JP4578555B2 - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting Download PDF

Info

Publication number
JP4578555B2
JP4578555B2 JP2009040594A JP2009040594A JP4578555B2 JP 4578555 B2 JP4578555 B2 JP 4578555B2 JP 2009040594 A JP2009040594 A JP 2009040594A JP 2009040594 A JP2009040594 A JP 2009040594A JP 4578555 B2 JP4578555 B2 JP 4578555B2
Authority
JP
Japan
Prior art keywords
immersion nozzle
continuous casting
discharge hole
end surface
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009040594A
Other languages
Japanese (ja)
Other versions
JP2010167488A (en
Inventor
孝治 城戸
譲二 栗栖
大塚  博
有人 溝部
貴宏 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2009040594A priority Critical patent/JP4578555B2/en
Priority to TW98117436A priority patent/TWI361118B/en
Publication of JP2010167488A publication Critical patent/JP2010167488A/en
Application granted granted Critical
Publication of JP4578555B2 publication Critical patent/JP4578555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

An immersion nozzle for continuous casting, including (1) a tubular body with a bottom, the tubular body having an inlet for entry of molten steel disposed at an upper end and a passage extending inside the tubular body downward from the inlet, and (2) a pair of opposing outlets disposed in a sidewall at a lower section of the tubular body so as to communicate with the passage, the nozzle comprising: a pair of opposing ridges horizontally projecting into the passage from an inner wall between the pair of outlets, the inner wall defining the passage.

Description

本発明は、タンディッシュから鋳型内に溶鋼を注湯する連続鋳造用浸漬ノズルに関する。 The present invention relates to a continuous casting immersion nozzle for pouring molten steel from a tundish into a mold.

溶鋼を連続的に冷却凝固させて所定形状の鋳片を形成する連続鋳造工程では、タンディッシュの底部に設置された連続鋳造用浸漬ノズル(以下では、単に「浸漬ノズル」と呼ぶこともある。)を介して鋳型内に溶鋼が注湯される。
一般に、浸漬ノズルは、上端部が溶鋼の流入口とされ、流入口から下方に延びる流路が内部に形成された、底部を有する管体からなり、管体の下部側面には、流路と連通する一対の吐出孔が対向して形成されている。浸漬ノズルは、その下部を鋳型内の溶鋼中に浸漬させた状態で使用される。これにより、注湯された溶鋼の飛散を防止すると共に、溶鋼と大気との接触を遮断して酸化を防止している。また、浸漬ノズルを使用することにより鋳型内の溶鋼が整流化され、湯面を浮遊するスラグや非金属介在物などの不純物が溶鋼中へ巻き込まれないようにしている。
In a continuous casting process in which molten steel is continuously cooled and solidified to form a slab of a predetermined shape, a continuous casting immersion nozzle (hereinafter simply referred to as an “immersion nozzle”) installed at the bottom of the tundish. ) Through which molten steel is poured into the mold.
In general, the immersion nozzle is composed of a tubular body having a bottom portion with an upper end portion serving as a molten steel inflow port and a flow path extending downward from the inflow port, and a flow path is formed on a lower side surface of the tubular body. A pair of communicating discharge holes are formed to face each other. The immersion nozzle is used with its lower part immersed in molten steel in the mold. This prevents splashing of the molten molten steel and prevents oxidation by blocking contact between the molten steel and the atmosphere. Further, by using the immersion nozzle, the molten steel in the mold is rectified so that impurities such as slag and non-metallic inclusions floating on the molten metal surface are not caught in the molten steel.

近年、連続鋳造工程における鋼品質の高品位化及び高生産化が求められている。現有設備において高生産化を指向する場合、鋳込速度を上げる必要があり、限られた鋳型内で浸漬ノズルの流路径を大きくしたり、吐出孔を大きくしたりして通鋼量を稼ぐ工夫がなされている。 In recent years, high quality and high production of steel quality in a continuous casting process have been demanded. When aiming for high production in existing facilities, it is necessary to increase the casting speed, and the idea is to increase the amount of steel passing by increasing the diameter of the flow path of the immersion nozzle or increasing the discharge hole in a limited mold. Has been made.

しかし、吐出孔を大きくすると、吐出孔から吐出する吐出流の上下方向及び/又は左右方向の流速分布にアンバランスが生じる。そして、このアンバランスな流れ(偏流)が鋳型の短辺がわ側壁に衝突することにより、鋳型内において不安定な溶鋼流が引き起こされる。その結果、過大な反転流による湯面変動やモールドパウダーの巻き込みによる鋼品質の低下を招くと共に、ブレークアウト等の要因になっていた。 However, when the discharge hole is enlarged, an unbalance occurs in the flow velocity distribution in the vertical direction and / or the horizontal direction of the discharge flow discharged from the discharge hole. Then, the unbalanced flow (uneven flow) collides with the side wall of the mold so that an unstable molten steel flow is caused in the mold. As a result, the molten metal surface fluctuation due to excessive reversal flow and the steel quality deterioration due to entrainment of mold powder are caused, and it becomes a factor such as breakout.

そこで、例えば特許文献1では、管体の下部側面に対向して形成された一対の吐出孔を、内方に突出する突起部によって上下2段又は3段に分割して総数4個又は6個の吐出孔とした浸漬ノズルの発明が開示されている(図18(A)、(B)参照)。そして、当該浸漬ノズルによれば、詰まりを抑制すると共に、より一様な吐出流速を有し、回転と渦が大幅に減少した、より安定且つ制御された吐出流が生成されるとしている。 Therefore, in Patent Document 1, for example, a pair of discharge holes formed to face the lower side surface of the tube body is divided into two or three stages in the upper and lower directions by the protrusions projecting inward, and the total number is four or six. An invention of an immersion nozzle having a discharge hole is disclosed (see FIGS. 18A and 18B). According to the submerged nozzle, a more stable and controlled discharge flow is generated that suppresses clogging, has a more uniform discharge flow rate, and significantly reduces rotation and vortex.

国際公開第2005/049249号パンフレットInternational Publication No. 2005/049249 Pamphlet

本発明者は、特許文献1に記載された浸漬ノズルと、管体の下部側面に対向して形成された一対の吐出孔を有する従来の浸漬ノズルと、従来の浸漬ノズルにおいて対向する吐出孔間の流路中央部に内方に突出する突起部を設けたタイプ(図19参照)について水モデル試験を実施し、各浸漬ノズルから吐出される吐出流のバラツキについて検証した。 The inventor disclosed that the immersion nozzle described in Patent Document 1, a conventional immersion nozzle having a pair of discharge holes formed to face the lower side surface of the tube, and the discharge holes facing each other in the conventional immersion nozzle A water model test was performed on a type (see FIG. 19) in which a projecting portion projecting inwardly was provided at the center of the flow path, and the variation in the discharge flow discharged from each immersion nozzle was verified.

図20は、各浸漬ノズルの水モデル結果を示したものである。同図では、鋳型を短辺方向から見て、浸漬ノズルを挟んで左右の反転流速の標準偏差の平均値σavを横軸、左右の反転流速の標準偏差の差Δσ及び左右の反転流速の平均値Vavを縦軸に採っている。また、試験体Aが特許文献1に記載された浸漬ノズル(4吐出孔タイプ)、試験体Bが従来の浸漬ノズル、試験体Cが流路中央部(浸漬ノズルの内壁面上かつ流路幅の中央部)に突起部を設けた浸漬ノズルに対応している。
図20(A)より、左右の反転流速の標準偏差の差Δσ、即ち左右の反転流速の差が最も大きい浸漬ノズルが従来タイプであり、特許文献1に記載された浸漬ノズルと流路中央部に突起部を設けた浸漬ノズルは、左右の反転流速の差が小さいことがわかる。一方、図20(B)より、従来の浸漬ノズルと特許文献1に記載された浸漬ノズルは左右の反転流速の平均値Vavが大きく、流路中央部に突起部を設けた浸漬ノズルは左右の反転流速の平均値Vavが小さいことがわかる。
FIG. 20 shows the water model result of each immersion nozzle. In the figure, when the mold is viewed from the short side, the average value σ av of the standard deviation of the left and right reversal flow rates across the immersion nozzle is plotted on the horizontal axis, the difference Δσ between the standard deviations of the left and right reversal flow rates, and the left and right reversal flow rates. The average value Vav is taken on the vertical axis. In addition, the test body A is an immersion nozzle (4 discharge hole type) described in Patent Document 1, the test body B is a conventional immersion nozzle, and the test body C is a channel center (on the inner wall surface of the immersion nozzle and the channel width). This corresponds to an immersion nozzle provided with a protrusion at the center).
From FIG. 20 (A), the immersion nozzle having the largest difference in standard deviation Δσ between the left and right reversal flow rates, that is, the difference between the left and right reversal flow rates is the conventional type. It can be seen that the submerged nozzle provided with the protrusions has a small difference between the left and right reversal flow rates. On the other hand, from FIG. 20B, the conventional immersion nozzle and the immersion nozzle described in Patent Document 1 have a large average value V av of the left and right inversion flow rates, and the immersion nozzle provided with a protrusion at the center of the flow path It can be seen that the average value V av of the reversal flow velocity is small.

鋳込速度(スループット)が増大するにつれて、左右の反転流速の標準偏差の差Δσ及び左右の反転流速の平均値Vavは増大することが確認されているが、鋼品質の高品位化の観点からすれば、Δσは2cm/sec以下、Vavは10cm/sec〜30cm/secが望ましい。この点に関し、Δσについては全ての試験体において2cm/sec以下となっているが、Vavについては、全ての試験体が10cm/sec〜30cm/secの範囲から外れている。 As the casting speed (throughput) increases, it is confirmed that the difference Δσ between the standard deviations of the left and right reversal flow rates and the average value V av of the left and right reversal flow rates increase, but from the viewpoint of improving the quality of steel Therefore, Δσ is preferably 2 cm / sec or less, and V av is preferably 10 cm / sec to 30 cm / sec. In this regard, Δσ is 2 cm / sec or less in all the test specimens, but as for V av , all the test specimens are out of the range of 10 cm / sec to 30 cm / sec.

また、特許文献1に記載された浸漬ノズル(4吐出孔タイプ)の場合、図21(A)、(B)に示す流体解析結果が示すように、下側吐出孔からの吐出流が多く、上側吐出孔からの吐出流が少ない。その結果、反転流速が35cm/secと大きな値を示している。なお、流体解析時の鋳型サイズは1500mm×235mm、鋳込速度は3.0ton/minである。
加えて、特許文献1に記載された浸漬ノズルでは、吐出孔が4個以上有るため、製造が複雑になり過ぎると共に、吐出孔の閉塞や溶損が発生した場合、吐出流のバランスが崩れやすいという難点がある。
Further, in the case of the immersion nozzle (4 discharge hole type) described in Patent Document 1, as shown in the fluid analysis results shown in FIGS. 21 (A) and (B), the discharge flow from the lower discharge hole is large, There is little discharge flow from the upper discharge hole. As a result, the reversal flow velocity shows a large value of 35 cm / sec. The mold size at the time of fluid analysis is 1500 mm × 235 mm, and the casting speed is 3.0 ton / min.
In addition, since the immersion nozzle described in Patent Document 1 has four or more discharge holes, the manufacturing becomes too complicated, and when the discharge holes are blocked or melted, the balance of the discharge flow tends to be lost. There is a difficulty.

本発明はかかる事情に鑑みてなされたもので、吐出孔から吐出する溶鋼流の偏流が少なく湯面変動も小さく、製造が容易な連続鋳造用浸漬ノズルを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an immersion nozzle for continuous casting that is less prone to drift in the molten steel flow discharged from the discharge holes and has a small fluctuation in the molten metal surface and is easy to manufacture.

上記目的を達成するため、本発明は、上端部が溶鋼の流入口とされ、該流入口から下方に延びる流路が内部に形成された、底部を有する管体の下部側面に、前記流路と連通する一対の吐出孔が対向して形成された連続鋳造用浸漬ノズルにおいて、一対の前記吐出孔間に在って前記流路を画成する内壁に、内方に突出し該内壁を水平方向に横断する突条部が対向配置されていることを特徴としている。
ここで、「内壁を水平方向に横断する」とは、内壁の一方の側端(一方の吐出孔との境界位置)から他方の側端(他方の吐出孔との境界位置)まで、突条部が水平方向に延在することを意味する。
なお、本明細書では、連続鋳造用浸漬ノズルを鉛直に立てた状態に基づいて各方向を設定している。
In order to achieve the above-mentioned object, the present invention provides a flow path on the lower side surface of a tubular body having a bottom, in which an upper end portion is an inlet for molten steel, and a channel extending downward from the inlet is formed therein. In a continuous casting immersion nozzle in which a pair of discharge holes communicating with each other are formed to face each other, projecting inwardly on the inner wall defining the flow path between the pair of discharge holes, the inner wall is horizontally oriented It is characterized in that the protruding ridges crossing each other are arranged to face each other.
Here, “crossing the inner wall in the horizontal direction” means a protrusion from one side end (boundary position with one discharge hole) of the inner wall to the other side end (boundary position with the other discharge hole). This means that the part extends in the horizontal direction.
In the present specification, each direction is set based on a state in which the continuous casting immersion nozzle is vertically set.

従来の浸漬ノズルでは、吐出孔から吐出する吐出流の流速分布が下方に偏り不均一となっていたが、本発明では、対向する突条部による堰き止め効果により、吐出孔上部においても吐出流を得ることができる。一方、対向する突条部間を下方に通過する溶鋼流は、突条部間のクリアランスによる整流効果によって、突条部の延在方向と平行な鉛直面内において管体軸を挟んで左右均等な流れとなる。また、吐出流が均等となることによって、鋳型の短辺がわ側壁に衝突する吐出流の最大速度が緩和され、反転流速が小さくなる。その結果、過大な反転流による湯面変動やモールドパウダーの巻き込みがなくなり、鋼品質の低下を防止することができる。 In the conventional immersion nozzle, the flow velocity distribution of the discharge flow discharged from the discharge hole is biased downward and non-uniform, but in the present invention, the discharge flow is also generated at the upper portion of the discharge hole due to the damming effect by the opposed protrusions. Can be obtained. On the other hand, the molten steel flow that passes downward between the opposing ridges is left and right evenly across the tube axis in a vertical plane parallel to the extending direction of the ridges due to the rectification effect due to the clearance between the ridges. Flow. In addition, since the discharge flow becomes uniform, the maximum velocity of the discharge flow that collides with the side wall of the mold on the short side of the mold is relaxed, and the reversal flow velocity is reduced. As a result, the molten metal surface fluctuation and mold powder entrainment due to an excessive reversal flow are eliminated, and deterioration of the steel quality can be prevented.

また、本発明に係る連続鋳造用浸漬ノズルでは、前記吐出孔を正面視して、該吐出孔の水平方向の幅をa’、鉛直方向の幅をb’とし、前記突条部端面の突出高さをa、鉛直方向の幅をbとすると、a/a’=0.05〜0.38、b/b’=0.05〜0.5であることを好適とする。さらに、該吐出孔の上縁から前記突条部端面の鉛直方向の幅の1/2までの鉛直距離をcとすると、c/b’=0.15〜0.7であることを好適とする。 Further, in the continuous casting immersion nozzle according to the present invention, the discharge hole is viewed from the front, the horizontal width of the discharge hole is a ′, the vertical width is b ′, and the protrusion of the end face of the ridge portion is projected. When the height is a and the vertical width is b, it is preferable that a / a ′ = 0.05 to 0.38 and b / b ′ = 0.05 to 0.5. Furthermore, it is preferable that c / b ′ = 0.15 to 0.7, where c is a vertical distance from the upper edge of the discharge hole to ½ of the vertical width of the end face of the protrusion. To do.

また、本発明に係る連続鋳造用浸漬ノズルでは、前記突条部の両端部が外方に向けて下方に傾斜する傾斜部とされていることが好ましい。またそれに伴い、前記吐出孔の上端面及び下端面が外方に向けて下方に傾斜し、該上端面及び該下端面の傾斜角度と前記傾斜部の傾斜角度とが同角度であることが好ましい。
吐出孔の上端面及び下端面が外方に向けて下方に傾斜した浸漬ノズルにおいて、延在方向の両端部に傾斜部の無い突条部を設けた場合、突条部上方における吐出流が突条部により遮られ、上方に向けて吐出する流れとなる。そして、この流れが、鋳型表面における反転流と衝突するため、反転流速の安定化が図れなくなる。このため、突条部の両端部に形成した傾斜部の傾斜角度は、吐出孔の上端面及び下端面の傾斜角度と同角度であることが望ましい。
In the continuous casting immersion nozzle according to the present invention, it is preferable that both end portions of the protruding portion are inclined portions that are inclined downward toward the outside. Accordingly, it is preferable that the upper end surface and the lower end surface of the discharge hole are inclined downward outward, and the inclination angle of the upper end surface and the lower end surface and the inclination angle of the inclined portion are the same angle. .
In the immersion nozzle in which the upper end surface and the lower end surface of the discharge hole are inclined downward toward the outside, when the protrusions having no inclined portions are provided at both ends in the extending direction, the discharge flow above the protrusions is projected. The flow is blocked by the strip and discharged upward. And since this flow collides with the reverse flow on the mold surface, the reverse flow velocity cannot be stabilized. For this reason, it is desirable that the inclination angles of the inclined portions formed at both ends of the ridge portion are the same as the inclination angles of the upper end surface and the lower end surface of the discharge hole.

また、本発明に係る連続鋳造用浸漬ノズルでは、前記突条部の延在方向に関し、一対の前記吐出孔の直上における前記流路の幅をL、前記傾斜部を除いた前記突条部の長さをLとすると、L/L=0〜1であることが好ましい。 Further, in the continuous casting immersion nozzle according to the present invention, with respect to the extending direction of the protruding portion, the width of the flow path immediately above the pair of discharge holes is L 1 , and the protruding portion excluding the inclined portion. When the length and L 2, it is preferable that L 2 / L 1 = 0~1.

また、本発明に係る連続鋳造用浸漬ノズルでは、前記上端面、前記下端面、及び前記傾斜部の傾斜角度は0〜45°であることが好ましい。 In the continuous casting immersion nozzle according to the present invention, it is preferable that an inclination angle of the upper end surface, the lower end surface, and the inclined portion is 0 to 45 °.

本発明では、一対の吐出孔間に在って流路を画成する内壁に、内方に突出し、該内壁を水平方向に横断する突条部を対向配置することによって、吐出孔全域に亘って吐出流を分散、均一化させることができる。これにより、鋳型の短辺がわ側壁に衝突する吐出流の流速分布及び衝突位置を安定化させることができ、鋳型表面の反転流速を低減することができる。その結果、湯面変動が小さくなると共に、浸漬ノズル左右の流れも対称に近づき、鋼品質の高品位化及び高生産化が可能となる。 In the present invention, the inner wall that is defined between the pair of discharge holes and that defines the flow path projects inwardly, and the protrusions that cross the inner wall in the horizontal direction are arranged opposite to each other, so that the entire area of the discharge holes is covered. Thus, the discharge flow can be dispersed and made uniform. Thereby, the flow velocity distribution and the collision position of the discharge flow that collides with the side wall of the mold on the short side can be stabilized, and the reversal flow velocity on the mold surface can be reduced. As a result, the fluctuation of the molten metal surface is reduced, and the flow on the left and right of the immersion nozzle is close to symmetry, so that the steel quality can be improved and the production can be increased.

加えて、本発明に係る連続鋳造用浸漬ノズルでは、一対の吐出孔間に在って流路を画成する内壁に突条部を対向して形成すればよいので、通常の浸漬ノズルにて吐出孔を形成する方法を適用することができ製造も容易である。 In addition, in the continuous casting immersion nozzle according to the present invention, it is only necessary to form the protrusions on the inner wall defining the flow path between the pair of discharge holes. A method of forming the discharge holes can be applied and manufacturing is easy.

なお、通常の浸漬ノズルにて吐出孔を形成する方法としては、例えば、最終形状よりも小さな吐出孔を成形した後、当該吐出孔を正面方向からボーリング等により削孔して、設定した断面寸法を有する突条部を形成する方法や、CIP(Cold Isostatic Pressing)成形時に、突条部となる部分を凹状の空間として成形時の芯金に形成しておき、その凹状空間に、管体を形成する坏土を充填して圧縮し、設定した断面寸法を有する突条部を形成するなどの方法を採ることができる。 In addition, as a method of forming the discharge hole with a normal immersion nozzle, for example, after forming a discharge hole smaller than the final shape, the discharge hole is drilled from the front direction by boring or the like, and the set cross-sectional dimension At the time of forming a ridge portion having a shape or a CIP (Cold Isostatic Pressing) molding, a portion to be a ridge portion is formed as a concave space on a cored bar at the time of molding, and a tubular body is formed in the concave space. A method of filling the clay to be formed and compressing it to form a protrusion having a set cross-sectional dimension can be employed.

本発明の一実施の形態に係る連続鋳造用浸漬ノズルを示し、(A)は側面図、(B)は縦断面図である。The immersion nozzle for continuous casting which concerns on one embodiment of this invention is shown, (A) is a side view, (B) is a longitudinal cross-sectional view. 同連続鋳造用浸漬ノズルの部分側面図である。It is a partial side view of the immersion nozzle for continuous casting. (A)、(B)はそれぞれ同連続鋳造用浸漬ノズルの部分縦断面図である。(A), (B) is a partial longitudinal cross-sectional view of the immersion nozzle for continuous casting, respectively. 水モデル試験を説明するための模式図である。It is a schematic diagram for demonstrating a water model test. (A)はa/a’とΔσとの関係、(B)はa/a’とVavとの関係を示すグラフである。(A) is a graph showing the relationship between a / a ′ and Δσ, and (B) is a graph showing the relationship between a / a ′ and V av . (A)はb/b’とΔσとの関係、(B)はb/b’とVavとの関係を示すグラフである。(A) is a graph showing the relationship between b / b ′ and Δσ, and (B) is a graph showing the relationship between b / b ′ and V av . (A)はc/b’とΔσとの関係、(B)はc/b’とVavとの関係を示すグラフである。(A) is a graph showing the relationship between c / b ′ and Δσ, and (B) is a graph showing the relationship between c / b ′ and V av . (A)はL/LとΔσとの関係、(B)はL/LとVavとの関係を示すグラフである。(A) is a graph showing the relationship between L 2 / L 1 and Δσ, and (B) is a graph showing the relationship between L 2 / L 1 and V av . (A)はR/a’とΔσとの関係、(B)はR/a’とVavとの関係を示すグラフである。(A) is a graph showing the relationship between R / a ′ and Δσ, and (B) is a graph showing the relationship between R / a ′ and V av . 流体解析に使用した解析モデルの模式図を示し、(A)は実施例、(B)は従来例である。The schematic diagram of the analysis model used for fluid analysis is shown, (A) is an Example and (B) is a prior art example. 実施例の流体解析結果を示し、(A)は流体の鉛直面内の流れを示す説明図、(B)は流体の水平面内の流れを示す説明図である。The fluid analysis result of an Example is shown, (A) is explanatory drawing which shows the flow in the vertical surface of a fluid, (B) is explanatory drawing which shows the flow in the horizontal surface of a fluid. 従来例の流体解析結果を示し、(A)は流体の鉛直面内の流れを示す説明図、(B)は流体の水平面内の流れを示す説明図である。The fluid analysis result of a prior art example is shown, (A) is explanatory drawing which shows the flow in the vertical surface of a fluid, (B) is explanatory drawing which shows the flow in the horizontal surface of a fluid. ΔθとVavとの関係を示すグラフである。It is a graph which shows the relationship between ( DELTA) ( theta) and Vav . 実施例(θ=0°)の流体解析結果を示し、(A)は流体の鉛直面内の流れを示す説明図、(B)は流体の水平面内の流れを示す説明図である。The fluid analysis result of an Example ((theta) = 0 degree) is shown, (A) is explanatory drawing which shows the flow in the vertical surface of a fluid, (B) is explanatory drawing which shows the flow in the horizontal surface of a fluid. 実施例(θ=25°)の流体解析結果を示し、(A)は流体の鉛直面内の流れを示す説明図、(B)は流体の水平面内の流れを示す説明図である。The fluid analysis result of an Example ((theta) = 25 degrees) is shown, (A) is explanatory drawing which shows the flow in the vertical surface of a fluid, (B) is explanatory drawing which shows the flow in the horizontal surface of a fluid. 実施例(θ=35°)の流体解析結果を示し、(A)は流体の鉛直面内の流れを示す説明図、(B)は流体の水平面内の流れを示す説明図である。The fluid analysis result of an Example ((theta) = 35 degrees) is shown, (A) is explanatory drawing which shows the flow in the vertical surface of a fluid, (B) is explanatory drawing which shows the flow in the horizontal surface of a fluid. 実施例(θ=45°)の流体解析結果を示し、(A)は流体の鉛直面内の流れを示す説明図、(B)は流体の水平面内の流れを示す説明図である。The fluid analysis result of an Example ((theta) = 45 degrees) is shown, (A) is explanatory drawing which shows the flow in the vertical surface of a fluid, (B) is explanatory drawing which shows the flow in the horizontal surface of a fluid. 特許文献1に記載された連続鋳造用浸漬ノズルを示し、(A)は縦断面図、(B)は平断面図である。The immersion nozzle for continuous casting described in Patent Document 1 is shown, (A) is a longitudinal sectional view, and (B) is a flat sectional view. 対向する吐出孔間の流路中央部に突起部を設けた連続鋳造用浸漬ノズルの部分縦断面図である。It is a partial longitudinal cross-sectional view of the continuous casting immersion nozzle which provided the projection part in the flow path center part between the opposing discharge holes. (A)はσavとΔσとの関係、(B)はσavとVavとの関係を示すグラフである。(A) is a graph showing the relationship between σ av and Δσ, and (B) is a graph showing the relationship between σ av and V av . 特許文献1に記載された浸漬ノズルの流体解析結果を示し、(A)は流体の鉛直面内の流れを示す説明図、(B)は流体の水平面内の流れを示す説明図である。The fluid analysis result of the immersion nozzle described in patent document 1 is shown, (A) is explanatory drawing which shows the flow in the vertical surface of a fluid, (B) is explanatory drawing which shows the flow in the horizontal surface of a fluid.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

本発明の一実施の形態に係る連続鋳造用浸漬ノズル(以下では、単に「浸漬ノズル」と呼ぶ。)10の形状を図1(A)、(B)に示す。
浸漬ノズル10は、底部15を有する円筒状の管体11からなり、内部に形成された流路12の上端は溶鋼の流入口13とされている。一方、管体11の下部側面には、流路12と連通する一対の吐出孔14が対向して形成されている。なお、浸漬ノズル10には耐スポーリング性及び耐食性が要求されるため、管体11はアルミナ黒鉛質などの耐火物によって形成されている。
The shape of a continuous casting immersion nozzle (hereinafter simply referred to as “immersion nozzle”) 10 according to an embodiment of the present invention is shown in FIGS.
The immersion nozzle 10 includes a cylindrical tube body 11 having a bottom portion 15, and an upper end of a flow path 12 formed inside is an inflow port 13 for molten steel. On the other hand, a pair of discharge holes 14 communicating with the flow path 12 are formed on the lower side surface of the tube body 11 so as to face each other. Since the immersion nozzle 10 is required to have spalling resistance and corrosion resistance, the tube body 11 is formed of a refractory material such as alumina graphite.

吐出孔14は正面視してコーナー部にアールが設けられた矩形状とされ、一対の吐出孔14間に在って流路12を画成する内壁18には、内方に向けて突出し当該内壁18を水平方向に横断する突条部16が対向配置されている。即ち、対向する突条部16は、一対の吐出孔14の中心を通る鉛直面を挟んで対称に配置されている。突条部16間のクリアランスは一定とされ、延在方向の両端部は、外方に向けて下方に傾斜する傾斜部16aとされている(図3参照)。一方、各吐出孔14の上端面14a及び下端面14bも外方に向けて下方に傾斜しており、本実施の形態では、突条部16に形成された傾斜部16aと吐出孔14の上端面14a及び下端面14bとは同じ傾斜角度とされている。 The discharge hole 14 has a rectangular shape with a rounded corner portion when viewed from the front, and protrudes inwardly on an inner wall 18 between the pair of discharge holes 14 and defining the flow path 12. The protrusions 16 that cross the inner wall 18 in the horizontal direction are arranged to face each other. That is, the opposing protrusions 16 are arranged symmetrically across a vertical plane passing through the centers of the pair of discharge holes 14. The clearance between the protrusions 16 is constant, and both end portions in the extending direction are inclined portions 16a that are inclined downward toward the outside (see FIG. 3). On the other hand, the upper end surface 14a and the lower end surface 14b of each discharge hole 14 are also inclined downward toward the outside. In the present embodiment, the top of the inclined portion 16a formed on the ridge 16 and the top of the discharge hole 14 are inclined. The end surface 14a and the lower end surface 14b have the same inclination angle.

突条部16は、内壁18の一方の側端(一方の吐出孔14との境界位置)から他方の側端(他方の吐出孔14との境界位置)まで水平方向に延在している。突条部16の延在方向の端面は、図3(A)に示すように、延在方向と直交する鉛直面とすることが好ましい。但し、管体11が円筒状等の場合、図3(B)に示すように、突条部16の延在方向端面の形状を管体11の外周面の形状に合わせてもよく、これによって溶鋼の吐出流が影響を受けることはない。 The protrusion 16 extends in the horizontal direction from one side end (boundary position with one discharge hole 14) of the inner wall 18 to the other side end (boundary position with the other discharge hole 14). As shown in FIG. 3A, the end surface of the protruding portion 16 in the extending direction is preferably a vertical surface orthogonal to the extending direction. However, when the tubular body 11 is cylindrical or the like, as shown in FIG. 3 (B), the shape of the end surface in the extending direction of the ridge portion 16 may be matched with the shape of the outer peripheral surface of the tubular body 11, thereby The discharge flow of molten steel is not affected.

なお、管体11の底部15には、凹陥状の湯溜り部17を形成することが好ましい。このような凹陥状の湯溜り部17が管体11の底部15に無くても本発明の効果に影響はないが、浸漬ノズル10に注湯された溶鋼を一旦、湯溜り部17で受けることにより、両吐出孔14へ、より均一かつ、より安定的に分散させることができる。
また、吐出孔14の水平方向の幅a’は、流路12の幅(円筒状の流路12の場合は直径)と同じ場合でも異なる場合でも本発明の効果に影響はない。
In addition, it is preferable to form a concave hot water reservoir 17 at the bottom 15 of the tube body 11. The effect of the present invention is not affected even if such a recessed reservoir 17 is not provided at the bottom 15 of the tube body 11, but the molten steel poured into the immersion nozzle 10 is once received by the reservoir 17. Therefore, it is possible to disperse more uniformly and more stably in both the discharge holes 14.
In addition, the horizontal width a ′ of the discharge hole 14 does not affect the effect of the present invention regardless of whether it is the same as or different from the width of the flow path 12 (in the case of the cylindrical flow path 12).

[水モデル試験]
次に、突条部16を備えた吐出孔14の最適形状を確定するため、上記構成からなる浸漬ノズル10の模型を用いて実施した水モデル試験について説明する。
[Water model test]
Next, a water model test carried out using a model of the immersion nozzle 10 having the above-described configuration in order to determine the optimum shape of the discharge hole 14 provided with the protruding portion 16 will be described.

最初に、突条部16を備えた吐出孔14の最適形状を確定するためのパラメータを定義しておく。吐出孔14を正面視して、吐出孔14の水平方向の幅をa’、鉛直方向の幅をb’とする。突条部16は矩形状断面とし、突条部16の端面の突出高さをa、鉛直方向の幅をbとすると共に、吐出孔14の上縁から突条部16の端面の鉛直方向の幅の1/2までの鉛直距離をcとする(図2参照)。ここで、「矩形状断面」は、矩形断面の角部にアールを有するものを含む。また、突条部16の延在方向に関し、一対の吐出孔14の直上における流路12の幅をL、傾斜部16aを除いた突条部16の長さ(水平部16bの長さ)をLとする(図3参照)。なお、突条部16に形成された傾斜部16a並びに吐出孔14の上端面14a及び下端面14bの下向き傾斜角度をθとし、吐出孔14コーナー部の曲率半径をRとする。 First, parameters for determining the optimum shape of the discharge hole 14 provided with the ridges 16 are defined. When the discharge hole 14 is viewed from the front, the horizontal width of the discharge hole 14 is a ′, and the vertical width is b ′. The protrusion 16 has a rectangular cross section, the protrusion height of the end face of the protrusion 16 is a, the width in the vertical direction is b, and the vertical direction of the end face of the protrusion 16 from the upper edge of the discharge hole 14. Let c be the vertical distance up to ½ of the width (see FIG. 2). Here, the “rectangular cross section” includes those having rounded corners of the rectangular cross section. Also relates to the extending direction of the ridges 16, the width of the channel 12 just above the pair of discharge holes 14 length of L 1, ridges 16 excluding the inclined portion 16a (the length of the horizontal portion 16b) Is L 2 (see FIG. 3). In addition, the downward inclination angle of the inclined portion 16a formed in the protruding portion 16 and the upper end surface 14a and the lower end surface 14b of the discharge hole 14 is θ, and the curvature radius of the corner portion of the discharge hole 14 is R.

図4に、水モデル試験を説明するための模式図を示す。
鋳型21は、縮尺1/1とし、アクリル樹脂で作製した。鋳型21のサイズは、長辺方向の幅(図4では左右方向)を925mm、短辺方向の幅(紙面に垂直な方向)を210mmとした。また、浸漬ノズル10から鋳型21に流入される水は、ポンプを用いて、引抜き速度が1.4m/minに相当するように循環させた。
In FIG. 4, the schematic diagram for demonstrating a water model test is shown.
The mold 21 was made 1/1 and made of acrylic resin. As for the size of the mold 21, the width in the long side direction (left and right direction in FIG. 4) was 925 mm, and the width in the short side direction (direction perpendicular to the paper surface) was 210 mm. Moreover, the water which flows into the casting_mold | template 21 from the immersion nozzle 10 was circulated using the pump so that drawing speed might correspond to 1.4 m / min.

浸漬ノズル10は、鋳型21の中央に配置し、各吐出孔14が鋳型21の短辺がわ側壁23に面するようにした。また、鋳型21の短辺がわ側壁23から325mm(長辺方向の幅の1/4)、水面から30mmの位置に、プロペラ型の流速検出器22を設置し、反転流Frの流速を3分間測定した。そして、測定された左右の反転流Frの流速について標準偏差の差Δσ及び平均流速Vavを算出して評価した。 The immersion nozzle 10 was arranged in the center of the mold 21 so that each discharge hole 14 faced the side wall 23 of the short side of the mold 21. Further, a propeller type flow velocity detector 22 is installed at a position of 325 mm from the short side wall 23 of the mold 21 (1/4 of the width in the long side direction) and 30 mm from the water surface, and the flow velocity of the reverse flow Fr is set to 3 Measured for minutes. Then, the difference Δσ in standard deviation and the average flow velocity V av were calculated and evaluated for the measured flow velocity of the left and right reversal flows Fr.

ここで、反転流速と鋳込速度(スループット)との関係について説明しておく。
浸漬ノズルを挟んで左右の反転流速の標準偏差の差Δσとスループットの関係及び左右の反転流速の平均値Vavとスループットとの関係について明らかにするために水モデル試験を実施したところ、スループットが増大するにつれてΔσ及びVavが比例的に増大することが確認された。その際、鋳型サイズ及び浸漬ノズルの流路断面積としては、スラブの連続鋳造において一般的に使用される、長辺方向700mm〜2000mm×短辺方向150mm〜350mmの鋳型及び15cm〜120cm(φ50mm〜φ120mm)の浸漬ノズルを想定している。
スループットが1.4ton/min未満の場合、湯面における反転流速が不足傾向となり、7ton/minを超えると、反転流速が増大し、湯面変動の増大やモールドパウダーの巻き込みなどによる鋼品質の低下が懸念される。因って、スループットは1.4ton/min〜7ton/minであることが望ましく、左右の反転流速の標準偏差の差Δσが2.0cm/sec以下且つ左右の反転流速の平均値Vavが10cm/sec〜30cm/secである場合に、スループットは上記最適範囲に収まることが判明した。従って、以下に示す水モデル試験結果では、Δσが2.0cm/sec以下且つVavが10cm/sec〜30cm/secであることを評価基準として、各パラメータを決定した。
なお、水モデル試験におけるスループット値は、溶鋼比重/水比重=7.0として溶鋼換算した値である。
Here, the relationship between the reversal flow rate and the casting speed (throughput) will be described.
A water model test was conducted to clarify the relationship between the difference Δσ between the standard deviations of the left and right reversal flow rates across the immersion nozzle and the throughput, and the relationship between the average value V av of the left and right reversal flow rates and the throughput. It was confirmed that Δσ and V av increased proportionally as it increased. At that time, the mold size and the flow channel cross-sectional area of the immersion nozzle are generally used in continuous casting of slabs, a mold having a long side direction of 700 mm to 2000 mm × short side direction of 150 mm to 350 mm, and 15 cm 2 to 120 cm 2 ( An immersion nozzle of φ50 mm to φ120 mm) is assumed.
If the throughput is less than 1.4 ton / min, the reversal flow rate on the molten metal surface tends to be insufficient, and if it exceeds 7 ton / min, the reversal flow rate increases, and the steel quality deteriorates due to an increase in the molten metal surface fluctuation or entrainment of mold powder. Is concerned. Therefore, the throughput is desirably 1.4 ton / min to 7 ton / min, the difference Δσ of the standard deviation of the left and right reversal flow rates is 2.0 cm / sec or less, and the average value V av of the left and right reversal flow rates is 10 cm. / Sec to 30 cm / sec, it was found that the throughput was within the optimum range. Therefore, in the water model test results shown below, each parameter was determined based on the evaluation criteria that Δσ was 2.0 cm / sec or less and V av was 10 cm / sec to 30 cm / sec.
In addition, the throughput value in the water model test is a value converted into molten steel with molten steel specific gravity / water specific gravity = 7.0.

図5(A)はa/a’とΔσとの関係、図5(B)はa/a’とVavとの関係を示したグラフである。図中、◆が試験結果、実線は回帰曲線を示し、これらは以降のグラフにおいても同様である。同図より、a/a’が0.05〜0.38の範囲内にある場合に、Δσが2.0cm/sec以下且つVavが10cm/sec〜30cm/secであることがわかる。
a/a’が0.05未満の場合、遮流及び整流効果が充分発揮されず、鋳型内の浸漬ノズル左右の流れが非対称となり、反転流速も30cm/secを超える。その結果、湯面変動が激しく、モールドパウダー巻き込み等の悪影響が生じる。一方、a/a’が0.38を超えると、吐出孔下方の流速が不足気味、換言すれば吐出孔上方の流速が過大となり、反転流速も30cm/secを超える。その結果、湯面変動が激しく、モールドパウダー巻き込み等の悪影響が生じる。
なお、本試験を実施した際の他のパラメータ値は以下の通りである。
b/b’=0.25、c/b’=0.57、L/L=0.83、θ=15°、R/a’=0.14
FIG. 5A is a graph showing the relationship between a / a ′ and Δσ, and FIG. 5B is a graph showing the relationship between a / a ′ and V av . In the figure, ♦ indicates the test result, and the solid line indicates the regression curve, which is the same in the following graphs. From the figure, it can be seen that Δσ is 2.0 cm / sec or less and V av is 10 cm / sec to 30 cm / sec when a / a ′ is in the range of 0.05 to 0.38.
When a / a ′ is less than 0.05, the current blocking and rectifying effects are not sufficiently exhibited, the flow on the left and right of the immersion nozzle in the mold becomes asymmetric, and the reversal flow rate also exceeds 30 cm / sec. As a result, the molten metal surface changes drastically and adverse effects such as entrainment of mold powder occur. On the other hand, when a / a ′ exceeds 0.38, the flow velocity below the discharge hole seems insufficient, in other words, the flow velocity above the discharge hole becomes excessive, and the reverse flow velocity also exceeds 30 cm / sec. As a result, the molten metal surface changes drastically and adverse effects such as entrainment of mold powder occur.
The other parameter values when this test was implemented are as follows.
b / b ′ = 0.25, c / b ′ = 0.57, L 2 / L 1 = 0.83, θ = 15 °, R / a ′ = 0.14

図6(A)はb/b’とΔσとの関係、図6(B)はb/b’とVavとの関係を示したグラフである。同図より、b/b’が0.05〜0.5の範囲内にある場合に、Δσが2.0cm/sec以下且つVavが10cm/sec〜30cm/secであることがわかる。
b/b’が0.05未満とb/b’が0.5を超える場合は、a/a’の場合と同様の現象が発生し、湯面変動が激しく、モールドパウダー巻き込み等の悪影響が生じる。
本試験を実施した際の他のパラメータ値は以下の通りである。
a/a’=0.21、c/b’=0.48、L/L=0.77、θ=15°、R/a’=0.14
6A is a graph showing the relationship between b / b ′ and Δσ, and FIG. 6B is a graph showing the relationship between b / b ′ and V av . From the figure, it can be seen that Δσ is 2.0 cm / sec or less and V av is 10 cm / sec to 30 cm / sec when b / b ′ is in the range of 0.05 to 0.5.
When b / b ′ is less than 0.05 and b / b ′ is more than 0.5, the same phenomenon as in the case of a / a ′ occurs, the molten metal surface fluctuation is severe, and there is an adverse effect such as entrainment of mold powder. Arise.
Other parameter values when this test was conducted are as follows.
a / a ′ = 0.21, c / b ′ = 0.48, L 2 / L 1 = 0.77, θ = 15 °, R / a ′ = 0.14

図7(A)はc/b’とΔσとの関係、図7(B)はc/b’とVavとの関係を示したグラフである。同図より、Δσはc/b’値の変化に敏感ではないが、Vavに関しては、c/b’が0.15〜0.7の範囲内にある場合に、Vavが10cm/sec〜30cm/secとなることがわかる。
c/b’が0.15未満とc/b’が0.7を超える場合は、a/a’の場合と同様の現象が発生し、湯面変動が激しく、モールドパウダー巻き込み等の悪影響が生じる。
本試験を実施した際の他のパラメータ値は以下の通りである。
a/a’=0.24、b/b’=0.25、L/L=0.77、θ=15°、R/a’=0.14
FIG. 7A is a graph showing the relationship between c / b ′ and Δσ, and FIG. 7B is a graph showing the relationship between c / b ′ and V av . From the figure, Δσ is not sensitive to changes in the c / b ′ value. However, regarding V av , when c / b ′ is in the range of 0.15 to 0.7, V av is 10 cm / sec. It can be seen that it is ˜30 cm / sec.
When c / b ′ is less than 0.15 and c / b ′ exceeds 0.7, the same phenomenon as in the case of a / a ′ occurs, and the fluctuation of the molten metal surface is severe, and there is an adverse effect such as entrainment of mold powder. Arise.
Other parameter values when this test was conducted are as follows.
a / a ′ = 0.24, b / b ′ = 0.25, L 2 / L 1 = 0.77, θ = 15 °, R / a ′ = 0.14

図8(A)はL/LとΔσとの関係、図8(B)はL/LとVavとの関係を示したグラフである。同図より、L/Lが0〜1の範囲内にある場合に、Δσが2.0cm/sec以下且つVavが10cm/sec〜30cm/secであることがわかる。L/L=0は、L=0、即ち、水平部16bの無い逆V字状の突条部16であることを示している。一方、L/Lが1を超えると、浸漬ノズルの製造が困難になるという製造上の問題がある。
なお、本試験を実施した際の他のパラメータ値は以下の通りである。また、図8における◇は、突条部16が無い場合の結果を比較例として示したものである。
a/a’=0.29、b/b’=0.25、c/b’=0.5、θ=15°、R/a’=0.14
8A is a graph showing the relationship between L 2 / L 1 and Δσ, and FIG. 8B is a graph showing the relationship between L 2 / L 1 and V av . From this figure, it can be seen that when L 2 / L 1 is in the range of 0 to 1 , Δσ is 2.0 cm / sec or less and V av is 10 cm / sec to 30 cm / sec. L 2 / L 1 = 0 indicates that L 2 = 0, that is, an inverted V-shaped protrusion 16 having no horizontal portion 16b. On the other hand, when L 2 / L 1 exceeds 1, there is a manufacturing problem that it is difficult to manufacture the immersion nozzle.
The other parameter values when this test was implemented are as follows. Further, ◇ in FIG. 8 shows the result when there is no protrusion 16 as a comparative example.
a / a ′ = 0.29, b / b ′ = 0.25, c / b ′ = 0.5, θ = 15 °, R / a ′ = 0.14

図9(A)はR/a’とΔσとの関係、図9(B)はR/a’とVavとの関係を示したグラフであり、R/a’=0.5は、吐出孔の形状が長円形又は円形であることを示している。同図より、R/a’が大きくなると、若干Δσの値が大きくなるものの、特に大きな変化はないことがわかる。一方、Vavについては、R/a’が大きくなると、吐出孔面積が小さくなることによる影響により、反転流速が増加する傾向にある。しかしながら、Vavは10cm/sec〜30cm/secの範囲内にあり、コーナー部のアールを大きくした場合でも、突条部が有効に作用することが確認された。
なお、本試験を実施した際の他のパラメータ値は以下の通りである。また、本試験における鋳型サイズは1500mm×235mm、鋳込速度は3.0ton/minである。
a/a’=0.13、b/b’=0.25、c/b’=0.4、L/L=1、θ=0°
FIG. 9A is a graph showing the relationship between R / a ′ and Δσ, and FIG. 9B is a graph showing the relationship between R / a ′ and V av , where R / a ′ = 0.5 It shows that the shape of the hole is oval or circular. From the figure, it can be seen that when R / a ′ increases, the value of Δσ slightly increases, but there is no significant change. On the other hand, with respect to V av , when R / a ′ increases, the reversal flow rate tends to increase due to the effect of the discharge hole area becoming smaller. However, V av is in the range of 10 cm / sec to 30 cm / sec, and it was confirmed that the protrusion works effectively even when the radius of the corner is increased.
The other parameter values when this test was implemented are as follows. The mold size in this test is 1500 mm × 235 mm, and the casting speed is 3.0 ton / min.
a / a ′ = 0.13, b / b ′ = 0.25, c / b ′ = 0.4, L 2 / L 1 = 1, θ = 0 °

表1は、本発明の一実施の形態に係る連続鋳造用浸漬ノズルについて、管体の底部に湯溜り部が有る場合と無い場合に関して実施した水モデル試験結果を示したものである。同表より、Δσ及びVavは、湯溜り部の有無にかかわらずほぼ等しい値を示すと共に最適範囲内にあることがわかる。
なお、本試験を実施した際のパラメータ値は以下の通りである。また、本試験における鋳型サイズは1200mm×235mm、鋳込速度は2.4ton/minである。
a/a’=0.14、b/b’=0.33、c/b’=0.5、L/L=1、θ=0°、R/a’=0.14
Table 1 shows the results of water model tests carried out for the continuous casting immersion nozzle according to one embodiment of the present invention, with and without a hot water reservoir at the bottom of the tube. From the table, it can be seen that Δσ and V av are substantially equal and within the optimum range regardless of the presence or absence of the hot water reservoir.
In addition, the parameter value at the time of implementing this test is as follows. The mold size in this test is 1200 mm × 235 mm, and the casting speed is 2.4 ton / min.
a / a ′ = 0.14, b / b ′ = 0.33, c / b ′ = 0.5, L 2 / L 1 = 1, θ = 0 °, R / a ′ = 0.14

Figure 0004578555
Figure 0004578555

[流体解析]
次に、本発明に係る連続鋳造用浸漬ノズル及び従来の連続鋳造用浸漬ノズルの吐出流について、それぞれ実施した流体解析について説明する。
[Fluid analysis]
Next, fluid analysis performed on the discharge flow of the continuous casting immersion nozzle according to the present invention and the conventional continuous casting immersion nozzle will be described.

流体解析には、フルーエント・アジア・パシフィック(株)製のFLUENT(流体解析ソフトウェア)を使用した。図10に流体解析に使用した解析モデルを示す。同図において(A)が実施例、(B)が従来例である。本解析では、従来例として、底部を有する円筒状管体の下部側面に流路と連通する一対の吐出孔が対向して形成された浸漬ノズルを用いた。一方、実施例は、対向する突条部を従来例に設けたものであり、諸元は以下の通りである。a/a’=0.13、b/b’=0.13、c/b’=0.43、L/L=0.68、θ=15°
また、鋳型は長辺方向1540mm、短辺方向235mmとし、鋳込速度は2.7ton/minとした。
For fluid analysis, FLUENT (fluid analysis software) manufactured by Fluent Asia Pacific Co., Ltd. was used. FIG. 10 shows an analysis model used for fluid analysis. In the figure, (A) is an example, and (B) is a conventional example. In the present analysis, as a conventional example, an immersion nozzle in which a pair of discharge holes communicating with the flow path are formed on the lower side surface of a cylindrical tubular body having a bottom portion so as to face each other is used. On the other hand, an Example provides the protrusion part which opposes in a prior art example, and the item is as follows. a / a ′ = 0.13, b / b ′ = 0.13, c / b ′ = 0.43, L 2 / L 1 = 0.68, θ = 15 °
The casting mold was 1540 mm in the long side direction and 235 mm in the short side direction, and the casting speed was 2.7 ton / min.

図11(A)、(B)に実施例の流体解析結果を、図12(A)、(B)に従来例の流体解析結果をそれぞれ示す。これらの図より、実施例は、鋳型内における左右の偏流が従来例に比べて少なく、湯面の反転流速も低減されていることがわかる。その結果、湯面変動が小さくなり、優れたスラブ品質と高速鋳造による生産効率の向上が可能となる。 FIGS. 11A and 11B show the fluid analysis results of the example, and FIGS. 12A and 12B show the fluid analysis results of the conventional example. From these figures, it can be seen that in the example, the left and right drifts in the mold are less than in the conventional example, and the reverse flow velocity of the molten metal surface is also reduced. As a result, the molten metal surface fluctuation is reduced, and it is possible to improve the production efficiency by excellent slab quality and high speed casting.

また、図13は、実施例に関して、吐出孔の上端面及び下端面の傾斜角度に対して突条部に形成された傾斜部の傾斜角度を変化させた場合における左右の反転流速の平均値Vavの値を、流体解析により算出した結果を示したものである。同図において、Δθは、突条部に形成された傾斜部の傾斜角度と吐出孔の上端面及び下端面の傾斜角度との差であり、Δθが負の場合、突条部に形成された傾斜部のほうが、吐出孔の上端面及び下端面よりも上向きであることを意味している。
同図より、Δθがゼロの場合、即ち突条部に形成された傾斜部と吐出孔の上端面及び下端面が同じ傾斜角度である場合が、Vavが最も小さくなることがわかる。また、Δθが−10°〜+7°の範囲において、Vavが10cm/sec〜30cm/secとなり、良好な反転流速を示すことが確認された。
Moreover, FIG. 13 is an average value V of the left and right reversal flow velocity when the inclination angle of the inclined portion formed on the ridge is changed with respect to the inclination angle of the upper end surface and the lower end surface of the discharge hole. The result of having calculated the value of av by the fluid analysis is shown. In the figure, Δθ is the difference between the inclination angle of the inclined portion formed on the ridge and the inclination angle of the upper end surface and the lower end surface of the discharge hole. When Δθ is negative, it is formed on the ridge portion. It means that the inclined portion is upward from the upper end surface and the lower end surface of the discharge hole.
From the figure, it can be seen that Vav is the smallest when Δθ is zero, that is, when the inclined portion formed in the ridge and the upper end surface and the lower end surface of the discharge hole have the same inclination angle. Further, in the range of Δθ from −10 ° to + 7 °, V av was 10 cm / sec to 30 cm / sec, and it was confirmed that a good reversal flow rate was exhibited.

さらに、実施例において、突条部に形成された傾斜部の傾斜角度と吐出孔の上端面及び下端面の傾斜角度とを同期させて変化させた場合における吐出流について、流体解析により検討した。その結果を図14〜図17に示す。その際の諸元は以下の通りである。
図14(A)、(B)の場合、a/a’=0.13、b/b’=0.25、c/b’=0.4、L/L=1、θ=0°、鋳込速度:3.0ton/min
図15(A)、(B)の場合、a/a’=0.13、b/b’=0.13、c/b’=0.43、L/L=0.68、θ=25°、鋳込速度:2.7ton/min
図16(A)、(B)の場合、a/a’=0.13、b/b’=0.13、c/b’=0.43、L/L=0.68、θ=35°、鋳込速度:2.7ton/min
図17(A)、(B)の場合、a/a’=0.13、b/b’=0.13、c/b’=0.43、L/L=0.68、θ=45°、鋳込速度:2.7ton/min
図14〜図17及び先に示したθ=15°の解析結果(図11)より、傾斜角度が0°〜45°の場合、鋳型内における吐出流の偏流は少なく、湯面の反転流速も低減されることがわかる。
Furthermore, in Examples, the discharge flow when the inclination angle of the inclined portion formed in the ridge and the inclination angles of the upper end surface and the lower end surface of the discharge hole are changed in synchronization was examined by fluid analysis. The results are shown in FIGS. The specifications at that time are as follows.
14A and 14B, a / a ′ = 0.13, b / b ′ = 0.25, c / b ′ = 0.4, L 2 / L 1 = 1, θ = 0. °, casting speed: 3.0 ton / min
15A and 15B, a / a ′ = 0.13, b / b ′ = 0.13, c / b ′ = 0.43, L 2 / L 1 = 0.68, θ = 25 °, casting speed: 2.7 ton / min
In the case of FIGS. 16A and 16B, a / a ′ = 0.13, b / b ′ = 0.13, c / b ′ = 0.43, L 2 / L 1 = 0.68, θ = 35 °, casting speed: 2.7 ton / min
In the case of FIGS. 17A and 17B, a / a ′ = 0.13, b / b ′ = 0.13, c / b ′ = 0.43, L 2 / L 1 = 0.68, θ = 45 °, casting speed: 2.7 ton / min
From FIG. 14 to FIG. 17 and the analysis result (FIG. 11) of θ = 15 ° shown above, when the inclination angle is 0 ° to 45 °, the deviation of the discharge flow in the mold is small, and the reverse flow velocity of the molten metal surface is also high. It can be seen that it is reduced.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、連続鋳造用浸漬ノズルの管体は円筒状としているが、角形状など他の形状も含むものである。また、上記実施の形態では、突条部の両端部に傾斜部を設けているが、突条部に傾斜部を設けず、吐出孔の上端面及び下端面を水平としてもよい。なお、連続鋳造用浸漬ノズルの吐出孔の形状は矩形状が好ましいが、長円形や楕円形などでもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the above-described embodiment, the tubular body of the continuous casting immersion nozzle is cylindrical, but includes other shapes such as a square shape. Moreover, in the said embodiment, although the inclination part is provided in the both ends of a protrusion part, an inclination part is not provided in a protrusion part, but it is good also considering the upper end surface and lower end surface of a discharge hole as horizontal. The shape of the discharge hole of the continuous casting immersion nozzle is preferably rectangular, but may be oval or elliptical.

10:浸漬ノズル、11:管体、12:流路、13:流入口、14:吐出孔、14a:上端面、14b:下端面、15:底部、16:突条部、16a:傾斜部、16b:水平部、17:湯溜り部、18:内壁、21:鋳型、22:流速検出器、23:短辺がわ側壁 10: immersion nozzle, 11: tube, 12: flow path, 13: inflow port, 14: discharge hole, 14a: upper end surface, 14b: lower end surface, 15: bottom, 16: protrusion, 16a: inclined portion, 16b: Horizontal portion, 17: Hot water reservoir, 18: Inner wall, 21: Mold, 22: Flow rate detector, 23: Short side wall

Claims (7)

上端部が溶鋼の流入口とされ、該流入口から下方に延びる流路が内部に形成された、底部を有する管体の下部側面に、前記流路と連通する一対の吐出孔が対向して形成された連続鋳造用浸漬ノズルにおいて、
一対の前記吐出孔間に在って前記流路を画成する内壁に、内方に突出し該内壁を水平方向に横断する突条部が対向配置されていることを特徴とする連続鋳造用浸漬ノズル。
A pair of discharge holes communicating with the flow path are opposed to a lower side surface of a tubular body having a bottom portion in which an upper end portion is an inlet of molten steel and a flow path extending downward from the inlet is formed inside. In the formed continuous casting immersion nozzle,
Immersion for continuous casting, characterized in that an inner wall that is defined between the pair of discharge holes and defines the flow path is provided with a protruding portion that protrudes inward and that crosses the inner wall in the horizontal direction. nozzle.
請求項1記載の連続鋳造用浸漬ノズルにおいて、前記吐出孔を正面視して、該吐出孔の水平方向の幅をa’、鉛直方向の幅をb’とし、前記突条部端面の突出高さをa、鉛直方向の幅をbとすると、a/a’=0.05〜0.38、b/b’=0.05〜0.5である連続鋳造用浸漬ノズル。 The immersion nozzle for continuous casting according to claim 1, wherein the discharge hole is viewed from the front, the horizontal width of the discharge hole is a ', the width of the vertical direction is b', and the protrusion height of the end face of the ridge portion is A continuous casting immersion nozzle in which a / a ′ = 0.05 to 0.38 and b / b ′ = 0.05 to 0.5, where a is the vertical width and b is the vertical width. 請求項2記載の連続鋳造用浸漬ノズルにおいて、前記吐出孔を正面視して、該吐出孔の上縁から前記突条部端面の鉛直方向の幅の1/2までの鉛直距離をcとすると、c/b’=0.15〜0.7である連続鋳造用浸漬ノズル。 The immersion nozzle for continuous casting according to claim 2, wherein when the discharge hole is viewed from the front, a vertical distance from the upper edge of the discharge hole to ½ of the vertical width of the end face of the ridge is defined as c. C / b ′ = 0.15 to 0.7, a continuous casting immersion nozzle. 請求項1〜3のいずれか1項に記載の連続鋳造用浸漬ノズルにおいて、前記突条部の両端部が外方に向けて下方に傾斜する傾斜部とされている連続鋳造用浸漬ノズル。 The continuous casting immersion nozzle according to any one of claims 1 to 3, wherein both end portions of the protruding portion are inclined portions inclined downward toward the outside. 請求項4記載の連続鋳造用浸漬ノズルにおいて、前記吐出孔の上端面及び下端面が外方に向けて下方に傾斜し、該上端面及び該下端面の傾斜角度と前記傾斜部の傾斜角度とが同角度である連続鋳造用浸漬ノズル。 The immersion nozzle for continuous casting according to claim 4, wherein an upper end surface and a lower end surface of the discharge hole are inclined downward toward an outer side, an inclination angle of the upper end surface and the lower end surface, and an inclination angle of the inclined portion. Submersible nozzle for continuous casting with the same angle. 請求項5記載の連続鋳造用浸漬ノズルにおいて、前記突条部の延在方向に関し、一対の前記吐出孔の直上における前記流路の幅をL、前記傾斜部を除いた前記突条部の長さをLとすると、L/L=0〜1である連続鋳造用浸漬ノズル。 In the immersion nozzle for continuous casting according to claim 5 relates to the extending direction of the ridges, the width of the flow path immediately above the pair of the discharge hole L 1, of the ridges except the tilted portions An immersion nozzle for continuous casting in which L 2 / L 1 = 0 to 1 when the length is L 2 . 請求項6記載の連続鋳造用浸漬ノズルにおいて、前記上端面、前記下端面、及び前記傾斜部の傾斜角度が0〜45°である連続鋳造用浸漬ノズル。 The immersion nozzle for continuous casting according to claim 6, wherein the upper end surface, the lower end surface, and the inclined portion have an inclination angle of 0 to 45 °.
JP2009040594A 2008-12-27 2009-02-24 Immersion nozzle for continuous casting Active JP4578555B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009040594A JP4578555B2 (en) 2008-12-27 2009-02-24 Immersion nozzle for continuous casting
TW98117436A TWI361118B (en) 2008-12-27 2009-05-26 Immersion nozzle for continuous casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008335527 2008-12-27
JP2009040594A JP4578555B2 (en) 2008-12-27 2009-02-24 Immersion nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JP2010167488A JP2010167488A (en) 2010-08-05
JP4578555B2 true JP4578555B2 (en) 2010-11-10

Family

ID=42700108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040594A Active JP4578555B2 (en) 2008-12-27 2009-02-24 Immersion nozzle for continuous casting

Country Status (2)

Country Link
JP (1) JP4578555B2 (en)
TW (1) TWI361118B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183544A (en) * 2011-03-03 2012-09-27 Kurosaki Harima Corp Immersion nozzle
TWI726000B (en) * 2015-11-10 2021-05-01 美商維蘇威美國公司 Casting nozzle comprising flow deflectors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238658A (en) * 1991-01-10 1992-08-26 Kawasaki Steel Corp Immersion nozzle for continuous casting
JPH08294757A (en) * 1994-09-22 1996-11-12 Kobe Steel Ltd Pouring device for continuous casting
JP2001347348A (en) * 2000-06-07 2001-12-18 Nippon Steel Corp Immersion nozzle for continuous casting
JP2005296971A (en) * 2004-04-07 2005-10-27 Shinagawa Refract Co Ltd Immersion nozzle for continuously casting steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238658A (en) * 1991-01-10 1992-08-26 Kawasaki Steel Corp Immersion nozzle for continuous casting
JPH08294757A (en) * 1994-09-22 1996-11-12 Kobe Steel Ltd Pouring device for continuous casting
JP2001347348A (en) * 2000-06-07 2001-12-18 Nippon Steel Corp Immersion nozzle for continuous casting
JP2005296971A (en) * 2004-04-07 2005-10-27 Shinagawa Refract Co Ltd Immersion nozzle for continuously casting steel

Also Published As

Publication number Publication date
TW201023997A (en) 2010-07-01
JP2010167488A (en) 2010-08-05
TWI361118B (en) 2012-04-01

Similar Documents

Publication Publication Date Title
WO2009119301A1 (en) Immersion nozzle for continuous casting
JP5451868B2 (en) Immersion nozzle for continuous casting equipment
WO2011121802A1 (en) Immersion nozzle
WO2005070589A1 (en) Immersion nozzle for continuous casting and continuous casting method using the immersion nozzle
JP5047854B2 (en) Immersion nozzle for continuous casting
JP4578555B2 (en) Immersion nozzle for continuous casting
US9579721B2 (en) Double entry channel ladle bottom
CN108025352B (en) Immersion nozzle
JP2012183544A (en) Immersion nozzle
EP1603697B1 (en) Submerged entry nozzle with dynamic stabilization
JP2018533485A (en) Casting nozzle with a deflector
JP2021107091A (en) Immersion nozzle
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method
JP2011073011A (en) Immersion nozzle for continuous casting
JP2015100817A (en) Immersion nozzle for continuous casting device
JP2007216272A (en) Immersed nozzle
JPH02165851A (en) Submerged nozzle for continuous casting

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100624

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4578555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160903

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250