JPH04238658A - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting

Info

Publication number
JPH04238658A
JPH04238658A JP4453091A JP4453091A JPH04238658A JP H04238658 A JPH04238658 A JP H04238658A JP 4453091 A JP4453091 A JP 4453091A JP 4453091 A JP4453091 A JP 4453091A JP H04238658 A JPH04238658 A JP H04238658A
Authority
JP
Japan
Prior art keywords
flow
mold
immersion nozzle
nozzle
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4453091A
Other languages
Japanese (ja)
Inventor
Nobuisa Shiga
信勇 志賀
Nagayasu Bessho
別所 永康
Hisao Yamazaki
久生 山崎
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4453091A priority Critical patent/JPH04238658A/en
Publication of JPH04238658A publication Critical patent/JPH04238658A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control molten metal flow and to uniformly flow out discharging flow by surrounding an opening hole in an immersion nozzle with three sides of side walls and bottom wall along long side mold and dividing the opening hole into two with the bottom wall and a parallel middle wall. CONSTITUTION:The opening hole in an immersion nozzle 3 facing to short side mold in the mold for continuous casting at the lower end of a refractory- made hollow guide tube immersed into the molten metal in the mold connected with a discharging hole in the tundish, is surrounded with the three sides with the side walls 2, 2 extended along the long side mold and the bottom wall 1 bridged between the side walls 2, 2. Further, by dividing the opening hole into two with the middle wall 16 arranged in parallel to the bottom wall 1 and extended toward the short side mold from a little inner part of the opening hole and bridged to the side walls 2, 2, the molten metal flow is divided and controlled to uniform flow out the discharging flow.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、溶融金属なかでも溶
鋼の連続鋳造に用いる浸漬ノズルに関し、鋳片の凝固シ
ェルに非金属介在物などが捕捉されることを防止するの
に適した連続鋳造用浸漬ノズルを提案しようとするもの
である。
[Industrial Application Field] This invention relates to a submerged nozzle used for continuous casting of molten metal, especially molten steel, and is suitable for continuous casting to prevent nonmetallic inclusions from being trapped in the solidified shell of a slab. This paper attempts to propose a submerged nozzle for

【0002】図2に湾曲型連続鋳造用鋳型における一般
的な鋳造状況を示す。5は溶鋼、6は浸漬ノズル、7は
浸漬ノズル吐出口、8は長辺鋳型、9は短辺鋳型、10
は凝固シェル、11は非金属介在物、12は気泡、13
はモールドパウダである。
FIG. 2 shows a general casting situation in a curved continuous casting mold. 5 is molten steel, 6 is an immersion nozzle, 7 is an immersion nozzle discharge port, 8 is a long side mold, 9 is a short side mold, 10
is a solidified shell, 11 is a nonmetallic inclusion, 12 is a bubble, 13
is mold powder.

【0003】かかる湾曲型の連続鋳造機では、溶鋼はタ
ンディッシュからスライディングノズル等を介し連なる
浸漬ノズル管内を経て、この浸漬ノズル下端の吐出口か
ら連続鋳造用鋳型内へ注入される。この鋳型は長辺鋳型
及び短辺鋳型から構成され、その内面から冷却すること
により、鋳片の凝固シェルが形成され、引き続き冷却す
ることでこの凝固シェルを内側に向けて肥厚化して鋳片
を得る。
In such a curved continuous casting machine, molten steel is injected from the tundish through a continuous immersion nozzle pipe via a sliding nozzle or the like, and into a continuous casting mold from a discharge port at the lower end of the immersion nozzle. This mold consists of a long-side mold and a short-side mold, and by cooling from the inside, a solidified shell of the slab is formed, and by continued cooling, this solidified shell is thickened inward and the slab is formed. obtain.

【0004】このような連続鋳造の際に浸漬ノズルから
該鋳型内に吐出される溶鋼中には、非金属介在物(アル
ミナなど)が含まれていて、またこのような非金属介在
物が堆積することによるノズル詰まりを防止すべく吹き
込まれた不活性ガス(Ar、N2など)も溶鋼と共に浸
漬ノズルから吐出される。これら非金属介在物や不活性
ガスの多くは、溶鋼との比重差により該鋳型内の溶鋼湯
面に向け浮上するわけであるが、吐出流の流動状態の如
何によっては鋳片凝固シェルに捕捉されてしまい鋳造欠
陥となる。そのうれいは湾曲型連続鋳造機で鋳造を行う
際に殊に著しい。このような非金属介在物、不活性ガス
が鋳片内部に捕捉された場合には、その後の冷延鋼板の
製造過程において内部欠陥であるふくれを生じ、また鋳
片表面、表皮下に捕捉された場合には、冷延鋼板の表面
欠陥であるスケール、スリバーを生じてしまう。
[0004] During such continuous casting, the molten steel discharged from the immersion nozzle into the mold contains nonmetallic inclusions (such as alumina), and these nonmetallic inclusions may accumulate. An inert gas (Ar, N2, etc.) blown in to prevent nozzle clogging due to molten steel is also discharged from the immersion nozzle together with the molten steel. Many of these nonmetallic inclusions and inert gases float toward the molten steel surface in the mold due to the difference in specific gravity with the molten steel, but depending on the flow state of the discharge flow, they may be captured in the solidified slab shell. This will result in a casting defect. This advantage is particularly noticeable when casting is carried out using a curved continuous casting machine. If such nonmetallic inclusions or inert gases are trapped inside the slab, they will cause blisters, which are internal defects, in the subsequent manufacturing process of cold-rolled steel sheets, and they will also be trapped on the surface of the slab or under the skin. In this case, scale and sliver, which are surface defects of the cold-rolled steel sheet, will occur.

【0005】このように内部欠陥、表面欠陥の原因とな
る非金属介在物、不活性ガスの凝固シェルへの捕捉につ
いては、浸漬ノズルから連続鋳造用鋳型内に吐出する溶
鋼流の流動状況に影響されるから、溶鋼流の流動が望ま
しい状況になるような浸漬ノズル形状とすることが肝要
である。
[0005] As described above, the capture of nonmetallic inclusions and inert gases that cause internal defects and surface defects in the solidified shell affects the flow condition of the molten steel flow discharged from the immersion nozzle into the continuous casting mold. Therefore, it is important to design the immersion nozzle in such a way that the molten steel flows in a desirable manner.

【0006】[0006]

【従来の技術】従来の浸漬ノズルの代表的な形状として
は、図3に示されるように通常、ノズル下端に2個の吐
出口を有する形状が挙げられる。
2. Description of the Related Art A typical shape of a conventional immersion nozzle is usually one having two discharge ports at the lower end of the nozzle, as shown in FIG.

【0007】しかしこのような浸漬ノズルには、次のよ
うな問題があった。■  タンディッシュから浸漬ノズ
ル管内を通過する溶鋼の落下エネルギーの影響で、吐出
口の上下で縦方向の速度分布差を生じる(図4参照) 
。すなわち吐出口下部での溶鋼流速が吐出口上部よりも
速くなって、連続鋳造用鋳型内への気泡や介在物の侵入
深さの増大、また湯面レベル変動の増加によるパウダ巻
き込み等を生じさせる。このような溶鋼流速の不均一性
は、浸漬ノズルの吐出口のみを単純に拡大しただけでは
、解消することができない。■  浸漬ノズル吐出口部
における溶鋼流速の低い場所に鋼中のアルミナ14が堆
積し、ノズル詰まりの原因となる(図4参照) 。アル
ミナが堆積、成長すると、開口面積が小さくなるために
溶鋼の吐出流速が増加し、また2つの開口の面積が異な
ることで連続鋳造用鋳型内で偏流を生じる。この鋳型内
偏流により■と同様に内部欠陥、表面欠陥が増大する。 ■  浸漬ノズル吐出口からの溶鋼流の広がりが鋳片厚
さに対して大きい場合には、溶鋼流が長辺の凝固シェル
に衝突する部位にてこの溶鋼流に含まれるArガスやア
ルミナが捕捉され、表面欠陥の原因となる(図5参照)
 。
However, such a submerged nozzle has the following problems. ■ Due to the influence of the falling energy of the molten steel passing through the immersion nozzle pipe from the tundish, a difference in velocity distribution occurs in the vertical direction above and below the discharge port (see Figure 4).
. In other words, the flow rate of molten steel at the bottom of the discharge port is faster than that at the top of the discharge port, which increases the depth of penetration of bubbles and inclusions into the continuous casting mold, and causes powder entrainment due to increased molten metal level fluctuations. . Such non-uniformity in the flow rate of molten steel cannot be resolved by simply enlarging only the discharge port of the immersion nozzle. (2) Alumina 14 in the steel accumulates in areas where the molten steel flow rate is low at the immersion nozzle discharge port, causing nozzle clogging (see Figure 4). As alumina accumulates and grows, the opening area becomes smaller, which increases the discharge flow rate of molten steel, and the two openings have different areas, which causes uneven flow within the continuous casting mold. This in-mold drift causes an increase in internal defects and surface defects, similar to (2). ■ If the spread of the molten steel flow from the immersion nozzle outlet is large relative to the thickness of the slab, Ar gas and alumina contained in the molten steel flow will be captured at the part where the molten steel flow collides with the solidified shell on the long side. and cause surface defects (see Figure 5).
.

【0008】上述した浸漬ノズルの有する問題を解決し
ようとして、特開平1−157751 号公報には、円
筒ノズルの高さ方向に吐出口を複数個設けて、ノズル吐
出口とノズル断面積とを所定の関係に定めることで各吐
出口からの溶鋼流速を均一化する連続鋳造用浸漬ノズル
が開示されてる。しかしこのように単に吐出口からの溶
鋼流速を均一にしたとしても、各吐出口において、縦方
向の速度分布差を生じることは免れ得ないので溶鋼流速
の不均一性を解消し難く、また浸漬ノズル吐出口からの
溶鋼流の広がりに関して、従来の浸漬ノズル同様、溶鋼
流が長辺の凝固シェルに衝突する部位にてこの溶鋼流に
含まれるArガスやアルミナが捕捉される問題が残って
いた。
In an attempt to solve the above-mentioned problems of the immersion nozzle, Japanese Patent Laid-Open No. 1-157751 discloses a method in which a plurality of discharge ports are provided in the height direction of a cylindrical nozzle, and the nozzle discharge ports and the nozzle cross-sectional area are set to a predetermined value. A continuous casting immersion nozzle is disclosed in which the flow velocity of molten steel from each discharge port is made uniform by setting the following relationship. However, even if the molten steel flow velocity from the discharge ports is simply made uniform in this way, it is inevitable that a difference in velocity distribution will occur in the longitudinal direction at each discharge port, making it difficult to eliminate the non-uniformity of the molten steel flow velocity. Regarding the spread of the molten steel flow from the nozzle outlet, there remained the problem that Ar gas and alumina contained in the molten steel flow were trapped at the part where the molten steel flow collided with the solidified shell on the long side, similar to the conventional immersion nozzle. .

【0009】[0009]

【発明が解決しようとする課題】上述した、従来の浸漬
ノズルを用いて連続鋳造を行う際に生じる問題を有利に
解決して、鋳片の凝固シェルに非金属介在物、不活性ガ
スが捕捉されるのを防止することで内部欠陥、表面欠陥
の少ない鋳片を製造することができる連続鋳造用浸漬ノ
ズルを提案することがこの発明の目的である。
[Problems to be Solved by the Invention] The above-mentioned problems that occur when performing continuous casting using a conventional immersion nozzle are advantageously solved, and non-metallic inclusions and inert gas are trapped in the solidified shell of the slab. It is an object of the present invention to propose an immersion nozzle for continuous casting that can produce slabs with fewer internal defects and surface defects by preventing such occurrence.

【0010】0010

【課題を解決するための手段】この発明は、タンディッ
シュの出口孔と連なって連続鋳造用鋳型内の溶融金属中
に浸漬される耐火物製の中空導管からなり、その下端に
連続鋳造用鋳型の短辺鋳型に向かう開口を有する浸漬ノ
ズルにおいて、上記開口を、長辺鋳型に沿ってのびる側
壁と、側壁にわたる底壁とによって三方で囲み、かつ底
壁と平行配置になり開口のやや内部から短辺鋳型に向か
ってのび側壁にわたる中壁によって該開口を二分するこ
とによって、溶融金属流を分割・制御することを特徴と
する連続鋳造用浸漬ノズルである。
[Means for Solving the Problems] The present invention consists of a hollow conduit made of refractory material that is connected to the outlet hole of the tundish and immersed in the molten metal in the continuous casting mold, and has a lower end connected to the continuous casting mold. In an immersion nozzle having an opening facing the short-side mold, the opening is surrounded on three sides by a side wall extending along the long-side mold and a bottom wall extending over the side wall, and arranged parallel to the bottom wall and extending from slightly inside the opening. This immersion nozzle for continuous casting is characterized in that the molten metal flow is divided and controlled by dividing the opening into two by an inner wall extending toward the short side mold and extending over the side walls.

【0011】溶鋼流の流動を制御するとは、吐出口から
の溶鋼流の流速を抑え、開口から連続鋳造用鋳型の下向
きに分散する溶鋼流の流動を抑制しかつ、長辺鋳型に向
かう溶鋼の主流を抑制することである。
[0011] Controlling the flow of molten steel means suppressing the flow velocity of molten steel from the discharge port, suppressing the flow of molten steel flowing downward from the opening into the continuous casting mold, and controlling the flow of molten steel toward the long-side mold. It is to suppress the mainstream.

【0012】図1に、この発明の浸漬ノズルの一例の要
部を示す。図中1は底壁、2は側壁、3は浸漬ノズル管
部、4は溶鋼湯面、16は中壁であり、この発明の浸漬
ノズルは、その下端部において開口を長辺鋳型に沿って
のびる側壁2と、側壁2にわたる底壁1とによって三方
で囲み、かつ底壁と平行配置になり開口のやや内部から
短辺鋳型に向かってのび側壁にわたる中壁16によって
該開口を二分している。
FIG. 1 shows the main parts of an example of the immersion nozzle of the present invention. In the figure, 1 is the bottom wall, 2 is the side wall, 3 is the immersion nozzle tube, 4 is the molten steel surface, and 16 is the inner wall. It is surrounded on three sides by an extending side wall 2 and a bottom wall 1 that spans the side wall 2, and is bisected by an inner wall 16 that extends parallel to the bottom wall and extends from slightly inside the opening toward the short side mold. .

【0013】[0013]

【作用】まずこの発明の浸漬ノズルの解明経緯について
述べる。発明者らは、従来の浸漬ノズルの欠点及び鋳片
の欠陥の発生機構を鑑み、種々の研究を重ね、検討した
結果、図6に示す浸漬ノズルが好適であることを見出し
、先に特許出願を行った(特願平2−293514 明
細書参照)。
[Function] First, we will explain how the immersion nozzle of this invention was developed. In view of the shortcomings of conventional immersion nozzles and the mechanism by which defects occur in cast slabs, the inventors conducted various studies and, as a result of consideration, found that the immersion nozzle shown in Fig. 6 was suitable, and filed a patent application earlier. (See the specification of Japanese Patent Application No. 2-293514).

【0014】このような浸漬ノズルの形状開発の思想と
しては、次のとおりであった。 イ)  タンディッシュから浸漬ノズル管内を通過する
溶鋼流の下方向への運動エネルギーを分散させるために
、浸漬ノズル管の真下に底壁を設け、かつ底壁の鋳片幅
方向の長さには一定の距離にわたって溶鋼流を誘導する
。 ロ)  浸漬ノズルの吐出口の面積を大きくして溶鋼流
速を低くし、溶鋼流が均一に連続鋳造用鋳型内の溶鋼中
に流出するようにする。 ハ)  表面欠陥防止のために、浸漬ノズルからの主流
が直接長辺凝固シェルに当たらぬようにする。
The idea behind developing the shape of such an immersion nozzle was as follows. b) In order to disperse the downward kinetic energy of the molten steel flow passing through the immersion nozzle pipe from the tundish, a bottom wall is provided directly below the immersion nozzle pipe, and the length of the bottom wall in the slab width direction is Directs the flow of molten steel over a certain distance. b) The area of the discharge port of the immersion nozzle is increased to lower the molten steel flow rate so that the molten steel flow uniformly flows into the molten steel in the continuous casting mold. c) To prevent surface defects, prevent the main flow from the immersion nozzle from directly hitting the solidified shell on the long side.

【0015】このような考え方に基づく浸漬ノズルは、
浸漬ノズル下端にそなえる開口を、長辺鋳型に沿っての
びる側壁2と、側壁2にわたる底壁1とによって三方で
囲んだものであり、浸漬ノズル管内を通る流体が側壁2
と底壁1間で形成される吐出口断面から十分に均一な流
速で流出し、実際の溶鋼鋳造においても鋳片の凝固シェ
ルに非金属介在物、不活性ガスが捕捉されるのを防止す
ることができる。
[0015] The immersion nozzle based on this idea is
An opening provided at the lower end of the immersion nozzle is surrounded on three sides by a side wall 2 extending along the long side mold and a bottom wall 1 extending over the side wall 2, and the fluid passing through the immersion nozzle pipe is allowed to flow through the side wall 2.
It flows out at a sufficiently uniform flow rate from the discharge port cross section formed between the bottom wall 1 and the bottom wall 1, and prevents nonmetallic inclusions and inert gas from being trapped in the solidified shell of the slab during actual molten steel casting. be able to.

【0016】しかしながら、注湯速度が小さい場合には
、吐出流は開口断面から均一に流出するとはいえこのと
き吐出流速及びノズル側壁間における循環流速が小さい
ために、不活性ガスが溶融金属流から早期に分離してし
まい、ノズル近傍で上方に向かって集中的に浮上しノズ
ル近傍の湯面変動の原因となる(図7参照)。注湯速度
を増加させると、上記の問題は解消するが、さらに注湯
速度を大きくした場合には、ノズル底壁1に沿った短辺
鋳型に向かう水平方向の流れが強くなって開口断面から
の流速の均一性がくずれ、流速の小さい吐出口上部がア
ルミナ系介在物の付着により詰まりやすくなってしまう
ことが判明した(図8参照)。
However, when the pouring rate is low, although the discharge flow uniformly flows out from the opening cross section, the discharge flow velocity and the circulation flow velocity between the nozzle side walls are low, so that inert gas is removed from the molten metal flow. It separates early and floats upwards near the nozzle, causing fluctuations in the melt level near the nozzle (see Fig. 7). Increasing the pouring speed solves the above problem, but if the pouring speed is further increased, the horizontal flow toward the short side mold along the nozzle bottom wall 1 becomes stronger, and the flow from the opening cross section becomes stronger. It was found that the uniformity of the flow rate was disrupted, and the upper part of the discharge port, where the flow rate was low, was likely to become clogged due to the adhesion of alumina-based inclusions (see FIG. 8).

【0017】そこで発明者らは、広範囲にわたる注湯速
度において吐出口から溶鋼を均一に流出し得る浸漬ノズ
ルについてさらに研究を重ねた結果、この発明に従う浸
漬ノズルが最適であることを見出したのである。
[0017] The inventors have conducted further research on immersed nozzles that can uniformly flow molten steel from the discharge port over a wide range of pouring speeds, and have found that the immersed nozzle according to the present invention is optimal. .

【0018】すなわちこの発明では、底壁1と平行配置
になり開口のやや内部から短辺鋳型に向かってのび側壁
2にわたる中壁16、換言すれば浸漬ノズル管部3下端
と底壁1と間に導管径d0 よりも小さい径の孔を有す
る中壁16、を設けることにより、吐出流を上下に分割
し、縦方向に2つの循環流を形成する。各循環流の流速
はほぼ等しくなり、図6に示す循環流速の約2倍となる
。したがって不活性ガスの溶融金属流からの早期分離が
なくなり、不活性ガス上方への集中浮上が抑制されて、
湯面変動は極めて小さくなった(図9参照)。さらに広
範囲の注湯速度において、吐出流全体にわたり流速の遅
い箇所がなくなり(図9参照)、アルミナ系介在物が集
中して付着する部分がなくなった。
That is, in this invention, the middle wall 16 is arranged parallel to the bottom wall 1 and extends from slightly inside the opening toward the short side mold and extends over the side wall 2, in other words, the middle wall 16 is arranged parallel to the bottom wall 1, and extends between the lower end of the submerged nozzle pipe section 3 and the bottom wall 1. By providing the inner wall 16 with a hole having a diameter smaller than the conduit diameter d0, the discharge flow is divided into upper and lower parts, and two circulating flows are formed in the longitudinal direction. The flow velocity of each circulating flow is approximately equal, and approximately twice the circulating flow velocity shown in FIG. Therefore, early separation of the inert gas from the molten metal flow is eliminated, and concentrated upward levitation of the inert gas is suppressed.
Fluctuations in the hot water level became extremely small (see Figure 9). Furthermore, over a wide range of pouring speeds, there were no areas where the flow rate was slow throughout the discharge flow (see FIG. 9), and there were no areas where alumina-based inclusions were concentrated and adhered.

【0019】ところでこのような浸漬ノズルにおいては
、浸漬ノズルの開口の垂直方向の長さa(図1中に同一
符号で図示。以下も同様)、底壁長さb、側壁間隔d0
 (浸漬ノズル管部内径)を決定することが望ましい。
By the way, in such a submerged nozzle, the length a in the vertical direction of the opening of the submerged nozzle (indicated by the same reference numeral in FIG.
It is desirable to determine the (inner diameter of the submerged nozzle tube).

【0020】そこでこの浸漬ノズルの開口の垂直方向の
長さa、底壁長さb及び側壁間隔d0 をパラメータと
して、ふくれの発生原因となる気泡の連続鋳造用鋳型内
における侵入深さを水モデルにて調査した。その結果、
気泡侵入深さを低減し、ふくれ欠陥を防止するためには
、    a≧100 mm、b≧40  mm、d0
 ≧50  mm                 
 …■が最適であった。
Therefore, using the vertical length a of the opening of the immersion nozzle, the bottom wall length b, and the side wall spacing d0 as parameters, the penetration depth of the bubbles that cause blistering into the continuous casting mold is calculated using a water model. We investigated. the result,
In order to reduce the bubble penetration depth and prevent blistering defects, a≧100 mm, b≧40 mm, d0
≧50mm
…■ was optimal.

【0021】浸漬ノズルの開口の垂直方向の長さaが1
00 mm未満の場合は、浸漬ノズルの吐出口から流出
する流体の速度が吐出口下部方向で速くなって、流れが
短辺鋳型に衝突してその後短辺を下降する速い流れを生
成する。この短辺下降流に沿って気泡が連続鋳造用鋳型
内へ深く侵入する。
[0021] The vertical length a of the opening of the immersion nozzle is 1
If the diameter is less than 0.0 mm, the velocity of the fluid flowing out from the outlet of the submerged nozzle becomes faster in the direction of the lower part of the outlet, and the flow impinges on the short-side mold and then generates a fast flow that flows down the short side. The bubbles penetrate deeply into the continuous casting mold along this downward flow on the short side.

【0022】底壁長さbが40mm未満の場合は、浸漬
ノズル管内を落下する流れの連続鋳造用鋳型内での下向
きの広がりを底壁で抑制できず、一部は連続鋳造用鋳型
下方へ侵入する。また十分な循環流形成が出来ず、吐出
流からの速度分布ができ、気泡の侵入深さが増大する。
[0022] When the bottom wall length b is less than 40 mm, the bottom wall cannot suppress the downward spread within the continuous casting mold of the flow falling in the immersion nozzle pipe, and some of the flow flows downward into the continuous casting mold. invade. In addition, sufficient circulating flow cannot be formed, resulting in velocity distribution from the discharge flow, and the penetration depth of bubbles increases.

【0023】側壁間隔d0 が50mm未満の場合は、
浸漬ノズル吐出口での断面積が小さくなるため、特に横
断面下方からの吐出流速が速くなり、短辺に沿った下降
流速を速くし、気泡侵入深さが大きくなる。
[0023] When the side wall spacing d0 is less than 50 mm,
Since the cross-sectional area at the immersion nozzle discharge port becomes smaller, the discharge flow velocity particularly from the lower side of the cross-section becomes faster, the downward flow velocity along the short side becomes faster, and the bubble penetration depth becomes larger.

【0024】さらに■の条件の浸漬ノズルの実機実験を
積み重ねた結果、浸漬ノズル形状の最適値としてさらに
次の各式を満足することが好ましいことが判明した。
Furthermore, as a result of repeated experiments with actual equipment for the submerged nozzle under the condition (2), it has been found that it is preferable that the optimum value of the submerged nozzle shape satisfies the following equations.

【0025】まずメニスカスでの浸漬ノズル−連続鋳造
用鋳型間の距離としては、     (x/2)−{(d0 +2t)/2}≧20
(mm)          …■であることが好まし
い。ここでxは鋳片厚み(mm)、tは側壁2の厚み(
mm)である。
First, the distance between the immersion nozzle and the continuous casting mold at the meniscus is (x/2)-{(d0 +2t)/2}≧20
(mm) It is preferable that it is ■. Here, x is the slab thickness (mm), and t is the thickness of the side wall 2 (
mm).

【0026】上記■式の条件をはずれると、長辺鋳型側
から成長した凝固シェルが浸漬ノズルに接触し、ノズル
折損などを生じる確率が高くなる。tは、耐火物強度の
観点から10mm以上が必要である。
[0026] If the above-mentioned condition (2) is not met, the solidified shell that has grown from the long-side mold side will come into contact with the immersion nozzle, increasing the probability that the nozzle will break. t needs to be 10 mm or more from the viewpoint of refractory strength.

【0027】次に浸漬ノズル底部の鋳片幅方向の最大値
については、     b+(d0 /2)≦270 (mm)   
                       …■
であることが好ましい。ここでd0 は、浸漬ノズル管
部の鋳片幅方向の長さ(mm)である。浸漬ノズルの横
幅が広くなり過ぎると、ノズル胴部のノズル−連続鋳造
用鋳型間の湯回りが悪くなり、長辺シェルの洗浄効果不
足のためにアルミナが捕捉されやすくなった。
Next, regarding the maximum value in the width direction of the slab at the bottom of the immersion nozzle, b+(d0/2)≦270 (mm)
…■
It is preferable that Here, d0 is the length (mm) of the submerged nozzle pipe portion in the slab width direction. When the width of the immersion nozzle became too wide, the water flow between the nozzle in the nozzle body and the continuous casting mold became poor, and alumina was easily trapped due to insufficient cleaning effect on the long side shell.

【0028】さらに浸漬ノズルの浴中の浸漬深さとして
、     c≦500 (mm)           
                         
  …■であることが好ましい。上記■式の条件を外れ
ると、浸漬ノズル下端で長辺シェルと接触することで該
ノズルの破損を生じる確率が高かった。またメニスカス
と浸漬ノズル開口上端との距離(c−a)は、ノズル近
傍でのメニスカスからのパウダ巻き込みを防止するため
に、    c−a≧60mm           
                         
      …■であることが好ましい。
Furthermore, the immersion depth of the immersion nozzle in the bath is c≦500 (mm).

...It is preferable that it is ■. When the condition of formula (1) above was not met, there was a high probability that the nozzle would be damaged due to contact with the long side shell at the lower end of the submerged nozzle. In addition, the distance (ca) between the meniscus and the upper end of the immersion nozzle opening should be ca≧60 mm in order to prevent powder from being drawn in from the meniscus near the nozzle.

...It is preferable that it is ■.

【0029】またさらに浸漬ノズルの吐出口の鋳片厚み
方向の幅すなわち側壁間隔d0 は、鋳片厚みxとの関
係で、     0.2 ≦d0 /x≦0.7       
                         
   …■の条件内に入るのが好ましい。d0 /x>
0.7 であると長辺側の凝固シェルに気泡が捕捉され
て表面欠陥が増大し、一方d0 /x<0.2 である
と主流が短辺鋳型に衝突するためか湯面変動が激しく、
パウダー性の表面欠陥が増加する。
Furthermore, the width of the discharge port of the immersion nozzle in the thickness direction of the slab, ie, the side wall spacing d0, is related to the slab thickness x, as follows: 0.2≦d0/x≦0.7

...It is preferable that it falls within the conditions of ■. d0 /x>
If it is 0.7, air bubbles will be trapped in the solidified shell on the long side, increasing surface defects, while if d0/x<0.2, the fluid level will fluctuate violently, probably because the mainstream collides with the mold on the short side. ,
Powdery surface defects increase.

【0030】さらにこの発明では、中壁が有する孔径d
、中壁の底壁からの高さg及び中壁端の側壁端からの距
離fについて、次の各式     3d0 /4≦d≦d0          
                         
…■    a/2≦g≦3a/4         
                         
…■    b/6≦f≦b            
                         
   …■を満足させることが好ましい。
Furthermore, in this invention, the pore diameter d of the inner wall is
, the height g of the inner wall from the bottom wall and the distance f from the end of the inner wall to the side wall are expressed by the following formulas: 3d0 /4≦d≦d0

…■ a/2≦g≦3a/4

…■ b/6≦f≦b

...It is preferable to satisfy ■.

【0031】上記■、■の条件を外れると、中壁による
吐出流の上下分割に偏りを生じ、各吐出流速の速い方の
吐出流は循環流を形成せずに水平方向に強い流れを生じ
、これが鋳型短辺に沿った下降流速を強くし、気泡侵入
深さが大きくなる。また上記■の条件を外れても、流れ
が不均一になる。例えばf<b/6の場合は、下側吐出
流において、上向きの流れを中壁が妨害し、水平方向の
流れが強くなる。f>bの場合は、中壁の幅が狭いため
に上側吐出流の一部が下方に流れ、循環流を生じない。
If the above conditions (1) and (2) are not met, the upper and lower divisions of the discharge flow due to the inner wall will be biased, and the discharge flow with a higher discharge flow rate will not form a circulation flow but a strong flow in the horizontal direction. , which increases the downward flow velocity along the short sides of the mold and increases the bubble penetration depth. Furthermore, even if the condition (2) above is not met, the flow becomes non-uniform. For example, when f<b/6, the inner wall obstructs the upward flow in the lower discharge flow, and the horizontal flow becomes stronger. When f>b, a part of the upper discharge flow flows downward because the width of the inner wall is narrow, and no circulating flow is generated.

【0032】[0032]

【実施例】表1に示す鋳造条件で、極低炭素Alキルド
鋼を湾曲半径12 mである連続鋳造機により鋳造した
[Example] Under the casting conditions shown in Table 1, ultra-low carbon Al-killed steel was cast using a continuous casting machine with a bending radius of 12 m.

【0033】[0033]

【0034】浸漬ノズルとしては、表2に示す7種類の
ノズルを使用した。
Seven types of nozzles shown in Table 2 were used as the immersion nozzles.

【0035】[0035]

【0036】鋳造ヒートとしては、12ヒート(250
 t/ヒート)ずつ各ノズルで鋳造した。各使用ノズル
のタイプ毎に冷延鋼板のふくれ発生指数を比較して表3
に示す。 なおふくれ発生指数は、不良コイル長/コイル全長=0
.05を指数1として定義した。
As the casting heat, 12 heats (250
t/heat) was cast with each nozzle. Table 3 compares the blistering index of cold-rolled steel sheets for each type of nozzle used.
Shown below. The blister occurrence index is: defective coil length/total coil length = 0
.. 05 was defined as index 1.

【0037】[0037]

【0038】同表から、この発明に従う浸漬ノズルの使
用により、水モデルの結果と同様な鋳型内の流動状況と
なって、ふくれが激減した。
From the same table, the use of the immersion nozzle according to the present invention resulted in a flow situation in the mold similar to the result of the water model, and the blistering was drastically reduced.

【0039】次に注湯速度を種々変化させて、中壁の有
無による湯面変動量に及ぼす影響を調べるために、表2
におけるNo. 2(本発明)の浸漬ノズルと、中壁が
ないだけて他のサイズは同一である浸漬ノズルを用いて
、ノズル周囲から短辺鋳型方向に50mm離れた位置で
の湯面変動量を調べた結果を図10にグラフで示す。な
お同表は、本発明の浸漬ノズルの注湯速度3.0 t/
min における湯面変動量を1とした相対評価で示し
た。同図から明らかなように、この発明の浸漬ノズルは
、注湯速度が低くなっても湯面の変動が抑制されている
Next, in order to investigate the influence of the presence or absence of an inner wall on the level fluctuation by varying the pouring speed, Table 2 was used.
No. in Using the immersed nozzle of No. 2 (invention) and an immersed nozzle with the same size except for the inner wall, the amount of fluctuation in the melt level at a position 50 mm away from the nozzle periphery in the direction of the short side mold was investigated. The results are shown graphically in FIG. Note that the same table shows that the pouring rate of the immersion nozzle of the present invention is 3.0 t/
Relative evaluation is shown with the amount of fluctuation in the hot water level at min as 1. As is clear from the figure, the immersion nozzle of the present invention suppresses fluctuations in the molten metal level even when the pouring speed becomes low.

【0040】次に注湯速度を種々変化させて、中壁の有
無によるノズル付着物厚みに及ぼす影響を調べた。浸漬
ノズルは、上記同様、表2におけるNo.2(本発明)
の浸漬ノズルと、中壁がないだけて他のサイズは同一で
ある浸漬ノズルを用いて、図11に示す測定位置におけ
る付着物厚みをd0 に対する相対評価で図12にグラ
フで示した。同表から明らかなようにこの発明の浸漬ノ
ズルは、付着物厚みの変動が小さい。
Next, the effect of the presence or absence of an inner wall on the thickness of deposits on the nozzle was investigated by varying the pouring speed. As above, the immersion nozzle is No. 2 in Table 2. 2 (present invention)
The deposit thickness at the measurement position shown in FIG. 11 is graphically shown in FIG. 12 as a relative evaluation with respect to d0 using a submerged nozzle with the same size as the one without the inner wall. As is clear from the same table, the immersion nozzle of the present invention has small variations in deposit thickness.

【0041】次に注湯速度を種々変化させて、中壁の有
無による冷延鋼板のふくれ発生頻度に及ぼす影響を調べ
た。浸漬ノズルは、上記同様、表2におけるNo. 2
(本発明)の浸漬ノズルと、中壁がないだけて他のサイ
ズは同一である浸漬ノズルを用いて、中壁なしの浸漬ノ
ズルにおける注湯速度2.4t/minの時のふくれ発
生頻度を1とした相対評価で図13にグラフで示した。 同表から明らかなようにこの発明の浸漬ノズルは、広範
囲の注湯速度にわたり、ふくれ発生頻度は低位に安定し
ている。
Next, the pouring speed was varied to examine the effect of the presence or absence of an inner wall on the frequency of blistering in cold rolled steel sheets. As above, the immersion nozzle is No. 2 in Table 2. 2
Using the immersed nozzle of the present invention and a immersed nozzle with the same size except for the inner wall, we calculated the frequency of blistering at a pouring rate of 2.4 t/min in the immersed nozzle without an inner wall. A relative evaluation of 1 is shown in a graph in FIG. As is clear from the same table, the immersion nozzle of the present invention has a stable blistering frequency at a low level over a wide range of pouring speeds.

【0042】[0042]

【発明の効果】この発明の連続鋳造用浸漬ノズルは、連
続鋳造用鋳型の短辺鋳型に向かう開口を長辺鋳型に沿っ
てのびる側壁と、側壁にわたる底壁とによって三方で囲
み、かつ底壁と平行配置になり開口のやや内部から短辺
鋳型に向かってのび側壁にわたる中壁によって該開口を
二分することによって、前記開口を通して流出する溶融
金属流の流動を制御して、広範囲の注湯速度にわたり、
吐出口断面から吐出流を均一に流出させることができ、
また低注湯速度における不活性ガスの集中浮上も防止す
ることができ、ノズル詰まりも激減させることができる
Effects of the Invention The continuous casting immersion nozzle of the present invention has an opening facing the short side mold of the continuous casting mold surrounded on three sides by a side wall extending along the long side mold and a bottom wall extending over the side wall. By dividing the opening into two by an inner wall arranged parallel to the opening and extending from slightly inside the opening toward the short side mold, the flow of the molten metal flowing out through the opening can be controlled and a wide range of pouring speeds can be achieved. Over the course of
The discharge flow can flow uniformly from the discharge port cross section,
It is also possible to prevent concentrated floating of inert gas at low pouring speeds, and to drastically reduce nozzle clogging.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の連続鋳造用浸漬ノズルの一例の説明
図である。
FIG. 1 is an explanatory diagram of an example of a continuous casting immersion nozzle according to the present invention.

【図2】連続鋳造鋳型における一般的な鋳造状況を示す
図である。
FIG. 2 is a diagram showing a general casting situation in a continuous casting mold.

【図3】従来の浸漬ノズル要部を示す図である。FIG. 3 is a diagram showing the main parts of a conventional submerged nozzle.

【図4】従来の浸漬ノズル吐出口での溶鋼の流速分布を
示す図である。
FIG. 4 is a diagram showing the flow velocity distribution of molten steel at the discharge port of a conventional immersion nozzle.

【図5】従来の浸漬ノズルを用いた際における連続鋳造
用鋳型への溶鋼流の広がり状況を示す図である。
FIG. 5 is a diagram showing how a molten steel flow spreads into a continuous casting mold when a conventional immersion nozzle is used.

【図6】発明者らが先に開発した浸漬ノズルの説明図で
ある。
FIG. 6 is an explanatory diagram of a submerged nozzle previously developed by the inventors.

【図7】注湯速度が低い際に発明者らが先に開発した浸
漬ノズルを用いた場合の鋳型内流動状況を示す図である
FIG. 7 is a diagram showing the flow situation in the mold when the immersion nozzle developed earlier by the inventors is used when the pouring rate is low.

【図8】注湯速度が高い際に発明者らが先に開発した浸
漬ノズルを用いた場合の鋳型内流動状況を示す図である
FIG. 8 is a diagram showing the flow situation in the mold when the immersion nozzle developed earlier by the inventors is used when the pouring rate is high.

【図9】この発明の連続鋳造用浸漬ノズルの一例及びそ
の使用時のノズル内の流体の流動状況を示す図である。
FIG. 9 is a diagram illustrating an example of the immersion nozzle for continuous casting of the present invention and the flow state of fluid within the nozzle when the nozzle is used.

【図10】浸漬ノズル近傍における湯面変動量と注湯速
度との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the amount of fluctuation in the melt level and the pouring speed in the vicinity of the immersion nozzle.

【図11】浸漬ノズル付着物厚みの測定位置を示す説明
図である。
FIG. 11 is an explanatory diagram showing the measurement position of the thickness of deposits on the immersion nozzle.

【図12】浸漬ノズル付着物厚みと注湯速度との関係を
示すグラフである。
FIG. 12 is a graph showing the relationship between the thickness of deposits on the immersion nozzle and the pouring rate.

【図13】冷延鋼板のふくれ発生頻度と注湯速度との関
係を示すグラフである。
FIG. 13 is a graph showing the relationship between the frequency of blistering in a cold rolled steel sheet and the pouring rate.

【符号の説明】[Explanation of symbols]

1  底壁 2  側壁 3  浸漬ノズル管部 16  中壁 1 Bottom wall 2 Side wall 3 Immersion nozzle pipe section 16 Middle wall

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  タンディッシュの出口孔と連なって連
続鋳造用鋳型内の溶融金属中に浸漬される耐火物製の中
空導管からなり、その下端に連続鋳造用鋳型の短辺鋳型
に向かう開口を有する浸漬ノズルにおいて、上記開口を
、長辺鋳型に沿ってのびる側壁と、側壁にわたる底壁と
によって三方で囲み、かつ底壁と平行配置になり開口の
やや内部から短辺鋳型に向かってのび側壁にわたる中壁
によって該開口を二分することによって、溶融金属流を
分割・制御することを特徴とする連続鋳造用浸漬ノズル
Claim 1: Consisting of a hollow conduit made of refractory that is connected to the outlet hole of the tundish and immersed in the molten metal in the continuous casting mold, and has an opening at the lower end toward the short side mold of the continuous casting mold. In the immersion nozzle, the opening is surrounded on three sides by a side wall extending along the long side mold, and a bottom wall spanning the side wall, and a side wall arranged parallel to the bottom wall and extending from slightly inside the opening toward the short side mold. 1. A submerged nozzle for continuous casting, characterized in that a molten metal flow is divided and controlled by dividing the opening into two by a middle wall spanning the length of the opening.
JP4453091A 1991-01-10 1991-01-10 Immersion nozzle for continuous casting Pending JPH04238658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4453091A JPH04238658A (en) 1991-01-10 1991-01-10 Immersion nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4453091A JPH04238658A (en) 1991-01-10 1991-01-10 Immersion nozzle for continuous casting

Publications (1)

Publication Number Publication Date
JPH04238658A true JPH04238658A (en) 1992-08-26

Family

ID=12694071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4453091A Pending JPH04238658A (en) 1991-01-10 1991-01-10 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH04238658A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119301A1 (en) * 2008-03-27 2009-10-01 黒崎播磨株式会社 Immersion nozzle for continuous casting
JP2009233717A (en) * 2008-03-27 2009-10-15 Kurosaki Harima Corp Immersion nozzle for continuous casting
JP2010167488A (en) * 2008-12-27 2010-08-05 Kurosaki Harima Corp Immersion nozzle for continuous casting
US8870041B2 (en) 2011-03-31 2014-10-28 Krosaki Harima Corporation Immersion nozzle for continuous casting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119301A1 (en) * 2008-03-27 2009-10-01 黒崎播磨株式会社 Immersion nozzle for continuous casting
JP2009233717A (en) * 2008-03-27 2009-10-15 Kurosaki Harima Corp Immersion nozzle for continuous casting
KR101035337B1 (en) * 2008-03-27 2011-05-20 구로사키 하리마 코포레이션 Immersion nozzle for continuous casting
US8037924B2 (en) 2008-03-27 2011-10-18 Krosaki Harima Corporation Immersion nozzle for continuous casting
JP2010167488A (en) * 2008-12-27 2010-08-05 Kurosaki Harima Corp Immersion nozzle for continuous casting
JP4578555B2 (en) * 2008-12-27 2010-11-10 黒崎播磨株式会社 Immersion nozzle for continuous casting
US8870041B2 (en) 2011-03-31 2014-10-28 Krosaki Harima Corporation Immersion nozzle for continuous casting

Similar Documents

Publication Publication Date Title
US7559353B2 (en) Distributor for use in a method of casting hot metal
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
US5882577A (en) Tundish
EP0685282B1 (en) Submerged nozzle for continuous casting
RU2444414C2 (en) Method and device for production of wide strips from copper or copper alloys
JPH04238658A (en) Immersion nozzle for continuous casting
JP2017064778A (en) Upper nozzle for continuous casting
JP2013035001A (en) Method for manufacturing high-cleanliness steel cast slab by continuous casting
JP2017177178A (en) Tundish for continuous casting, and continuous casting method using the tundish
JP2001347348A (en) Immersion nozzle for continuous casting
JPH03226340A (en) Submerged nozzle for continuous casting
KR102033642B1 (en) Processing apparatus for molten material
SK166399A3 (en) Method and device for producing slabs
JPH04220148A (en) Molten steel supplying nozzle
RU2185261C1 (en) Tundish ladle for continuous casting of steel
JP3697040B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same
JPH07214255A (en) Continuous casting operation method with lessened slag inclusion and tundish therefor
JP2017177180A (en) Tundish for continuous casting, and continuous casting method using the tundish
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JP2004209512A (en) Continuous casting method and immersion nozzle
JP2024043884A (en) nozzle system
KR100485404B1 (en) Partial Immersion Nozzle for Continuous Casting of Thin Slabs
JPH10328794A (en) Method for removing inclusion in tundish for continuous casting
KR100470661B1 (en) A Device For Supplying Molten Steel Uniformly And A Continuous Caster
KR101044764B1 (en) Apparatus for Minimization of strip defects by stabilized supply of molten steel in twin roll strip casting process