control the molten metal level at the appropriate position in the slow heat extraction range, and the control range is limited. Both are 50
III! Since the range is about 1, operation is extremely easy.

(ハ) 鋳型内での鋼種による適正な冷却速度を制御で
きるほか、形成鋳片は適度の凝固殻を形成した上で引抜
かれるので、バルジングやブレークアウトの危険なく高
速鋳造が可能となった。
(c) In addition to being able to control the appropriate cooling rate depending on the type of steel in the mold, the formed slab is drawn out after forming an appropriate solidified shell, making it possible to cast at high speed without the risk of bulging or breakout.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による連鋳鋳型の構成を示す部分断面図
、第2図は本発明による連鋳鋳型による低炭素鋼および
中炭素鋼の湯面位置制御による鋳造方法を示す断面図、
第3図は本発明の変形例を示す断面図、第4図は従来の
連鋳鋳型を中心とする連続鋳造装置を示す部分断面図で
ある。 2・・・タンデイツシュ 6・・・浸漬ノズル。 10・・・冷却水路。 18・・・本発明鋳型。 18−2・・・鋳型中、下部
FIG. 1 is a partial cross-sectional view showing the structure of a continuous casting mold according to the present invention, and FIG. 2 is a cross-sectional view showing a method for casting low carbon steel and medium carbon steel by controlling the hot water surface position using the continuous casting mold according to the present invention.
FIG. 3 is a cross-sectional view showing a modification of the present invention, and FIG. 4 is a partial cross-sectional view showing a continuous casting apparatus mainly using a conventional continuous casting mold. 2... Tandaitsu 6... Immersion nozzle. 10... Cooling water channel. 18...Mold of the present invention. 18-2...middle, lower part of the mold

Claims (1)

【特許請求の範囲】 (1)冷却水路を内蔵する銅板より成る連鋳鋳型におい
て、前記冷却水路が前記鋳型内壁に近接して強抜熱域を
形成する鋳型上部と、前記冷却水路が前記鋳型内壁から
離れて緩抜熱域を形成する鋳型中、下部と、を有して成
ることを特徴とする低、中炭素鋼用連鋳鋳型。 (2)前記強抜熱域の冷却水路の内壁厚みは15〜20
mmであり、前記緩抜熱域の冷却水路の内壁厚みは30
〜35mmである請求項(1)に記載の低、中炭素鋼用
連鋳鋳型。(3)C含有量が0.08重量%未満の低炭
素鋼の鋳込に際しては前記強抜熱域に湯面レベルを制御
し、C含有量が0.08〜0.14重量%の中炭素鋼の
鋳込に際しては前記緩抜熱域に湯面レベルを制御する低
、中炭素鋼用連鋳鋳型による鋳造方法。 (4)前記中炭素鋼鋳込の湯面レベルにおける前記冷却
水路の内壁厚みをt_2とし、前記強抜熱域の下端から
該中炭素鋼鋳込の湯面レベルまでの距離をt_3とすれ
ば t_2≦t_3 である請求項(3)に記載の低、中炭素鋼用鋳型による
鋳造方法。
[Scope of Claims] (1) In a continuous casting mold made of a copper plate having a built-in cooling water channel, the cooling water channel forms a strong heat removal area in close proximity to the inner wall of the mold; A continuous casting mold for low and medium carbon steel, comprising a middle and a lower part of the mold forming a slow heat removal area away from an inner wall. (2) The inner wall thickness of the cooling channel in the above-mentioned strong heat extraction area is 15 to 20 mm.
mm, and the inner wall thickness of the cooling waterway in the slow heat extraction area is 30 mm.
The continuous casting mold for low and medium carbon steel according to claim 1, which has a diameter of 35 mm. (3) When casting low carbon steel with a C content of less than 0.08% by weight, the level of the hot water should be controlled within the above-mentioned forced drawing heat range, and the C content should be within the range of 0.08 to 0.14% by weight. When casting carbon steel, a casting method using a continuous casting mold for low and medium carbon steel, which controls the molten metal level to the above-mentioned slow heat extraction region. (4) If the inner wall thickness of the cooling channel at the hot water level of the medium carbon steel casting is t_2, and the distance from the lower end of the forced heat extraction zone to the hot water level of the medium carbon steel casting is t_3. The casting method using a mold for low and medium carbon steel according to claim 3, wherein t_2≦t_3.
JP25404189A 1989-09-29 1989-09-29 Mold and method for continuously casting low and medium carbon steel Pending JPH03118943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25404189A JPH03118943A (en) 1989-09-29 1989-09-29 Mold and method for continuously casting low and medium carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25404189A JPH03118943A (en) 1989-09-29 1989-09-29 Mold and method for continuously casting low and medium carbon steel

Publications (1)

Publication Number Publication Date
JPH03118943A true JPH03118943A (en) 1991-05-21

Family

ID=17259418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25404189A Pending JPH03118943A (en) 1989-09-29 1989-09-29 Mold and method for continuously casting low and medium carbon steel

Country Status (1)

Country Link
JP (1) JPH03118943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1206986A1 (en) * 2000-11-16 2002-05-22 SMS Demag AG Continuous casting mould, especially for casting billet strands and blooms
US6918428B2 (en) * 2002-08-29 2005-07-19 Km Europa Metal Ag Chill tube
US7363958B2 (en) * 2002-06-13 2008-04-29 Sms Demag Ag Continuous casting mold for liquid metals, especially for liquid steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195742A (en) * 1985-02-25 1986-08-30 Sumitomo Metal Ind Ltd Continuous casting device for steel
JPS62183938A (en) * 1986-02-10 1987-08-12 Nippon Kokan Kk <Nkk> Mold for continuous casting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195742A (en) * 1985-02-25 1986-08-30 Sumitomo Metal Ind Ltd Continuous casting device for steel
JPS62183938A (en) * 1986-02-10 1987-08-12 Nippon Kokan Kk <Nkk> Mold for continuous casting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1206986A1 (en) * 2000-11-16 2002-05-22 SMS Demag AG Continuous casting mould, especially for casting billet strands and blooms
US7363958B2 (en) * 2002-06-13 2008-04-29 Sms Demag Ag Continuous casting mold for liquid metals, especially for liquid steel
US6918428B2 (en) * 2002-08-29 2005-07-19 Km Europa Metal Ag Chill tube

Similar Documents

Publication Publication Date Title
US5176197A (en) Continuous caster mold and continuous casting process
KR101320353B1 (en) Device for generating ultrasonic wave of submerged type
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JPH0131976B2 (en)
AU2004295039A1 (en) Sequential casting method for the production of a high-purity cast metal billet
CN1011867B (en) Method and apparatus for continuous casting of metal band esp. of steel band
KR100241404B1 (en) Method and device for control of tundish nozzle
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPS609553A (en) Stopping down type continuous casting machine
JPH02284744A (en) Method and device for strip casting using dooble plate strip casting means
KR102312118B1 (en) Apparatus for continuous casting process of steel material by controlling width-directional soft reduction and method of continuous casting using the same
JP3216476B2 (en) Continuous casting method
WO1996001709A1 (en) Dual tundishes for use with twin-roll caster
JPH03297545A (en) Method for continuously casting aluminum-killed steel
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
KR101408227B1 (en) Continuous casting apparatus and continuous casting method
JPS6153143B2 (en)
JPH0354024B2 (en)
JPH0255643A (en) Method and nozzle for continuously casting metal strip
RU2060102C1 (en) Production line process of vacuum treatment of metal under continuous casting and device for its realization
JPS61186153A (en) Continuous casting method of thin strip by solidifying it below molten metal surface
JPH0327847A (en) Method for supplying molten metal in continuous casting for cast strip
JPS61169147A (en) Continuous casting method
JPH06134561A (en) Method for supplying molten steel into mold in slab continuous casting
JPS62252649A (en) Divagating flow control method in mold for molten steel continuous casting