JPH06134561A - Method for supplying molten steel into mold in slab continuous casting - Google Patents

Method for supplying molten steel into mold in slab continuous casting

Info

Publication number
JPH06134561A
JPH06134561A JP28753792A JP28753792A JPH06134561A JP H06134561 A JPH06134561 A JP H06134561A JP 28753792 A JP28753792 A JP 28753792A JP 28753792 A JP28753792 A JP 28753792A JP H06134561 A JPH06134561 A JP H06134561A
Authority
JP
Japan
Prior art keywords
molten steel
mold
nozzle
immersion
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28753792A
Other languages
Japanese (ja)
Inventor
Toshitane Matsukawa
敏胤 松川
Susumu Yuhara
晋 油原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28753792A priority Critical patent/JPH06134561A/en
Publication of JPH06134561A publication Critical patent/JPH06134561A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To balance molten steel quantities poured from immersion nozzles by arranging the immersion nozzles symmetrically to the center axis of a mold, controlling each sliding nozzle and adjusting the molten steel supplying quantity of the immersion nozzle discharged toward the short side in a cast slab from the discharging hole at the lower end part of the immersion nozzle. CONSTITUTION:This method for supplying the molten steel into the mold 4 in a slab continuous casting is one which the molten steel in a tundish 1 is poured into the mold 4 from the discharging holes 8 of the immersion nozzles 3 while controlling the sliding nozzles 2. Two pieces of the immersion nozzles 3 providing the discharging hole 8 on the one side surface to flow toward the short side direction in symmetric with respect to the center axis of the mold 4 are arranged, and while controlling the sliding nozzle 2 arranged in each immersion nozzle 3, the molten steel supplying quantity discharged in the short side direction of the mold from the discharging hole is independently adjusted to prevent the molten steel drift flow. By this method, the molten steel drift flow can easily be restrained and as a result, the internal defect and the surface defect in a steel plate rolled from this slab are reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タンディッシュに取り
付けられたスライディングノズルを制御しつつ浸漬ノズ
ルから鋳型内に注入される溶鋼の偏流を防止するのに好
適なスラブ連鋳における鋳型への溶鋼供給方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten steel for casting in a slab continuous casting suitable for preventing drift of molten steel injected from a dipping nozzle into a casting mold while controlling a sliding nozzle attached to a tundish. It relates to the supply method.

【0002】[0002]

【従来の技術】従来、連続鋳造におけるタンディッシュ
から鋳型への溶鋼注入は図5に示すようにタンディッシ
ュ1の底部に設けられたスライディングノズル2の下部
に位置する浸漬ノズル30の先端部を鋳型4の溶鋼5中に
浸漬した状態で行っている。タンディッシュ1には上ノ
ズル6が設けてあり、上ノズル6の下部にはそれぞれ同
一内径の開孔を有する固定プレート2a、スライドプレ
ート2b、下プレート2cの3層のプレートで構成され
たスライディングノズル2が取付けられており、固定プ
レート2aと下プレート2cの間でスライドプレート2
bを油圧シリンダ7を用いてスライドさせ、開孔絞り位
置を制御してタンディッシュ1内から溶鋼流量を制御し
ている。
2. Description of the Related Art Conventionally, molten steel is poured from a tundish into a mold in continuous casting, as shown in FIG. 5, the tip of a dipping nozzle 30 located below a sliding nozzle 2 provided at the bottom of a tundish 1 is used as a mold. It is performed while being immersed in the molten steel 5 of No. 4 in FIG. An upper nozzle 6 is provided in the tundish 1, and a sliding nozzle composed of a three-layer plate including a fixed plate 2a, a slide plate 2b, and a lower plate 2c each having an opening with the same inner diameter at a lower portion of the upper nozzle 6. 2 is attached to the slide plate 2 between the fixed plate 2a and the lower plate 2c.
b is slid using the hydraulic cylinder 7 to control the aperture restriction position to control the molten steel flow rate from within the tundish 1.

【0003】スライディングノズル2の下部に接続され
た浸漬ノズル30は、短辺と長辺からなるスラブ連鋳鋳型
4の中央部に配置されており、タンディッシュ1内の溶
鋼をスライディングノズル2の開孔絞り位置を制御しつ
つ浸漬ノズル30内を流下させて左右の吐出孔8から連鋳
鋳型4内に注入される。吐出孔8より注入された溶鋼5
は短辺側の凝固シェル9に衝突した後、上昇流と下降流
に分流されるが定常時は左右の吐出孔8から注入される
溶鋼量が均等になっているので上昇流および下降流は流
動する間に減速される結果、上昇流および下降流による
トラブルは発生しない。
An immersion nozzle 30 connected to the lower part of the sliding nozzle 2 is arranged at the center of the slab continuous casting mold 4 having short sides and long sides, and the molten steel in the tundish 1 is opened by the sliding nozzle 2. It is made to flow down through the immersion nozzle 30 while controlling the hole throttle position, and is injected into the continuous casting mold 4 from the left and right discharge holes 8. Molten steel 5 injected from discharge hole 8
After colliding with the solidified shell 9 on the short side, it is divided into an upflow and a downflow, but in a steady state, the amount of molten steel injected from the left and right discharge holes 8 is equal, so the upflow and the downflow are As a result of being decelerated while flowing, troubles due to upflow and downflow do not occur.

【0004】前述のように連続鋳造においてタンディッ
シュ1から連鋳鋳型4内への溶鋼注入量制御はスライデ
ィングノズル2によって行われているが、浸漬ノズル3
の下部に設けた左右一対の吐出孔8から連鋳鋳型4内へ
注入される溶鋼5の流量が左右で異なって不均等となる
溶鋼偏流が生じることがある。このような溶鋼偏流が生
じる原因の一つは、図3に示すように浸漬ノズル30を使
用していると、溶鋼中に存在するアルミナなどの脱酸生
成物が浸漬ノズル30の内孔14や吐出孔8の内面に付着物
10を形成したり、溶鋼流によって吐出孔耐火物が溶損さ
れて左右の吐出孔8の形状が不均一になる。その結果、
吐出孔8の通過断面積に大小が生じ、連鋳鋳型4内への
注入量は、通路断面積の大きい方が多くなり、小さい方
が少なくなるからである。
As described above, in continuous casting, the molten steel injection amount from the tundish 1 into the continuous casting mold 4 is controlled by the sliding nozzle 2, but the immersion nozzle 3 is used.
The flow rate of the molten steel 5 injected into the continuous casting mold 4 from the pair of left and right discharge holes 8 provided in the lower part of the right and left may be different from each other on the left and right, and uneven molten steel flow may occur. One of the causes of such molten steel drift is that when the immersion nozzle 30 is used as shown in FIG. 3, the deoxidation product such as alumina present in the molten steel is caused by the inner hole 14 of the immersion nozzle 30. Deposits on the inner surface of the discharge hole 8
10, the discharge hole refractory is melted by the molten steel flow, and the shapes of the left and right discharge holes 8 become uneven. as a result,
This is because the passage cross-sectional area of the discharge hole 8 becomes large and small, and the injection amount into the continuous casting mold 4 becomes large when the passage cross-sectional area is large and becomes small when it is small.

【0005】溶鋼偏流の他の原因は、通常、図4に示す
ように溶鋼の注入量を制御するためスライディングノズ
ル2の開孔を絞った状態で注入することになるため、そ
の構造上からして浸漬ノズル3内を流下する溶鋼主流11
が内孔14の中央を通らず、左右のどちらかに偏る。その
影響を受けて左右一対の吐出孔8から連鋳鋳型4内に注
入される溶鋼量は、一方が多くなり、他方が少なくなる
からである。
Another cause of drift of molten steel is that it is usually injected with the opening of the sliding nozzle 2 narrowed in order to control the injection amount of molten steel as shown in FIG. Main flow of molten steel flowing down through the immersion nozzle 3 11
Does not pass through the center of the inner hole 14 and is biased to either left or right. This is because the amount of molten steel injected from the pair of left and right discharge holes 8 into the continuous casting mold 4 under the influence of this is large in one and small in the other.

【0006】図3に示すように浸漬ノズル30の吐出孔8
にアルミナ等の付着物10が付着すると、溶鋼の注入を妨
げるので必要な溶鋼量を確保するため、例えばスライデ
ィングノズル2の開孔を全開とした場合には、浸漬ノズ
ル30内を流下する溶鋼主流11は内孔14の中央部に位置す
る。このとき、アルミナ等の付着物がなければ左右の吐
出孔8から注入される溶鋼量は均等になるが、吐出孔8
内に形成される付着物10が左右で異なっていると通路断
面積が左右不均一となる。すなわち右側の付着物10が少
なく左側の付着物10が多い場合には、吐出孔8の溶鋼通
路断面積は右側が大きく左側が小さい。このため左右の
吐出孔8から注入される溶鋼量の均等関係が崩れて、右
側が多く、左側が少なくなり、いわゆる溶鋼偏流が生じ
ることになる。
As shown in FIG. 3, the discharge hole 8 of the immersion nozzle 30.
If the deposit 10 such as alumina adheres to the molten steel, it impedes the injection of the molten steel, so in order to ensure the required amount of molten steel, for example, when the sliding nozzle 2 is fully opened, the molten steel main flow that flows down in the immersion nozzle 30 is used. 11 is located in the center of the inner hole 14. At this time, if there are no deposits such as alumina, the amount of molten steel injected from the left and right discharge holes 8 will be uniform, but
If the deposits 10 formed inside are different on the left and right, the cross-sectional area of the passage becomes uneven on the left and right. That is, when the amount of the deposit 10 on the right side is small and the amount of the deposit 10 on the left side is large, the molten steel passage cross-sectional area of the discharge hole 8 is large on the right side and small on the left side. For this reason, the equal relationship of the amount of molten steel injected from the left and right discharge holes 8 is broken, so that the right side is large and the left side is small, and so-called molten steel drift occurs.

【0007】浸漬ノズル30の吐出孔8から注入される溶
鋼量が多い右側では短辺4a内に形成された凝固シェル
9への衝突力が大きく、溶鋼が凝固シェル9の内面に沿
って上方および下方に勢いよく分流することになる。こ
のようにして勢いの強い上昇流は湯面盛り上がり12を生
起して湯面上のフラックス13が鋳型4の内壁面と凝固シ
ェル9との間に供給されるのを阻害して供給不足とな
り、凝固シェル9の形成が不均一となり、鋳造される鋳
片の湯じわや割れの原因になるばかりでなく、フラック
ス13を巻き込み鋳片の非金属介在物性欠陥の原因ともな
る。また勢力の強い右側の下降流は溶鋼5の深くまで達
して非金属介在物の浮上を妨げるので凝固シェル9にト
ラップされ鋳片の非金属介在物性欠陥をもたらす原因と
なる。
On the right side where the amount of molten steel injected from the discharge hole 8 of the dipping nozzle 30 is large, the collision force against the solidified shell 9 formed in the short side 4a is large, and the molten steel moves upward along the inner surface of the solidified shell 9 and The flow will be split down vigorously. In this way, the strong upward flow causes rise of the molten metal surface 12 and prevents the flux 13 on the molten metal surface from being supplied between the inner wall surface of the mold 4 and the solidification shell 9, resulting in insufficient supply. The formation of the solidified shell 9 becomes non-uniform and causes not only wrinkles and cracks in the cast slab but also non-metallic inclusion physical defects in the slab by entraining the flux 13. Further, the rightward descending flow, which has a strong influence, reaches deep into the molten steel 5 and hinders the floating of the non-metallic inclusions, and is trapped by the solidified shell 9 and causes defects in the non-metallic inclusions of the slab.

【0008】一方、吐出孔8から注入される溶鋼量が少
ない左側では短辺4a内に形成された凝固シェル9への
衝突力が小さく、溶鋼が凝固シェル9の内面に沿って上
方および下方に分流する力は弱い。このため右側のよう
なトラブルは生じることはないが、溶鋼流量が少ないた
め吐出孔8内の溶鋼流によどみが発生し易く、アルミナ
等の付着によりノズル閉塞を起こし易く、多連々鋳造の
実施を困難とし生産性を害するばかりでなく、浸漬ノズ
ル取替による耐火物コストの増加を伴うことになる。
On the other hand, on the left side where the amount of molten steel injected from the discharge hole 8 is small, the impact force on the solidified shell 9 formed in the short side 4a is small, and the molten steel is moved upward and downward along the inner surface of the solidified shell 9. The shunting power is weak. For this reason, the trouble as shown on the right side does not occur, but since the molten steel flow rate is small, stagnation is likely to occur in the molten steel flow in the discharge hole 8 and nozzle clogging is likely to occur due to adhesion of alumina etc. Not only is it difficult to impair the productivity, but also the refractory cost increases due to the replacement of the immersion nozzle.

【0009】このようにして一旦偏流が生じるとこれを
解消することはなかなか困難であり、偏流の程度が激し
くなると、鋳型4内で形成された凝固シェル9の再溶解
によるブレークアウト等の操業トラブルや、鋳型4内の
湯面変動等による鋳片表面欠陥が発生しやすく、最悪の
場合、鋳造を中止せざるを得なくなる。前記のように浸
漬ノズル3に生じた偏流により左右の吐出孔8からの溶
鋼吐出量に大小の差が生じると連鋳鋳型の操業に支障が
あるばかりでなく鋳片の品質悪化を招き好ましくない。
In this way, once the uneven flow occurs, it is difficult to eliminate it, and when the uneven flow becomes severe, operational trouble such as breakout due to remelting of the solidified shell 9 formed in the mold 4 is caused. In addition, slab surface defects are likely to occur due to fluctuations in the molten metal level in the mold 4, and in the worst case, casting must be stopped. As described above, when the difference in the amount of molten steel discharged from the left and right discharge holes 8 is caused by the uneven flow generated in the immersion nozzle 3, not only the operation of the continuous casting mold is hindered but also the quality of the cast piece is deteriorated, which is not preferable. .

【0010】そこで浸漬ノズルの吐出孔から連鋳鋳型内
に流出する左右の溶鋼量が不均等となる溶鋼偏流を抑制
すべく特開昭 62-197258号公報には、浸漬ノズルの左右
の溶鋼レベル差を湯面計を用いて検出し、この溶鋼隆起
によるレベル差を抑制するように鋳造速度を低速に制御
して偏流を解消するものが開示されている。しかるに鋳
造速度を低速にすると浸漬ノズルの吐出孔8内の溶鋼流
のよどみによりアルミナの付着を起こし易く、返って溶
鋼偏流を助長する危険性があり、確実に偏流を防止する
ことは困難である。
Therefore, in order to suppress the uneven flow of molten steel from the discharge holes of the immersion nozzle into the continuous casting mold, uneven distribution of molten steel is disclosed in JP-A-62-197258. It is disclosed that the difference is detected by using a level gauge and the casting speed is controlled to be low so as to suppress the level difference due to the molten steel swelling, thereby eliminating the drift. However, if the casting speed is slowed down, the adherence of alumina is likely to occur due to the stagnation of the molten steel flow in the discharge holes 8 of the immersion nozzle, and there is a risk of promoting molten steel uneven flow, and it is difficult to reliably prevent uneven flow. .

【0011】さらには図6に示すように浸漬ノズル30の
吐出孔から吐出した溶鋼を鋳型4の長辺背面に設置した
電磁攪拌装置31を用いて電磁攪拌するものあるいは図7
に示すように電磁ブレーキ装置32を設置して浸漬ノズル
30の吐出孔8から吐出した溶鋼流に電磁ブレーキをかけ
て流速を低下させるものが知られている。しかしながら
電磁攪拌装置31あるいは電磁ブレーキ装置32を設置する
ものは溶鋼偏流を緩和することはできるけれども十分で
なく、本質的に溶鋼偏流を防止できないという弱点があ
った。
Further, as shown in FIG. 6, the molten steel discharged from the discharge hole of the immersion nozzle 30 is electromagnetically stirred by using an electromagnetic stirrer 31 installed on the back surface of the long side of the mold 4, or FIG.
Install the electromagnetic brake device 32 as shown in
It is known that an electromagnetic brake is applied to the molten steel flow discharged from the 30 discharge holes 8 to reduce the flow velocity. However, the device provided with the electromagnetic stirrer 31 or the electromagnetic brake device 32 can reduce the molten steel drift, but is not sufficient, and has a weak point that it cannot essentially prevent the molten steel drift.

【0012】特開昭63-33171号公報には、浸漬ノズルの
溶鋼通路に沿って延びる棒状の芯材を設けるものがまた
特開昭 63-295056号公報には浸漬ノズルの溶鋼流路の中
心を通ってかつスライディングノズルのスライド方向に
平行な板状部材を設けるものが開示されている。しかる
に前記棒状の芯材あるいは板状部材を浸漬ノズルの溶鋼
通路に設けても、スライディングノズルの開度調節によ
り落下する溶鋼の偏りは存在するので、浸漬ノズルに設
けた左右一対の吐出孔から吐出される溶鋼偏流を十分に
防止するのは困難である。万一、偏流が発生すると溶鋼
流路に存在する棒状の芯材または板状部材がアルミナ付
着媒体となり、付着物が成長し、偏流を助長するので逆
効果となる危険性が大である。
In Japanese Patent Laid-Open No. 63-33171, a bar-shaped core material extending along the molten steel passage of the immersion nozzle is provided, and in Japanese Patent Laid-Open No. 63-295056, the center of the molten steel flow path of the immersion nozzle is provided. It is disclosed that a plate-shaped member that passes through and is parallel to the sliding direction of the sliding nozzle is provided. However, even if the rod-shaped core material or the plate-shaped member is provided in the molten steel passage of the immersion nozzle, there is a deviation of the molten steel that falls due to the adjustment of the opening of the sliding nozzle. It is difficult to sufficiently prevent the molten steel drift that is caused. Should a nonuniform flow occur, the rod-shaped core material or plate-shaped member present in the molten steel flow channel becomes an alumina adhering medium, and the adhering matter grows to promote the nonuniform flow, so that there is a great danger of having an adverse effect.

【0013】[0013]

【発明が解決しようとする課題】本発明は前記従来技術
の問題点を解消し、タンディッシュの下部に設けたスラ
イディングノズルの開孔絞り位置を調整するだけで大掛
かりな設備を設けることなく、浸漬ノズルの吐出孔より
注入される溶鋼量をバランスさせることができるスラブ
連鋳における鋳型への溶鋼供給方法を提供することを目
的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the prior art described above, and the immersion is performed without adjusting large-scale equipment simply by adjusting the aperture throttle position of the sliding nozzle provided in the lower part of the tundish. It is an object of the present invention to provide a method for supplying molten steel to a mold in continuous slab casting, which can balance the amount of molten steel injected from a discharge hole of a nozzle.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
の本発明は、タンディッシュ内の溶鋼をスライディング
ノズルを制御しつつ浸漬ノズルの吐出孔から鋳型内に注
入するスラブ連鋳における鋳型への溶鋼供給方法におい
て、鋳型の中心軸に対して対称にそれぞれ短辺方向に流
出する片面に吐出孔を備えた浸漬ノズルを2本配置し、
各々の浸漬ノズルに配設したスライディングノズルを制
御しつつそれぞれ吐出孔から鋳型の短辺方向に吐出する
溶鋼供給量を独立に調整し、鋳型内の溶鋼偏流を防止す
ることを特徴とするスラブ連鋳における鋳型への溶鋼供
給方法である。
Means for Solving the Problems The present invention for achieving the above-mentioned object is to provide a casting mold in slab continuous casting in which molten steel in a tundish is injected into a casting mold from a discharge hole of a dipping nozzle while controlling a sliding nozzle. In the molten steel supply method, two immersion nozzles each having a discharge hole on one side that flows symmetrically with respect to the center axis of the mold and flows out in the short side direction are arranged.
While controlling the sliding nozzles installed in each dipping nozzle, the amount of molten steel discharged from each discharge hole in the short side direction of the mold is adjusted independently to prevent molten steel drift in the mold. It is a method of supplying molten steel to a mold in casting.

【0015】[0015]

【作用】前述のように本発明では、鋳型の中心軸に対し
て対称にそれぞれ短辺方向に流出する片面に吐出孔を備
えた浸漬ノズルを2本配置し、各々の浸漬ノズルに配設
したスライディングノズルの開度を制御しつつ各々の吐
出孔への溶鋼供給量を独立に調整するので2本の浸漬ノ
ズルの吐出孔から鋳型内に吐出される溶鋼偏流を容易に
防止することができる。
As described above, according to the present invention, two immersion nozzles each having a discharge hole on one side that flows out in the short side direction symmetrically with respect to the center axis of the mold are arranged, and each immersion nozzle is arranged. Since the molten steel supply amount to each discharge hole is adjusted independently while controlling the opening of the sliding nozzle, it is possible to easily prevent the molten steel drift from being discharged into the mold from the discharge holes of the two immersion nozzles.

【0016】[0016]

【実施例】以下、本発明の実施例を図面に基いて説明す
る。図1は本発明の実施例に係るスラブ連鋳型4への溶
鋼供給装置を示し、タンディッシュ1は耐火物で内張り
される外側が鉄皮で覆われており、タンディッシュ1内
には取鍋から溶鋼(図示せず)が注入されるようになっ
ている。タンディッシュ1の底部には近接して2個の注
入ノズル6が配設してあり、この2個の注入ノズル6の
下方にそれぞれ接続して、固定プレート2a、スライド
プレート2b、下プレート2cで構成されたスライディ
ングノズル2が設置してある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus for supplying molten steel to a continuous slab mold 4 according to an embodiment of the present invention. The tundish 1 is lined with a refractory material and the outside is covered with an iron skin, and the tundish 1 has a ladle. Molten steel (not shown) is injected from here. Two injection nozzles 6 are arranged in close proximity to the bottom of the tundish 1, and are connected below the two injection nozzles 6, respectively, with a fixed plate 2a, a slide plate 2b, and a lower plate 2c. A configured sliding nozzle 2 is installed.

【0017】各々のスライディングノズル2には、片面
に吐出孔8を備えた2本の浸漬ノズル3が接続して支持
されている。定常状態においては、浸漬ノズル3の下部
は鋳型4内の溶鋼5中に浸漬されており、2本の浸漬ノ
ズル3の吐出孔8は鋳型4の短辺に向けてある。鋳型4
内湯面はフラックス13で覆われており、鋳型4内の溶鋼
の酸化を防止すると共に、鋳型4と凝固シェル9との間
の潤滑性を向上させるようになっている。
To each sliding nozzle 2, two immersion nozzles 3 each having a discharge hole 8 on one side are connected and supported. In the steady state, the lower part of the immersion nozzle 3 is immersed in the molten steel 5 in the mold 4, and the discharge holes 8 of the two immersion nozzles 3 face the short side of the mold 4. Mold 4
The inner molten metal surface is covered with the flux 13 to prevent the molten steel in the mold 4 from being oxidized and to improve the lubricity between the mold 4 and the solidified shell 9.

【0018】次に、本発明の実施例の作用について説明
する。取鍋(図示せず)からタンディッシュ1に溶鋼を
注入し、この溶鋼をタンディッシュ1底部に近接して設
けた2個の上ノズル6にそれぞれ接続した2基のスライ
ディングノズル2、2本の浸漬ノズル3を介して鋳型4
に注入する。そして各々のスライディングノズル2のス
ライドプレート2bを摺動させて、開口面積を調節する
ことによりそれぞれ独立に溶鋼供給量を制御する。
Next, the operation of the embodiment of the present invention will be described. Molten steel is poured into a tundish 1 from a ladle (not shown), and the molten steel is connected to two upper nozzles 6 provided near the bottom of the tundish 1, two sliding nozzles 2 and two Mold 4 through immersion nozzle 3
Inject. Then, the slide plate 2b of each sliding nozzle 2 is slid to adjust the opening area to independently control the molten steel supply amount.

【0019】このようにして、タンディッシュ1の底部
に配設した2個の上ノズル6から供給される溶鋼5をそ
れぞれのスライディングノズル2を用いて独立して調節
することにより、2本の浸漬ノズル3の内孔14を流路と
してそれぞれ吐出孔8から鋳型4内に吐出される溶鋼吐
出流の左右均一化を図り、これによって溶鋼偏流を防止
する。吐出孔8より注入された溶鋼5は短辺側の凝固シ
ェル9に衝突した後、上昇流と下降流に分流されるが左
右の吐出孔8から注入される溶鋼量が均等になっている
ので上昇流および下降流は流動する間に減速される結
果、上昇流および下降流によるフラックス13の巻き込み
や非金属介在物の凝固シェル9へのトラップなどのトラ
ブルを抑制することができる。
In this way, the molten steel 5 supplied from the two upper nozzles 6 arranged at the bottom of the tundish 1 is independently adjusted by using the respective sliding nozzles 2, so that the two immersions are performed. Using the inner hole 14 of the nozzle 3 as a flow path, the molten steel discharge flow discharged from the discharge hole 8 into the mold 4 is made uniform on the left and right sides, thereby preventing molten steel drift. The molten steel 5 injected from the discharge holes 8 collides with the solidified shell 9 on the short side and is then divided into an upflow and a downflow, but the amount of molten steel injected from the left and right discharge holes 8 is equal. As a result of the upflow and the downflow being decelerated while flowing, troubles such as the entrainment of the flux 13 due to the upflow and the downflow and the trapping of non-metallic inclusions in the solidified shell 9 can be suppressed.

【0020】なお、鋳型4内に浸漬ノズル3の吐出孔8
から吐出される溶鋼偏流は鋳型4の左右の短辺4aに埋
設した熱電対(図示せず)によって検出するか、あるい
は浸漬ノズル3とその両側の鋳型短辺4a間にそれぞれ
配設した渦流式レベル計17を配設し、両レベル計17で測
定される各レベル値の偏差を求めて、溶鋼表面の隆起を
検出し、この隆起を抑制するように2個のスライディン
グノズル2の開度を独立して制御することによって2本
の浸漬ノズル3の吐出孔8から吐出される溶鋼偏流を防
止することができる。なお溶鋼偏流の検出する手段は前
記に限定するものではない。
The discharge hole 8 of the immersion nozzle 3 is placed in the mold 4.
The drift of molten steel discharged from the mold is detected by a thermocouple (not shown) embedded in the short sides 4a on the left and right of the mold 4, or a swirl flow type is provided between the immersion nozzle 3 and the mold short sides 4a on both sides thereof. A level gauge 17 is provided, the deviation of each level value measured by both level gauges 17 is calculated, the ridge on the molten steel surface is detected, and the openings of the two sliding nozzles 2 are controlled so as to suppress this ridge. By controlling independently, it is possible to prevent drift of molten steel discharged from the discharge holes 8 of the two immersion nozzles 3. The means for detecting molten steel drift is not limited to the above.

【0021】本発明装置を用いて前述の手順により自転
車外板用の極低炭素溶鋼を曲率半径12mの湾曲型スラブ
連鋳機によりスラブ厚み 220mm、スラブ幅1300mmのスラ
ブを連続鋳造した。本発明によれば浸漬ノズルの吐出孔
から鋳型内に吐出する溶鋼偏流を容易に解消することが
できた。その結果、図8の(a)、(b)に示すように
従来法に比較して、自転車外板用極低炭素冷延鋼板のフ
クレ欠陥指数およびフクレ以外の表面欠陥指数を鋳造速
度の如何によらず、大幅に低下することができ、特に高
い鋳造速度での欠陥指数を下げるのに著しい効果が得ら
れた。
Using the apparatus of the present invention, ultra-low carbon molten steel for bicycle outer plates was continuously cast by a curved slab continuous casting machine having a radius of curvature of 12 m by the above-mentioned procedure to form a slab having a slab thickness of 220 mm and a slab width of 1300 mm. According to the present invention, it was possible to easily eliminate the molten steel drift that is discharged into the mold from the discharge hole of the immersion nozzle. As a result, as shown in FIGS. 8 (a) and 8 (b), as compared with the conventional method, the blistering defect index and the surface defect index other than blistering of the ultra-low carbon cold-rolled steel sheet for bicycle outer plates were determined by the casting speed. Irrespective of the fact that the defect index can be significantly reduced, and a remarkable effect is obtained in reducing the defect index, especially at a high casting speed.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、2
本の浸漬ノズルの流路にそれぞれ接続した別々のスライ
ディングノズルにより各々の吐出孔への溶鋼供給量を独
立に制御するので、浸漬ノズルの下端部の片面に設けた
吐出孔から鋳型内に吐出される溶鋼偏流を容易に抑制す
ることができる。その結果、スラブから圧延した鋼板の
内部欠陥ならびに表面欠陥の低減が達成できる。
As described above, according to the present invention, 2
Since the amount of molten steel supplied to each discharge hole is independently controlled by separate sliding nozzles connected to the flow paths of the immersion nozzle, the discharge holes are provided on one side of the lower end of the immersion nozzle and discharged into the mold. The molten steel drift can be easily suppressed. As a result, reduction of internal defects and surface defects of the steel sheet rolled from the slab can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る装置の側面断面図であ
る。
1 is a side sectional view of an apparatus according to an embodiment of the present invention.

【図2】鋳造速度とフクレ欠陥指数ならびにフクレ以外
の表面欠陥指数の関係を本発明と従来の場合について比
較して示す線図である。
FIG. 2 is a diagram showing the relationship between the casting speed, the blistering defect index, and the surface buffing index other than blistering in the present invention and the conventional case.

【図3】浸漬ノズル吐出孔に付着物がありスライディン
グノズルを全開にした場合の溶鋼注入状況を示す従来例
の側面断面図である。
FIG. 3 is a side cross-sectional view of a conventional example showing a molten steel pouring state when deposits are present in the immersion nozzle discharge hole and the sliding nozzle is fully opened.

【図4】浸漬ノズルの吐出孔に付着物がなく、スライデ
ィングノズルの開口絞りによる溶鋼注入の状況を示す従
来例の側面断面図である。
FIG. 4 is a side cross-sectional view of a conventional example showing a state of injection of molten steel by an aperture stop of a sliding nozzle without deposits in a discharge hole of a dipping nozzle.

【図5】定常時のスライディングノズルからの溶鋼注入
状況を示す従来例の側面断面図である。
FIG. 5 is a side sectional view of a conventional example showing a molten steel injection state from a sliding nozzle in a steady state.

【図6】鋳型の長辺背面に電磁攪拌装置を設置する従来
例の側面断面図である。
FIG. 6 is a side sectional view of a conventional example in which an electromagnetic stirrer is installed on the back of the long side of the mold.

【図7】鋳型の長辺背面電磁ブレーキ装置を設置する従
来例の側面断面図である。
FIG. 7 is a side sectional view of a conventional example in which a long-side back electromagnetic brake device of a mold is installed.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 2 スライディングノズル 3 浸漬ノズル(本発明) 4 連鋳鋳型 5 溶鋼 6 上ノズル 7 油圧シリンダ 8 吐出孔 9 凝固シェル 10 付着物 11 溶鋼主流 12 湯面盛上り 13 フラックス 14 内孔 15 渦流式レベル計 30 浸漬ノズル(従来) 31 電磁攪拌装置 32 電磁ブレーキ装置 1 Tundish 2 Sliding Nozzle 3 Immersion Nozzle (Invention) 4 Continuous Casting Mold 5 Molten Steel 6 Upper Nozzle 7 Hydraulic Cylinder 8 Discharge Hole 9 Solidification Shell 10 Adhered Material 11 Main Molten Steel Rise 13 Flux 14 Inner Hole 15 Eddy Current Type Level meter 30 Immersion nozzle (conventional) 31 Electromagnetic stirrer 32 Electromagnetic brake device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュ内の溶鋼をスライディン
グノズルを制御しつつ浸漬ノズルの吐出孔から鋳型内に
注入するスラブ連鋳における鋳型への溶鋼供給方法にお
いて、鋳型の中心軸に対して対称にそれぞれ短辺方向に
流出する片面に吐出孔を備えた浸漬ノズルを2本配置
し、各々の浸漬ノズルに配設したスライディングノズル
を制御しつつそれぞれ吐出孔から鋳型の短辺方向に吐出
する溶鋼供給量を独立に調整し、鋳型内の溶鋼偏流を防
止することを特徴とするスラブ連鋳における鋳型への溶
鋼供給方法。
1. A method for supplying molten steel to a mold in slab continuous casting in which molten steel in a tundish is injected into a mold from a discharge hole of a dipping nozzle while controlling a sliding nozzle. Two immersion nozzles with discharge holes on one side that flow out in the short side direction are arranged, and the amount of molten steel discharged from each discharge hole in the short side direction of the mold while controlling the sliding nozzles installed in each immersion nozzle. A method for supplying molten steel to a mold in continuous casting of slabs, characterized in that the uneven flow of molten steel in the mold is prevented by adjusting the above.
JP28753792A 1992-10-26 1992-10-26 Method for supplying molten steel into mold in slab continuous casting Pending JPH06134561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28753792A JPH06134561A (en) 1992-10-26 1992-10-26 Method for supplying molten steel into mold in slab continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28753792A JPH06134561A (en) 1992-10-26 1992-10-26 Method for supplying molten steel into mold in slab continuous casting

Publications (1)

Publication Number Publication Date
JPH06134561A true JPH06134561A (en) 1994-05-17

Family

ID=17718628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28753792A Pending JPH06134561A (en) 1992-10-26 1992-10-26 Method for supplying molten steel into mold in slab continuous casting

Country Status (1)

Country Link
JP (1) JPH06134561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400037B1 (en) * 2012-04-26 2014-05-27 현대제철 주식회사 Continuous casting method
CN113664195A (en) * 2021-08-18 2021-11-19 三鑫重工机械有限公司 Three-layer sliding plate mechanism applied to ladle casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400037B1 (en) * 2012-04-26 2014-05-27 현대제철 주식회사 Continuous casting method
CN113664195A (en) * 2021-08-18 2021-11-19 三鑫重工机械有限公司 Three-layer sliding plate mechanism applied to ladle casting
CN113664195B (en) * 2021-08-18 2024-04-12 三鑫重工机械有限公司 Be applied to ladle and open three-layer slide mechanism of watering

Similar Documents

Publication Publication Date Title
US5381857A (en) Apparatus and method for continuous casting
JPH02284750A (en) Method for continuously casting steel using static magnetic field
EP0463225B1 (en) Method and apparatus for improved melt flow during continuous strip casting
JPH06134561A (en) Method for supplying molten steel into mold in slab continuous casting
JPH06126409A (en) Method for supplying molten steel into slab continuous casting mold
US5265665A (en) Continuous casting method of steel slab
JP3252769B2 (en) Flow control method of molten steel in continuous casting mold
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP4998705B2 (en) Steel continuous casting method
JPH035052A (en) Method for controlling drift of molten steel in mold for continuous casting
JP2901983B2 (en) Immersion nozzle for continuous casting
JPH04238658A (en) Immersion nozzle for continuous casting
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JPH09192803A (en) Method for continuously casting steel
JPH05329591A (en) Method for preventing drift of molten steel poured in continuous casting mold
JP2022067775A (en) Tundish nozzle for continuous casting of steel
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JP2859764B2 (en) Continuous casting method of steel slab using static magnetic field
JPH05318070A (en) Continuous casting apparatus
JPS63295048A (en) Apparatus for controlling variation of molten surface
JPS63235050A (en) Submerged nozzle
JPH02142652A (en) Continuous casting method
JPH10137905A (en) Method for starting casting in continuous casting method of steel
JPH10328794A (en) Method for removing inclusion in tundish for continuous casting
JPH0673726B2 (en) Continuous casting method and continuous casting apparatus