WO2023190017A1 - Immersion nozzle, mold, and steel continuous casting method - Google Patents

Immersion nozzle, mold, and steel continuous casting method Download PDF

Info

Publication number
WO2023190017A1
WO2023190017A1 PCT/JP2023/011462 JP2023011462W WO2023190017A1 WO 2023190017 A1 WO2023190017 A1 WO 2023190017A1 JP 2023011462 W JP2023011462 W JP 2023011462W WO 2023190017 A1 WO2023190017 A1 WO 2023190017A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
nozzle
discharge port
molten steel
magnetic field
Prior art date
Application number
PCT/JP2023/011462
Other languages
French (fr)
Japanese (ja)
Inventor
周吾 森田
匠 川原崎
智紘 田中
則親 荒牧
章敏 松井
哲郎 小谷野
亮祐 千代原
佳祐 佐野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023549865A priority Critical patent/JPWO2023190017A1/ja
Publication of WO2023190017A1 publication Critical patent/WO2023190017A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the present invention relates to a submerged nozzle for injecting molten steel into a mold during continuous steel casting, a mold for a continuous casting machine using the submerged nozzle, and a continuous steel casting method.
  • a submerged nozzle When continuously casting steel, a submerged nozzle is immersed in the molten steel in the mold to inject the molten steel.
  • the flow of molten steel in the mold is such that the discharge flow from the left and right discharge ports of the immersion nozzle collides with the inner wall on the shorter side of the mold, and an upward flow rises along the mold inner wall and a downward flow flows downward along the mold inner wall. Divert into streams.
  • Patent Document 1 discloses a nozzle in which the upper stage discharge opening area is larger than the lower stage discharge opening area in order to reduce the maximum downward flow velocity as much as possible, and a continuous casting method using the nozzle.
  • Patent Document 1 Although the technique described in Patent Document 1 is successful in reducing the downward flow velocity, the flow of molten steel tends to be biased towards the upper and lower discharge ports due to the nature of gravity, resulting in high pressure at the bottom of the nozzle. As a result, stagnation occurs at the bottom of the nozzle, and inclusions may adhere to the inner tube of the immersed nozzle due to a reaction with inclusions present in the molten steel, or the inner tube may be damaged by melting. Furthermore, since the cross-sectional area of each discharge port is relatively small compared to a two-hole nozzle, there is a problem in that adhesion and erosion of the discharge ports disturbs the flow of molten steel and tends to impede operations.
  • the present invention has been made to solve the above problems, and aims to provide a technology that reduces the adhesion of inclusions in the molten steel to the nozzle and melting damage of the nozzle while appropriately controlling the flow of molten steel in the mold. .
  • the inventors studied the pressure distribution inside the nozzle in order to optimize the opening area ratio of the upper and lower discharge ports of a porous immersion nozzle and the flow rate of each discharge port, and as a result, they arrived at the present invention. did.
  • the immersion nozzle according to the present invention for solving the above problems is a immersion nozzle that supplies molten steel from a molten steel storage container into a mold of a continuous casting machine that performs continuous casting when continuously casting steel. , the end of the nozzle main body of the immersion nozzle on the side that is immersed in the molten steel in the mold is closed, and the upper and lower parts of the part of the nozzle main body that are immersed in the molten steel are each provided with 1 1/2 increments with the central axis as the axis of symmetry. It has a pair of discharge ports, and the opening area of the discharge port in the lower section is in the range of 1.0 times or more and 1.6 times or less as compared to the opening area of the discharge port in the upper section. do.
  • the immersion nozzle according to the present invention is a.
  • the ratio r/R of the internal diameter r from the upper end of the discharge port upper hole to the bottom of the lower end of the submerged nozzle to the inner diameter R to the upper end of the discharge port upper hole is in the range of 0.6 or more and less than 1.0.
  • the discharge direction of the discharge port in the upper stage portion and the discharge port in the lower stage portion are arranged at an angle ⁇ of 10° or less when viewed from above; etc. may be a more preferable solution.
  • the mold according to the present invention is a mold for a continuous casting machine having any of the above-mentioned immersion nozzles, and has an index K that affects the fluctuation of the melt level expressed by the following equation (1) of 0.09 to 0. As in the range of 14, It is characterized by being configured.
  • K 2 (L 2 +W 2 /4)/TP 2 (1)
  • L is the distance [m] from the meniscus to the upper end of the discharge port upper hole of the immersion nozzle
  • W is the distance between the short sides of the mold at the meniscus position [m]
  • TP is the mass of molten steel passing per unit time [t/min].
  • the mold according to the present invention includes a DC coil that is installed on the outside of the long side of the mold above the discharge port of the immersion nozzle, and is capable of applying a magnetic field in which a DC magnetic field and an AC magnetic field are superimposed to the molten steel in the mold; an electromagnetic stirring device having an AC coil; and an electromagnetic brake device having a DC coil installed outside the long side of the mold below the discharge port of the immersion nozzle and capable of applying a DC magnetic field to the molten steel in the mold.
  • provision may be a more preferable solution.
  • melt level fluctuation index K shown by the above equation (1) is 0.09 to 0.0. It is characterized in that it is adjusted to fall within a range of 14.
  • the method for continuous casting of steel according to the present invention is as follows: c.
  • the molten steel in the mold above the discharge port of the immersion nozzle immersed in the molten steel in the mold is applied with a DC magnetic field having a magnetic flux density of 0.1 to 0.8T and an alternating current magnetic field having a magnetic flux density of 0.03 to 0.1T.
  • Adjust the ratio Q Ar /TP of the Ar gas flow rate Q Ar [NL/min] to the mass of molten steel passing TP [t/min] may be 2.0 or more and 5.0 or less, and let Ar flow in from the upper nozzle. thing, etc. may be a more preferable solution.
  • the immersion nozzle and continuous casting machine of the present invention by making the lower discharge opening area larger than the upper discharge opening area of the porous immersion nozzle, the flow stagnates at the bottom of the nozzle and a high-pressure part is formed. Steel can be continuously cast without any negative pressure being formed near the discharge port. Therefore, it is possible to prevent adhesion and nozzle erosion due to the reaction between the nozzle refractory and inclusions, and is expected to have the effect of reducing the risk of hindering operations.
  • the immersion nozzle of the present invention is suitable for use in a continuous steel casting method.
  • FIG. 1 is a longitudinal cross-sectional view of a submerged nozzle according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a submerged nozzle according to another embodiment of the present invention, showing the positional relationship between upper and lower discharge ports. It is a graph showing the relationship between the maximum pressure inside the immersion nozzle and the ratio of the cross-sectional area of the upper discharge port to the cross-sectional area of the lower discharge port. It is a graph showing the relationship between the minimum pressure near the discharge port and the ratio of the cross-sectional area of the upper discharge port to the cross-sectional area of the lower discharge port. It is a graph showing the relationship between the normalized maximum pressure inside the immersion nozzle and the ratio r/R of the inner diameter of the immersion nozzle.
  • FIG. 6 is an explanatory diagram of the positional relationship of the discharge ports of the immersion nozzle that affects the floating of Ar bubbles in a mold for a continuous casting machine according to another embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view showing the tip shape of a multi-hole immersion nozzle according to an embodiment of the present invention.
  • molten steel is injected by dipping such a submerged nozzle into the molten steel in a mold.
  • This embodiment has a total of four discharge ports, two pairs of upper and lower pairs, with the center axis 4 as the axis of symmetry, and is a so-called four-hole immersion nozzle.
  • the cross-sectional area of the lower discharge port 2 is set to be 1.0 times or more and 1.6 times or less the cross-sectional area of the upper discharge port 1. The reason is explained below.
  • the inventors found that the flow of molten steel tends to be biased toward the lower stage due to the influence of gravity. As a result, it was found that the pressure at the bottom 3 of the immersion nozzle inner tube increases, making it easier to form a stagnation part, and that negative pressure is more likely to be created near the discharge port. As a result of both, a reaction between the inclusions in the molten steel and the immersed nozzle refractory is induced, which causes inclusions to adhere to the immersed nozzle and erosion of the nozzle refractory, making stable operation difficult. I found out.
  • the aforementioned stagnation area at the bottom of the nozzle is created by forcing a part of the molten steel flow to collide with the refractory existing between the upper and lower discharge ports, and forcibly guiding the molten steel flow to the upper stage discharge port.
  • the arrangement positions of the upper and lower discharge ports 1 and 2 are set to have an angular difference ⁇ (°) in the nozzle circumferential direction, and are preferably shifted by a maximum of 10°. It is preferable that the lower discharge ports 2 are arranged to face the short sides of the mold so that the molten steel projecting direction is parallel to the long sides of the mold, and the upper discharge ports 1 are offset in the circumferential direction. Even if alumina or other substances adhere to the inside of the nozzle, the flow from the upper discharge port 1 will collide with the long sides of the mold, which can be expected to suppress the effect of the molten steel flow directly colliding with the molten metal surface. .
  • the angle difference ⁇ is more preferably more than 1° and less than 10°, and even more preferably more than 3° and less than 10°.
  • the immersion nozzle has a straight shape with an inner diameter R of 150 mm, and has an upper discharge port and a lower discharge port having openings with the shapes shown in Table 1.
  • Four-hole immersion nozzles numbered 1 to 5 were subjected to numerical calculations.
  • the general-purpose thermal fluid analysis solution STAR-CCM+ was used for the analysis, and the steady-state total pressure distribution was determined under the conditions that the pressure near the outlet side of the discharge port was 0 and the maximum flow velocity in the nozzle was 3.0 m/s. evaluated.
  • Table 1 “vertical” represents the vertical direction, and “horizontal” represents the horizontal direction.
  • the relationship between the minimum pressure near the discharge port and the ratio SL/SU of the cross-sectional area of the upper discharge port 1 to the cross-sectional area of the lower discharge port 2 is shown graphically in FIG. .
  • FIG. 4 As shown in FIG. 4, as SL/SU increases, the minimum pressure in the vicinity of the discharge port decreases, and in particular, at a value exceeding 1.6, the pressure becomes negative. Inclusions in the molten steel tend to collect in negative pressure areas, and this also induces a reaction between the inclusions in the molten steel and the immersed nozzle refractory, as in the stagnation area, causing the inclusions to adhere to the immersed nozzle and the nozzle refractory. It is thought that this may cause melting and damage to objects. Therefore, SL/SU is set to 1.6 or less.
  • the inner diameter ratio r/R is preferably 0.6 or more and less than 1.0.
  • the normalized maximum pressure can be suppressed to less than 1.0.
  • r/R is 0.9 or less.
  • an inert gas such as Ar gas can be mixed into the molten steel through the upper nozzle.
  • the molten steel receives the effect of the buoyancy of the bubbles, and the formation of a high-pressure portion at the bottom 3 of the immersion nozzle can be alleviated.
  • FIG. 6 is an enlarged conceptual diagram of a cross-section of a mold 20 for a continuous casting machine.
  • the locus of bubble levitation is shown by an arrow marked with the symbol Ar.
  • the rising position of the bubbles is related to the diagonal length ⁇ (L 2 +W 2 /4) from the upper discharge port 1 to the meniscus position on the short side of the mold and the mass TP of molten steel passing per unit time.
  • the index K which affects the hot water level fluctuation, expressed by the following equation (1), to be in the range of 0.09 to 0.14, the hot water level fluctuation can be significantly suppressed. It turns out.
  • K 2 (L 2 +W 2 /4)/TP 2 (1)
  • L is the distance [m] from the meniscus 5 to the upper end of the discharge port upper hole of the immersion nozzle
  • W is the distance [m] between the short sides 8 of the mold at the meniscus 5 position
  • TP is the mass of molten steel passing per unit time [t/min].
  • Example 1 The present invention is configured as described above, and the feasibility and effects of the present invention will be further explained below using Examples.
  • Table 3 As an indicator of operational stability in Table 3, an eddy current sensor was installed directly above the mold surface at the center of the thickness, which was located from the short side to the center of the width by 1/4 of the distance W between the short sides of the mold (casting width). The eddy current sensor measured changes in the hot water level over time. At that time, processing No. The magnitude of the hot water level fluctuation of each treatment was expressed as an index, with the magnitude of the hot water level fluctuation of A1 set as 100. The average value of the first and second half of casting was used for evaluation as an index indicating operational stability. Note that the upper and lower stage discharge ports were both opened in the direction opposite to the short sides, and the center of the discharge flow was parallel to the long sides of the mold.
  • Example 2 Processing No. of Example 1.
  • Table 4 shows the melt level fluctuation index when processing was carried out under the conditions of A1 using a submerged nozzle whose upper discharge port was inclined at an angle ⁇ in the nozzle circumferential direction with respect to the short side of the mold. Process No. where the angle ⁇ is 3 to 10 degrees.
  • C2 to C4 processing No. Improvement in hot water level fluctuation was seen compared to A1.
  • Processing No. In C5 the fluctuation of the hot water level increased slightly. This is thought to be due to the fact that by tilting the discharge port too much toward the long side, the influence of the reversed flow that collides with the long side and reaches the molten metal surface increases.
  • Example 3 Processing No. of Example 1.
  • Table 5 shows the melt level level fluctuation index when processing was carried out under A4 conditions using a submerged nozzle whose upper discharge port was inclined by 7° in the nozzle circumferential direction with respect to the short side of the mold. Processing No. In D1, processing No. Improvement in hot water level fluctuation was seen compared to A4.
  • Example 4 Fluctuations in the level of hot water when using the continuous casting machine of Example 1, using immersion nozzles with different opening area ratios SL/SU of the upper and lower discharge ports, and variously changing the K value in equation (1) above.
  • the index is shown in Table 6. Note that the immersion nozzle inner diameter ratio r/R was 1.00, and the Ar gas amount ratio Q Ar /TP blown from the upper nozzle was 1.50. When the K value is in the range of 0.09 to 0.14, the improvement in hot water level fluctuation is remarkable.
  • the K value is too small, the effect of suppressing molten metal level fluctuation is small due to the influence of whether the mass of molten steel passing through is too large, the casting width is too narrow, or the nozzle immersion depth is too shallow. Furthermore, if the K value is too large, the effect of suppressing molten metal level fluctuation is small due to the influence of whether the mass of passing molten steel is too small, the casting width is too wide, or the nozzle immersion depth is too deep. The inventors believe that maintaining an appropriate deceleration distance of the molten steel flow discharged from the immersion nozzle is effective in suppressing fluctuations in the molten metal level.
  • Example 5 The mold of the continuous casting machine of Example 1 was equipped with an electromagnetic stirring device in the upper part and an electromagnetic brake device in the lower part as shown in FIG.
  • the electromagnetic stirring device in the upper part applied an alternating current magnetic field superimposed on a direct current magnetic field.
  • the electromagnetic brake device in the lower section applied a DC magnetic field.
  • the immersion nozzle inner diameter ratio r/R was 1.00
  • the Ar gas amount ratio Q Ar /TP blown from the upper nozzle was 1.50.
  • Processing No. F01 is the processing No. of Example 4. Equivalent to E11.
  • Table 7 shows the various processing conditions and the hot water level fluctuation index. Processing No. For F02 to F10, the hot water level fluctuation level index was reduced by applying a magnetic field compared to when no magnetic field was applied.
  • treatment No. In F02 the DC magnetic field in the lower stage was too weak, the DC magnetic field in the upper stage was too strong, and the AC magnetic field in the upper stage was too weak, and although it was better than when no magnetic field was applied, it promoted fluctuations in the melt level.
  • processing No. In F10 the DC magnetic field in the lower stage was too weak, the DC magnetic field in the upper stage was too strong, and the AC magnetic field in the upper stage was too strong, and although it was better than when no magnetic field was applied, it promoted fluctuations in the melt level.
  • the discharge port area ratio SL/SU of the upper and lower stages was outside the range of the present invention, so the hot water level fluctuation index deteriorated. Therefore, it is preferable to apply a DC magnetic field with a magnetic flux density of 0.1 to 0.8 T in the lower electromagnetic brake device.
  • the upper electromagnetic stirring device it is preferable to apply a magnetic field in which an alternating current magnetic field having a magnetic flux density of 0.03 to 0.1 T is superimposed on a direct current magnetic field having a magnetic flux density of 0.1 to 0.8 T. It was found that by appropriately combining electromagnetic stirring and electromagnetic brake, it was possible to further improve the level fluctuation.
  • the unit of volume “L” means 10 -3 m 3
  • the symbol for the volume of gas “N” represents the volume at a temperature of 0° C. and a pressure of 101,325 Pa, which are standard conditions.

Abstract

Provided is a technology for reducing adhesion of inclusions in molten steel to a nozzle, and nozzle erosion, while appropriately controlling a flow of molten steel in a mold. In an immersion nozzle which, when continuous casting of steel is being performed, supplies molten steel from a molten steel storage container into a mold of a continuous caster that performs the continuous casting: an end portion of a nozzle main body, on the side of the immersion nozzle that is immersed into the molten steel in the mold, is closed; one pair of discharge ports having an axis of symmetry along a central axis is provided in each of an upper portion and a lower portion of a part of the nozzle main body that is immersed in the molten steel; and an area of an opening portion of the discharge ports in the lower portion lies in a range of at least 1.0 times and at most 1.6 times an area of the discharge ports in the upper portion. A ratio r/R of an inner diameter r of a flow passage inside the immersion nozzle, from an upper edge of an upper hole of the discharge port to the bottom of a lower edge of the immersion nozzle, to an inner diameter R of the flow passage inside the immersion nozzle, up to the upper edge of the upper hole of the discharge port, is preferably in a range of 0.6 or more to less than 1.0, and the upper portion discharge port and the lower portion discharge port are preferably arranged with an angle θ of 10° or less between discharge directions thereof in a top view.

Description

浸漬ノズル、鋳型および鋼の連続鋳造方法Immersion nozzle, mold and continuous steel casting method
 本発明は、鋼の連続鋳造を行う際に溶鋼を鋳型に注入するための浸漬ノズルならびにその浸漬ノズルを用いた連続鋳造機用の鋳型および鋼の連続鋳造方法に関する。 The present invention relates to a submerged nozzle for injecting molten steel into a mold during continuous steel casting, a mold for a continuous casting machine using the submerged nozzle, and a continuous steel casting method.
 鋼の連続鋳造を行う際には、鋳型内の溶鋼に浸漬ノズルを浸漬して溶鋼を注入する。鋳型内の溶鋼の流れは、浸漬ノズルの左右対となる吐出口からの吐出流が鋳型の短辺側内壁に衝突し、鋳型内壁に沿って上昇する上向き流と鋳型内壁に沿って下降する下向き流に分流する。 When continuously casting steel, a submerged nozzle is immersed in the molten steel in the mold to inject the molten steel. The flow of molten steel in the mold is such that the discharge flow from the left and right discharge ports of the immersion nozzle collides with the inner wall on the shorter side of the mold, and an upward flow rises along the mold inner wall and a downward flow flows downward along the mold inner wall. Divert into streams.
 その際、特に吐出流速が大きい場合などにおいて、吐出口の上部と下部で不均一な流速分布が発生することがある。これにより、上向き流及び下向き流のそれぞれで左右の流量バランスが乱れたり局部的に強い吐出流が生じたりして流れが大きく変動する場合がある。そのような変動は、凝固殻の生成不良や、気泡や介在物の凝固殻への捕捉に起因する欠陥発生の要因となる。 In this case, especially when the discharge flow velocity is high, uneven flow velocity distribution may occur between the upper and lower parts of the discharge port. As a result, the left and right flow rate balance may be disrupted in each of the upward flow and downward flow, or a locally strong discharge flow may occur, resulting in large fluctuations in flow. Such fluctuations become a factor in the generation of defects due to insufficient formation of the solidified shell and the trapping of bubbles and inclusions in the solidified shell.
 そのような問題を解決するために、鋳型内の溶鋼の流れを緩慢にし、かつ均一な流れを形成することによって、気泡や介在物による欠陥を防止した連続鋳造が可能になると考えられている。この考えに沿って、上下方向2段に溶鋼の吐出口を設けた4孔式の浸漬ノズル(4孔ノズル)が、例えば下記の特許文献によって提案されている。 In order to solve such problems, it is thought that by slowing down the flow of molten steel in the mold and forming a uniform flow, continuous casting that prevents defects due to bubbles and inclusions will become possible. In line with this idea, a four-hole type immersion nozzle (four-hole nozzle) in which molten steel discharge ports are provided in two stages in the vertical direction has been proposed, for example, in the following patent document.
 特許文献1には、最大下降流速を可能な限り低減するために上段の吐出口面積が下段の吐出口面積に比べて大きいノズル、またそれを用いた連続鋳造方法が開示されている。 Patent Document 1 discloses a nozzle in which the upper stage discharge opening area is larger than the lower stage discharge opening area in order to reduce the maximum downward flow velocity as much as possible, and a continuous casting method using the nozzle.
国際公開第2010/109887号International Publication No. 2010/109887
 特許文献1に記載の技術では、下降流速の低減には成功しているものの、重力の性質上下段吐出口へ溶鋼の流れが偏り易く、その結果ノズル底部は高圧となる。そのためノズル底部に淀みが生じ、溶鋼内に存在する介在物との反応で浸漬ノズル内管に介在物が付着したり、内管に溶損が生じたりする場合があった。また2孔ノズルと比べて個々の吐出口は断面積が比較的小さくなるため、その付着・溶損が溶鋼の流れを乱し、操業の阻害となり易いという問題が存在した。 Although the technique described in Patent Document 1 is successful in reducing the downward flow velocity, the flow of molten steel tends to be biased towards the upper and lower discharge ports due to the nature of gravity, resulting in high pressure at the bottom of the nozzle. As a result, stagnation occurs at the bottom of the nozzle, and inclusions may adhere to the inner tube of the immersed nozzle due to a reaction with inclusions present in the molten steel, or the inner tube may be damaged by melting. Furthermore, since the cross-sectional area of each discharge port is relatively small compared to a two-hole nozzle, there is a problem in that adhesion and erosion of the discharge ports disturbs the flow of molten steel and tends to impede operations.
 本発明は上記問題を解決するためになされたものであり、鋳型内溶鋼流れを適切に制御しつつ、ノズルへの溶鋼中介在物の付着やノズル溶損を低減する技術の提供を目的とする。 The present invention has been made to solve the above problems, and aims to provide a technology that reduces the adhesion of inclusions in the molten steel to the nozzle and melting damage of the nozzle while appropriately controlling the flow of molten steel in the mold. .
 発明者らは、上記課題の解決のため、多孔浸漬ノズルの上下吐出口の開口面積比とそれぞれの吐出口の流量を適正化するためにノズル内の圧力分布を検討した結果、本発明に到達した。 In order to solve the above problems, the inventors studied the pressure distribution inside the nozzle in order to optimize the opening area ratio of the upper and lower discharge ports of a porous immersion nozzle and the flow rate of each discharge port, and as a result, they arrived at the present invention. did.
 上記課題を解決するための本発明にかかる浸漬ノズルは、鋼の連続鋳造を行う際に、溶鋼の貯留容器から前記連続鋳造を行う連続鋳造機の鋳型内へ溶鋼を供給する浸漬ノズルであって、前記浸漬ノズルの鋳型内溶鋼に浸漬される側のノズル本体の端部は閉止され、前記ノズル本体の溶鋼に浸漬される部位の上段部および下段部に、中心軸を対称軸とする各1対の吐出口を有し、前記下段部の吐出口の開口部面積が前記上段部の吐出口の開口部面積に対し、1.0倍以上1.6倍以下の範囲であることを特徴とする。 The immersion nozzle according to the present invention for solving the above problems is a immersion nozzle that supplies molten steel from a molten steel storage container into a mold of a continuous casting machine that performs continuous casting when continuously casting steel. , the end of the nozzle main body of the immersion nozzle on the side that is immersed in the molten steel in the mold is closed, and the upper and lower parts of the part of the nozzle main body that are immersed in the molten steel are each provided with 1 1/2 increments with the central axis as the axis of symmetry. It has a pair of discharge ports, and the opening area of the discharge port in the lower section is in the range of 1.0 times or more and 1.6 times or less as compared to the opening area of the discharge port in the upper section. do.
 なお、本発明にかかる浸漬ノズルは、
a.浸漬ノズル内部の流路において吐出口上孔上端までの内径Rに対する、吐出口上孔上端から浸漬ノズル下端底までの内径rの比r/Rが0.6以上1.0未満の範囲であること、
b.前記上段部の吐出口と前記下段部の吐出口との吐出方向が上面視で10°以内の角度θで配置されたこと、
などが、より好ましい解決手段になり得る。
In addition, the immersion nozzle according to the present invention is
a. In the flow path inside the submerged nozzle, the ratio r/R of the internal diameter r from the upper end of the discharge port upper hole to the bottom of the lower end of the submerged nozzle to the inner diameter R to the upper end of the discharge port upper hole is in the range of 0.6 or more and less than 1.0. thing,
b. The discharge direction of the discharge port in the upper stage portion and the discharge port in the lower stage portion are arranged at an angle θ of 10° or less when viewed from above;
etc. may be a more preferable solution.
 また、本発明にかかる鋳型は、上記いずれかの浸漬ノズルを有する連続鋳造機用の鋳型であって、下記(1)式で示される湯面変動に影響する指数Kが0.09~0.14の範囲にあるように、
構成されていることを特徴とする。
=(L+W/4)/TP          (1)
ここで、Lはメニスカスから前記浸漬ノズルの前記吐出口上孔上端までの距離[m]、
    Wはメニスカス位置での前記鋳型の短辺間距離[m]、
    TPは単位時間当たりの溶鋼通過質量[t/min]である。
Further, the mold according to the present invention is a mold for a continuous casting machine having any of the above-mentioned immersion nozzles, and has an index K that affects the fluctuation of the melt level expressed by the following equation (1) of 0.09 to 0. As in the range of 14,
It is characterized by being configured.
K 2 =(L 2 +W 2 /4)/TP 2 (1)
Here, L is the distance [m] from the meniscus to the upper end of the discharge port upper hole of the immersion nozzle,
W is the distance between the short sides of the mold at the meniscus position [m],
TP is the mass of molten steel passing per unit time [t/min].
 なお、本発明にかかる鋳型は、前記浸漬ノズルの前記吐出口より上部の前記鋳型の長辺外部に設置し、前記鋳型内溶鋼に直流磁場に交流磁場を重畳した磁場を印加し得る直流コイルおよび交流コイルを有する電磁撹拌装置と、前記浸漬ノズルの前記吐出口より下部の前記鋳型の長辺外部に設置し、前記鋳型内溶鋼に直流磁場を印加し得る直流コイルを有する電磁ブレーキ装置と、を備えることがより好ましい解決手段になり得る。 The mold according to the present invention includes a DC coil that is installed on the outside of the long side of the mold above the discharge port of the immersion nozzle, and is capable of applying a magnetic field in which a DC magnetic field and an AC magnetic field are superimposed to the molten steel in the mold; an electromagnetic stirring device having an AC coil; and an electromagnetic brake device having a DC coil installed outside the long side of the mold below the discharge port of the immersion nozzle and capable of applying a DC magnetic field to the molten steel in the mold. provision may be a more preferable solution.
 また、本発明にかかる鋼の連続鋳造方法は、上記いずれかの浸漬ノズルを用いて鋼を連続鋳造する際に、上記(1)式で示される湯面変動指数Kが0.09~0.14の範囲にあるように調整することを特徴とする。 Further, in the continuous casting method of steel according to the present invention, when continuously casting steel using any of the above-mentioned immersion nozzles, the melt level fluctuation index K shown by the above equation (1) is 0.09 to 0.0. It is characterized in that it is adjusted to fall within a range of 14.
 なお、本発明にかかる鋼の連続鋳造方法は、
c.前記鋳型内溶鋼に浸漬した前記浸漬ノズルの前記吐出口より上部の前記鋳型内溶鋼に磁束密度が0.1~0.8Tである直流磁場に磁束密度が0.03~0.1Tである交流磁場を重畳した磁場を印加し、前記吐出口より下部の前記鋳型内溶鋼に磁束密度が0.1~0.8Tである直流磁場を印加すること、
d.Arガス流量QAr[NL/min]の溶鋼通過質量TP[t/min]に対する比QAr/TPが2.0以上5.0以下となるように調整して、上ノズルからArを流入させること、
などが、より好ましい解決手段になり得る。
The method for continuous casting of steel according to the present invention is as follows:
c. The molten steel in the mold above the discharge port of the immersion nozzle immersed in the molten steel in the mold is applied with a DC magnetic field having a magnetic flux density of 0.1 to 0.8T and an alternating current magnetic field having a magnetic flux density of 0.03 to 0.1T. applying a magnetic field with a superimposed magnetic field, and applying a DC magnetic field having a magnetic flux density of 0.1 to 0.8 T to the molten steel in the mold below the discharge port;
d. Adjust the ratio Q Ar /TP of the Ar gas flow rate Q Ar [NL/min] to the mass of molten steel passing TP [t/min] to be 2.0 or more and 5.0 or less, and let Ar flow in from the upper nozzle. thing,
etc. may be a more preferable solution.
 本発明の浸漬ノズルや連続鋳造機によれば、多孔浸漬ノズルの上段吐出口面積に対して、下段吐出口面積を大きくすることで、ノズル底部で流れが滞留して高圧部が形成されることなく、かつ、吐出口付近において負圧が形成されることなく、鋼を連続鋳造できる。そのため、ノズル耐火物と介在物との反応による付着やノズル溶損を防ぐことができ、操業阻害リスクを低減する効果が期待される。本発明の浸漬ノズルは鋼の連続鋳造方法に用いて好適である。 According to the immersion nozzle and continuous casting machine of the present invention, by making the lower discharge opening area larger than the upper discharge opening area of the porous immersion nozzle, the flow stagnates at the bottom of the nozzle and a high-pressure part is formed. Steel can be continuously cast without any negative pressure being formed near the discharge port. Therefore, it is possible to prevent adhesion and nozzle erosion due to the reaction between the nozzle refractory and inclusions, and is expected to have the effect of reducing the risk of hindering operations. The immersion nozzle of the present invention is suitable for use in a continuous steel casting method.
本発明の一実施形態にかかる浸漬ノズルの縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a submerged nozzle according to an embodiment of the present invention. 本発明の他の実施形態にかかる浸漬ノズルの横断面図で上下吐出口の位置関係を示したものである。FIG. 7 is a cross-sectional view of a submerged nozzle according to another embodiment of the present invention, showing the positional relationship between upper and lower discharge ports. 浸漬ノズル内部の最大圧力と、下段部吐出口の断面積に対する上段部吐出口の断面積の比との関係を表すグラフである。It is a graph showing the relationship between the maximum pressure inside the immersion nozzle and the ratio of the cross-sectional area of the upper discharge port to the cross-sectional area of the lower discharge port. 吐出口近傍の最小圧力と、下段部吐出口の断面積に対する上段部吐出口の断面積の比との関係を表すグラフである。It is a graph showing the relationship between the minimum pressure near the discharge port and the ratio of the cross-sectional area of the upper discharge port to the cross-sectional area of the lower discharge port. 正規化した浸漬ノズル内部の最大圧力と、浸漬ノズル内径の比r/Rの関係を表すグラフである。It is a graph showing the relationship between the normalized maximum pressure inside the immersion nozzle and the ratio r/R of the inner diameter of the immersion nozzle. 本発明の別の実施形態にかかる連続鋳造機用の鋳型におけるAr気泡の浮上に影響する浸漬ノズルの吐出口の位置関係の説明図であるFIG. 6 is an explanatory diagram of the positional relationship of the discharge ports of the immersion nozzle that affects the floating of Ar bubbles in a mold for a continuous casting machine according to another embodiment of the present invention.
 以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be specifically described. Note that each drawing is schematic and may differ from the actual drawing. Furthermore, the following embodiments are intended to exemplify devices and methods for embodying the technical idea of the present invention, and the configuration is not limited to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.
[浸漬ノズル]
 図1は本発明の一実施形態にかかる多孔浸漬ノズルの先端形状を示す縦断面図である。鋼の連続鋳造の際には、溶鋼はこのような浸漬ノズルを鋳型内溶鋼に浸漬して注入される。本実施形態では、中心軸4を対称軸として、上下2対、合計4つの吐出口を有しており、いわゆる、4孔浸漬ノズルである。
[Immersion nozzle]
FIG. 1 is a longitudinal sectional view showing the tip shape of a multi-hole immersion nozzle according to an embodiment of the present invention. During continuous casting of steel, molten steel is injected by dipping such a submerged nozzle into the molten steel in a mold. This embodiment has a total of four discharge ports, two pairs of upper and lower pairs, with the center axis 4 as the axis of symmetry, and is a so-called four-hole immersion nozzle.
 本実施形態では、下段部吐出口2の断面積を上段部吐出口1の断面積に対し1.0倍以上1.6倍以下とする。理由を以下に述べる。 In this embodiment, the cross-sectional area of the lower discharge port 2 is set to be 1.0 times or more and 1.6 times or less the cross-sectional area of the upper discharge port 1. The reason is explained below.
 一般に、上下段に吐出口を備えた多孔浸漬ノズルにおいては吐出流速の減衰効果をいかに得て鋳片の欠陥を低減するかに着目される。 In general, attention is focused on how to obtain a damping effect on the discharge flow velocity and reduce defects in slabs in a porous immersion nozzle having discharge ports in upper and lower stages.
 しかしながら、発明者らは、重力の影響により下段側に溶鋼の流れが偏る傾向にあることを知見した。その結果、浸漬ノズル内管の底部3での圧力が高まり淀み部が形成され易くなること、また吐出口付近では負圧が形成され易くなることを知見した。両者の結果として溶鋼中の介在物と浸漬ノズル耐火物との反応を誘起し、浸漬ノズルへの介在物の付着やノズル耐火物の溶損を引き起こすことで、安定した操業を困難にすることを知見した。 However, the inventors found that the flow of molten steel tends to be biased toward the lower stage due to the influence of gravity. As a result, it was found that the pressure at the bottom 3 of the immersion nozzle inner tube increases, making it easier to form a stagnation part, and that negative pressure is more likely to be created near the discharge port. As a result of both, a reaction between the inclusions in the molten steel and the immersed nozzle refractory is induced, which causes inclusions to adhere to the immersed nozzle and erosion of the nozzle refractory, making stable operation difficult. I found out.
 まず、上段部吐出口1と下段部吐出口2とをもつ浸漬ノズルでは、下段部吐出口2の開口部面積を上段部吐出口1の開口部面積以上とすることで、上下吐出口間の流れを整流し、浸漬ノズルの底部3に形成される滞留域(淀み部)を低減することとした。滞留域は、淀み部の大きさが、上下段の吐出口面積のバランスや、吐出口周辺でのノズル本体の内径を変化させていることが溶鋼の流れを決める要因となっていることに加え、これらの要因は溶鋼の流れ場の「連続性」も影響することから、各要因の影響を個別に予想することは困難である。 First, in a submerged nozzle having an upper discharge port 1 and a lower discharge port 2, by making the opening area of the lower discharge port 2 greater than or equal to the opening area of the upper discharge port 1, the gap between the upper and lower discharge ports is It was decided to rectify the flow and reduce the stagnation area (stagnation area) formed at the bottom 3 of the immersion nozzle. In the stagnation area, the flow of molten steel is determined by the size of the stagnation area, the balance between the discharge port area of the upper and lower stages, and the internal diameter of the nozzle body around the discharge port. Since these factors also affect the "continuity" of the molten steel flow field, it is difficult to predict the influence of each factor individually.
 そこで、局所的な高圧部や負圧部に起因した淀み部の形成を上段・下段の吐出口の大きさのバランスによって制御するため、上下段の吐出口面積の割合の淀み部に対する影響を、数値計算をもちいて、評価した。 Therefore, in order to control the formation of stagnation caused by local high pressure areas and negative pressure areas by balancing the sizes of the upper and lower discharge ports, the influence of the ratio of the area of the upper and lower discharge ports on the stagnation is The evaluation was done using numerical calculations.
 また、前述のノズル底部における淀み部は上下段吐出口間に存在する耐火物に溶鋼流動の一部を衝突させることで、その溶鋼流動の一部を強制的に上段吐出口へ誘導することによっても制御できると考え、吐出口周辺でのノズル本体の内径の変化が淀み部に与える影響を、数値計算を行うことで検討した。 In addition, the aforementioned stagnation area at the bottom of the nozzle is created by forcing a part of the molten steel flow to collide with the refractory existing between the upper and lower discharge ports, and forcibly guiding the molten steel flow to the upper stage discharge port. We thought that it would be possible to control this, and conducted numerical calculations to examine the effect that changes in the inner diameter of the nozzle body around the discharge port have on the stagnation area.
 図2に示すように上下段吐出口1、2の配置位置をノズル円周方向の角度差θ(°)とし、最大10°までずらすことが好ましい。下段吐出口2は、溶鋼突出方向が鋳型長辺と平行になるように鋳型短辺に対向して配置し、上段吐出口1は、円周方向でずらすことが好ましい。それは、仮にノズル内へアルミナなどの付着が発生した場合にも上段吐出口1からの流動を鋳型長辺へ衝突させることで、溶鋼流が直接湯面に衝突する影響を抑制することが期待できる。それにより湯面レベルへの影響を低位に抑えることができる。一方で、ずらす角度が大きすぎると、鋳型長辺面への溶鋼流が衝突することで溶鋼流が偏向し、上昇流によって湯面変動が増加するおそれがある。角度差θは1°超え10°以下がより好ましく、3°超え10°未満がさらに好ましい。 As shown in FIG. 2, the arrangement positions of the upper and lower discharge ports 1 and 2 are set to have an angular difference θ (°) in the nozzle circumferential direction, and are preferably shifted by a maximum of 10°. It is preferable that the lower discharge ports 2 are arranged to face the short sides of the mold so that the molten steel projecting direction is parallel to the long sides of the mold, and the upper discharge ports 1 are offset in the circumferential direction. Even if alumina or other substances adhere to the inside of the nozzle, the flow from the upper discharge port 1 will collide with the long sides of the mold, which can be expected to suppress the effect of the molten steel flow directly colliding with the molten metal surface. . As a result, the influence on the hot water level can be kept to a low level. On the other hand, if the shifting angle is too large, the molten steel flow collides with the long side surfaces of the mold, causing the molten steel flow to be deflected, and there is a risk that fluctuations in the molten steel level will increase due to the upward flow. The angle difference θ is more preferably more than 1° and less than 10°, and even more preferably more than 3° and less than 10°.
<解析1>
 まず、浸漬ノズルは内径Rが150mmのストレート形状とし、表1に示す形状の開口を有する上段部吐出口および下段部吐出口を有するNo.1~5の4孔浸漬ノズルを数値計算に供した。解析には汎用熱流体解析ソリューションSTAR-CCM+を用い、吐出口の出側近傍の圧力を0とし、ノズル内最大流速を3.0m/sとする条件で定常状態の全圧分布を求めて、評価した。表1中、「縦」は鉛直方向を表し、「横」は水平方向を表す。
<Analysis 1>
First, the immersion nozzle has a straight shape with an inner diameter R of 150 mm, and has an upper discharge port and a lower discharge port having openings with the shapes shown in Table 1. Four-hole immersion nozzles numbered 1 to 5 were subjected to numerical calculations. The general-purpose thermal fluid analysis solution STAR-CCM+ was used for the analysis, and the steady-state total pressure distribution was determined under the conditions that the pressure near the outlet side of the discharge port was 0 and the maximum flow velocity in the nozzle was 3.0 m/s. evaluated. In Table 1, "vertical" represents the vertical direction, and "horizontal" represents the horizontal direction.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の解析結果のうち、浸漬ノズル内部の最大圧力と、下段部吐出口2の断面積に対する上段部吐出口1の断面積の比SL/SUとの関係を図3のグラフに示す。ここで、上段部吐出口1の断面積をSU、下段部吐出口2の断面積をSLとする。図3に示すように、SL/SUが大きくなるにつれて、すなわち上段部吐出口1の断面積に対して下段部吐出口2の断面積が大きくなるにつれ最大圧力は低減傾向にあり、高圧による淀み部が解消されると考えられる。特にSL/SUが1.0以上では圧力低減効果が大きく得られた。 Among the analysis results in Table 1, the relationship between the maximum pressure inside the immersion nozzle and the ratio SL/SU of the cross-sectional area of the upper discharge port 1 to the cross-sectional area of the lower discharge port 2 is shown in the graph of FIG. Here, the cross-sectional area of the upper discharge port 1 is SU, and the cross-sectional area of the lower discharge port 2 is SL. As shown in FIG. 3, as SL/SU increases, that is, as the cross-sectional area of the lower discharge port 2 increases relative to the cross-sectional area of the upper discharge port 1, the maximum pressure tends to decrease. It is thought that the division will be dissolved. In particular, when SL/SU was 1.0 or more, a large pressure reduction effect was obtained.
 また、表1の解析結果のうち、吐出口近傍の最小圧力と、下段部吐出口2の断面積に対する上段部吐出口1の断面積の比SL/SUとの関係を図4にグラフで示す。図4に示すように、SL/SUが大きくなるにつれて、吐出口近傍の最小圧力は小さくなり、特に1.6超えの値では負圧となっていた。負圧箇所には溶鋼中の介在物が集まりやすく、これもまた滞留部と同様、溶鋼中の介在物と浸漬ノズル耐火物との反応を誘起し、浸漬ノズルへの介在物の付着やノズル耐火物の溶損を引き起こすと考えられる。したがって、SL/SUは1.6以下とする。 Furthermore, among the analysis results in Table 1, the relationship between the minimum pressure near the discharge port and the ratio SL/SU of the cross-sectional area of the upper discharge port 1 to the cross-sectional area of the lower discharge port 2 is shown graphically in FIG. . As shown in FIG. 4, as SL/SU increases, the minimum pressure in the vicinity of the discharge port decreases, and in particular, at a value exceeding 1.6, the pressure becomes negative. Inclusions in the molten steel tend to collect in negative pressure areas, and this also induces a reaction between the inclusions in the molten steel and the immersed nozzle refractory, as in the stagnation area, causing the inclusions to adhere to the immersed nozzle and the nozzle refractory. It is thought that this may cause melting and damage to objects. Therefore, SL/SU is set to 1.6 or less.
<解析2>
 次にSL/SUが1.0である浸漬ノズルについて、ノズル内部の流路において、吐出口上孔上端までの内径Rと吐出口上孔上端から浸漬ノズル下端底までの内径rの比r/Rと最大圧力との関係を解析した。解析結果を表2に示す。ここで、r/Rが1.0である場合のノズル内最大圧力を1.0と正規化した。正規化最大圧力と内径比r/Rとの関係を図5にグラフで示す。
<Analysis 2>
Next, for a submerged nozzle with SL/SU of 1.0, in the flow path inside the nozzle, the ratio r/ The relationship between R and maximum pressure was analyzed. The analysis results are shown in Table 2. Here, the maximum pressure inside the nozzle when r/R is 1.0 was normalized to 1.0. The relationship between the normalized maximum pressure and the inner diameter ratio r/R is shown graphically in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2および図5の結果から、内径比r/Rには最適範囲が存在することがわかる。内径比が0.7程度で正規化最大圧力は最も小さくなり、それより小さくとも、大きくとも正規化最大圧力は大きくなる。特に、r/Rが0.5では、正規化最大圧力が1.0を超えた。これは上段、下段吐出口間の耐火物に溶鋼流動が当たる部分の割合が大きくなったため新たな高圧部、淀み部形成の危険領域が形成されたためと考えられる。したがって、内径比r/Rは、0.6以上1.0未満であることが好ましい。正規化最大圧力を1.0未満に抑えることができる。好ましくは、r/Rが0.9以下である。 From the results in Table 2 and FIG. 5, it can be seen that there is an optimal range for the inner diameter ratio r/R. The normalized maximum pressure is the smallest when the inner diameter ratio is about 0.7, and the normalized maximum pressure becomes large even if it is smaller or larger. In particular, when r/R was 0.5, the normalized maximum pressure exceeded 1.0. This is thought to be because the proportion of the area where the molten steel flow hits the refractory between the upper and lower discharge ports has increased, creating a new high-pressure area and a dangerous area for the formation of stagnation. Therefore, the inner diameter ratio r/R is preferably 0.6 or more and less than 1.0. The normalized maximum pressure can be suppressed to less than 1.0. Preferably, r/R is 0.9 or less.
 更に、実際に鋼を連続鋳造する際には、浸漬ノズルを使用する場合、上ノズルを通じてArガスなどの不活性ガスを溶鋼中に混入させて鋳造することができる。そうすることで溶鋼が気泡の浮力の効果を受けて、浸漬ノズルの底部3に生じる高圧力部の形成を緩和することができる。 Furthermore, when actually continuously casting steel, if a submerged nozzle is used, an inert gas such as Ar gas can be mixed into the molten steel through the upper nozzle. By doing so, the molten steel receives the effect of the buoyancy of the bubbles, and the formation of a high-pressure portion at the bottom 3 of the immersion nozzle can be alleviated.
 ただし、混入させる不活性ガスの量が過剰であると浸漬ノズルから出た後、鋼を鋳造するためのモールド内メニスカス部への流動の浮上性が大きくなり大きな湯面変動を誘起するため操業阻害となる。したがって適切な吹込みガス量の範囲が存在する However, if the amount of inert gas mixed in is excessive, the buoyancy of the flow after coming out of the immersion nozzle to the meniscus in the mold for casting steel will increase, causing large fluctuations in the metal level, which will hinder operations. becomes. Therefore, there is an appropriate range of blown gas amount.
[鋳型]
 また、上記浸漬ノズルを用いた連続鋳造方法では、ノズル内へのアルミナ等の付着によるノズル閉塞を抑制するため、ノズル内にArガスなどを吹き込むことが行われる。特に上段部吐出口1から溶鋼とともに流出した気泡は浮上によって湯面変動の要因となる場合がある。図6は、連続鋳造機用の鋳型20の断面拡大概念図である。図6には、気泡の浮上の軌跡をArの記号を付した矢印で示す。また、気泡の上昇位置は、上段部吐出口1から鋳型の短辺側メニスカス位置までの対角線長さ√(L+W/4)および単位時間当たりの溶鋼通過質量TPに関係する。発明者らの検討によると、下記(1)式で示される湯面変動に影響する指数Kが0.09~0.14の範囲にあるようにすることで著しく湯面変動が抑制されることが判った。下記(1)式の関係を満足するには、鋳型の短辺8間距離の変更制御や溶鋼通過質量に影響する鋳造速度、つまり、鋳片引き抜き速度の制御、浸漬ノズル10の浸漬深さ制御等を行うことが好ましい。鋳型の短辺8間距離は、必要とする鋳片幅で固定されることから、浸漬ノズル10の浸漬深さ、または、鋳造速度を調整することが好ましい。
=(L+W/4)/TP          (1)
ここで、Lはメニスカス5から前記浸漬ノズルの前記吐出口上孔上端までの距離[m]、
    Wはメニスカス5位置での前記鋳型の短辺8間の距離[m]、
    TPは単位時間当たりの溶鋼通過質量[t/min]である。
[template]
Furthermore, in the continuous casting method using the above-mentioned immersion nozzle, Ar gas or the like is blown into the nozzle in order to suppress nozzle clogging due to adhesion of alumina or the like inside the nozzle. In particular, air bubbles flowing out of the upper discharge port 1 along with the molten steel may become a factor in fluctuations in the molten metal level due to their levitation. FIG. 6 is an enlarged conceptual diagram of a cross-section of a mold 20 for a continuous casting machine. In FIG. 6, the locus of bubble levitation is shown by an arrow marked with the symbol Ar. Further, the rising position of the bubbles is related to the diagonal length √(L 2 +W 2 /4) from the upper discharge port 1 to the meniscus position on the short side of the mold and the mass TP of molten steel passing per unit time. According to the inventors' studies, by setting the index K, which affects the hot water level fluctuation, expressed by the following equation (1), to be in the range of 0.09 to 0.14, the hot water level fluctuation can be significantly suppressed. It turns out. In order to satisfy the relationship of equation (1) below, it is necessary to control the change in the distance between the short sides 8 of the mold, control the casting speed that affects the mass of molten steel passing through, that is, control the slab withdrawal speed, and control the immersion depth of the immersion nozzle 10. It is preferable to do the following. Since the distance between the short sides 8 of the mold is fixed at the required slab width, it is preferable to adjust the immersion depth of the immersion nozzle 10 or the casting speed.
K 2 =(L 2 +W 2 /4)/TP 2 (1)
Here, L is the distance [m] from the meniscus 5 to the upper end of the discharge port upper hole of the immersion nozzle,
W is the distance [m] between the short sides 8 of the mold at the meniscus 5 position;
TP is the mass of molten steel passing per unit time [t/min].
(実施例1)
 本発明は以上のように構成されたものであり、以下、実施例により、本発明の実施可能性および効果についてさらに説明する。
 垂直曲げ連続鋳造機により本ノズルを用いて鋳造するにあたり、表3に記載の構成ノズルおよび鋳造方法を用いた。表3中の操業安定性の指標として、鋳型の短辺間距離W(鋳造幅)の1/4だけ短辺から幅中央に寄った厚み中央位置の湯面直上に渦流センサを設置した。その渦流センサによって、湯面レベルの経時変化を測定した。その際、処理No.A1の湯面レベル変動の大きさを100として、各処理の湯面レベル変動の大きさを指数化した。鋳造の前半と後半の平均値を、操業安定性を示す指数として評価に用いた。なお、上下段部吐出口はいずれも短辺に対向する方向に開口し、吐出流の中心は鋳型長辺に平行とした。
(Example 1)
The present invention is configured as described above, and the feasibility and effects of the present invention will be further explained below using Examples.
When casting using this nozzle with a vertical bending continuous casting machine, the nozzle configuration and casting method described in Table 3 were used. As an indicator of operational stability in Table 3, an eddy current sensor was installed directly above the mold surface at the center of the thickness, which was located from the short side to the center of the width by 1/4 of the distance W between the short sides of the mold (casting width). The eddy current sensor measured changes in the hot water level over time. At that time, processing No. The magnitude of the hot water level fluctuation of each treatment was expressed as an index, with the magnitude of the hot water level fluctuation of A1 set as 100. The average value of the first and second half of casting was used for evaluation as an index indicating operational stability. Note that the upper and lower stage discharge ports were both opened in the direction opposite to the short sides, and the center of the discharge flow was parallel to the long sides of the mold.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、発明例はすべて比較例より良好な結果が得られた。上ノズルからの吹込みArガス量比QAr/TPが同じもので比較すると、内径比r/Rを適切な範囲とした処理No.A2およびA4は、内径比r/Rが1.0である処理No.A1およびA3よりそれぞれより良い結果となった。内径比r/Rが同じもので比較すると、上ノズルからの吹込みArガス量比QAr/TPを適切な範囲とした処理No.A3およびA4は、それぞれ処理No.A1およびA2より良い結果となった。なかでも、処理No.A4は最も平均湯面レベル変指数が低い結果を示し高い操業安定性を発現させた。 From the results in Table 3, all of the invention examples had better results than the comparative examples. Comparing samples with the same Ar gas amount ratio Q Ar /TP blown from the upper nozzle, processing No. 1 with the inner diameter ratio r/R in an appropriate range. A2 and A4 are processing Nos. in which the inner diameter ratio r/R is 1.0. The results were better than A1 and A3, respectively. Comparing samples with the same inner diameter ratio r/R, processing No. 1 with the Ar gas amount ratio Q Ar /TP blown from the upper nozzle in an appropriate range. A3 and A4 are respectively processed No. The results were better than A1 and A2. Among them, treatment No. A4 showed the lowest average hot water level variation index and exhibited high operational stability.
(実施例2)
 実施例1の処理No.A1の条件で浸漬ノズルの上段吐出口が鋳型短辺に対してノズル円周方向に角度θだけ傾いているものを用いて処理したときの湯面レベル変動指数を表4に示す。角度θが3~10°の処理No.C2~C4で、処理No.A1より湯面変動の改善が見られた。処理No.C5では、やや湯面変動が増加した。これは、長辺側へ吐出口を傾けすぎることによって、長辺に衝突して湯面に届く反転流の影響が大きくなったためであると考えられる。
(Example 2)
Processing No. of Example 1. Table 4 shows the melt level fluctuation index when processing was carried out under the conditions of A1 using a submerged nozzle whose upper discharge port was inclined at an angle θ in the nozzle circumferential direction with respect to the short side of the mold. Process No. where the angle θ is 3 to 10 degrees. In C2 to C4, processing No. Improvement in hot water level fluctuation was seen compared to A1. Processing No. In C5, the fluctuation of the hot water level increased slightly. This is thought to be due to the fact that by tilting the discharge port too much toward the long side, the influence of the reversed flow that collides with the long side and reaches the molten metal surface increases.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例3)
 実施例1の処理No.A4の条件で浸漬ノズルの上段吐出口が鋳型短辺に対してノズル円周方向に7°だけ傾いているものを用いて処理したときの湯面レベル変動指数を表5に示す。処理No.D1では処理No.A4より湯面変動の改善が見られた。
(Example 3)
Processing No. of Example 1. Table 5 shows the melt level level fluctuation index when processing was carried out under A4 conditions using a submerged nozzle whose upper discharge port was inclined by 7° in the nozzle circumferential direction with respect to the short side of the mold. Processing No. In D1, processing No. Improvement in hot water level fluctuation was seen compared to A4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例4)
 実施例1の連続鋳造機を用い、上下段部吐出口の開口面積比SL/SUの異なる浸漬ノズルを用い、上記(1)式のK値を各種変更して処理したときの湯面レベル変動指数を表6に示す。なお、浸漬ノズル内径比r/Rは1.00であり、上ノズルからの吹込みArガス量比QAr/TPは1.50とした。K値が0.09~0.14の範囲にあるときは、湯面変動の改善が著しい。一方で、K値が小さすぎる場合は、通過溶鋼質量が過大か、鋳造幅が狭すぎるか、ノズル浸漬深さが浅すぎるかの影響で、湯面変動の抑制効果が小さい。また、K値が大きすぎる場合は、通過溶鋼質量が過小か、鋳造幅が広すぎるか、ノズル浸漬深さが深すぎるかの影響で、湯面変動の抑制効果が小さい。発明者らは、浸漬ノズルからの吐出溶鋼流の適度な減速距離を保つことが湯面変動の抑制に効果的であると考えている。
(Example 4)
Fluctuations in the level of hot water when using the continuous casting machine of Example 1, using immersion nozzles with different opening area ratios SL/SU of the upper and lower discharge ports, and variously changing the K value in equation (1) above. The index is shown in Table 6. Note that the immersion nozzle inner diameter ratio r/R was 1.00, and the Ar gas amount ratio Q Ar /TP blown from the upper nozzle was 1.50. When the K value is in the range of 0.09 to 0.14, the improvement in hot water level fluctuation is remarkable. On the other hand, if the K value is too small, the effect of suppressing molten metal level fluctuation is small due to the influence of whether the mass of molten steel passing through is too large, the casting width is too narrow, or the nozzle immersion depth is too shallow. Furthermore, if the K value is too large, the effect of suppressing molten metal level fluctuation is small due to the influence of whether the mass of passing molten steel is too small, the casting width is too wide, or the nozzle immersion depth is too deep. The inventors believe that maintaining an appropriate deceleration distance of the molten steel flow discharged from the immersion nozzle is effective in suppressing fluctuations in the molten metal level.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例5)
 実施例1の連続鋳造機の鋳型に図6に示すような上段部に電磁撹拌装置と下段部に電磁ブレーキ装置を設置した。上段部の電磁撹拌装置は直流磁場に交流磁場を重畳して印加した。下段部の電磁ブレーキ装置は直流磁場を印加した。なお、浸漬ノズル内径比r/Rは1.00であり、上ノズルからの吹込みArガス量比QAr/TPは1.50とした。処理No.F01は、実施例4の処理No.E11と同等である。各種処理条件および湯面レベル変動指数を合わせて表7に示す。処理No.F02~F10では、磁場の印加により、磁場を印加しない場合より湯面変動レベル指数が減少した。一方、処理No.F02は、下段の直流磁場が弱すぎ、上段の直流磁場が強すぎ、上段の交流磁場が弱すぎて、磁場を印加しない場合より良好であったが、湯面変動を助長してしまった。また、処理No.F10は、下段の直流磁場が弱すぎ、上段の直流磁場が強すぎ、上段の交流磁場が強すぎて、磁場を印加しない場合より良好であったが、湯面変動を助長してしまった。また、処理No.F11は、磁場を印加したが、上下段の吐出口面積比SL/SUが、本発明の範囲外であったため、湯面レベル変動指数が悪化した。したがって、下段の電磁ブレーキ装置では磁束密度が0.1~0.8Tである直流磁場を印加することが好ましい。上段の電磁撹拌装置では磁束密度が0.1~0.8Tである直流磁場に磁束密度が0.03~0.1Tである交流磁場を重畳した磁場を印加することが好ましい。電磁撹拌と電磁ブレーキを適切に組み合わせることでさらに湯面変動を改善できることが判った。
(Example 5)
The mold of the continuous casting machine of Example 1 was equipped with an electromagnetic stirring device in the upper part and an electromagnetic brake device in the lower part as shown in FIG. The electromagnetic stirring device in the upper part applied an alternating current magnetic field superimposed on a direct current magnetic field. The electromagnetic brake device in the lower section applied a DC magnetic field. Note that the immersion nozzle inner diameter ratio r/R was 1.00, and the Ar gas amount ratio Q Ar /TP blown from the upper nozzle was 1.50. Processing No. F01 is the processing No. of Example 4. Equivalent to E11. Table 7 shows the various processing conditions and the hot water level fluctuation index. Processing No. For F02 to F10, the hot water level fluctuation level index was reduced by applying a magnetic field compared to when no magnetic field was applied. On the other hand, treatment No. In F02, the DC magnetic field in the lower stage was too weak, the DC magnetic field in the upper stage was too strong, and the AC magnetic field in the upper stage was too weak, and although it was better than when no magnetic field was applied, it promoted fluctuations in the melt level. In addition, processing No. In F10, the DC magnetic field in the lower stage was too weak, the DC magnetic field in the upper stage was too strong, and the AC magnetic field in the upper stage was too strong, and although it was better than when no magnetic field was applied, it promoted fluctuations in the melt level. In addition, processing No. In F11, although a magnetic field was applied, the discharge port area ratio SL/SU of the upper and lower stages was outside the range of the present invention, so the hot water level fluctuation index deteriorated. Therefore, it is preferable to apply a DC magnetic field with a magnetic flux density of 0.1 to 0.8 T in the lower electromagnetic brake device. In the upper electromagnetic stirring device, it is preferable to apply a magnetic field in which an alternating current magnetic field having a magnetic flux density of 0.03 to 0.1 T is superimposed on a direct current magnetic field having a magnetic flux density of 0.1 to 0.8 T. It was found that by appropriately combining electromagnetic stirring and electromagnetic brake, it was possible to further improve the level fluctuation.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本明細書中で、体積の単位である「L」は、10-3を意味し、質量の単位である「t」はメトリックトン=10kgを意味し、気体の体積に記す記号「N」は、標準状態である温度0℃、圧力101325Paの体積を表す。 In this specification, the unit of volume "L" means 10 -3 m 3 , the unit of mass "t" means metric ton = 10 3 kg, and the symbol for the volume of gas "N" represents the volume at a temperature of 0° C. and a pressure of 101,325 Pa, which are standard conditions.
 1 上段部吐出口
 2 下段部吐出口
 3 底部
 4 中心軸
 5 湯面(メニスカス)
 6 電磁撹拌装置
 7 電磁ブレーキ装置
 8 鋳型の短辺
10 浸漬ノズル
20 (連続鋳造機用の)鋳型
 R 吐出口上孔上端までの内径
 r 吐出口上孔上端から浸漬ノズル下端底までの内径
 W メニスカス位置での鋳型の短辺間距離
 L メニスカスから浸漬ノズルの吐出口上孔上端までの距離

 
1 Upper discharge port 2 Lower discharge port 3 Bottom 4 Central axis 5 Hot water surface (meniscus)
6 Electromagnetic stirring device 7 Electromagnetic brake device 8 Short side of the mold 10 Immersion nozzle 20 Mold (for continuous casting machine) R Inner diameter from the upper end of the discharge port upper hole r Inner diameter from the upper end of the discharge port upper hole to the bottom of the lower end of the immersion nozzle W Meniscus Distance between the short sides of the mold at the position L Distance from the meniscus to the upper end of the upper discharge hole of the immersion nozzle

Claims (8)

  1. 鋼の連続鋳造を行う際に、溶鋼の貯留容器から前記連続鋳造を行う連続鋳造機の鋳型内へ溶鋼を供給する浸漬ノズルであって、前記浸漬ノズルの鋳型内溶鋼に浸漬される側のノズル本体の端部は閉止され、前記ノズル本体の溶鋼に浸漬される部位の上段部および下段部に、中心軸を対称軸とする各1対の吐出口を有し、
    前記下段部の吐出口の開口部面積が前記上段部の吐出口の開口部面積に対し、1.0倍以上1.6倍以下の範囲である、浸漬ノズル。
    A immersed nozzle that supplies molten steel from a molten steel storage container into a mold of a continuous casting machine that performs the continuous casting when continuously casting steel, the nozzle on the side of the immersed nozzle that is immersed in the molten steel in the mold. The ends of the main body are closed, and each of the upper and lower parts of the nozzle main body that is immersed in the molten steel has a pair of discharge ports with the central axis as an axis of symmetry,
    The immersion nozzle, wherein the opening area of the discharge port in the lower stage is in a range of 1.0 times or more and 1.6 times or less as compared to the opening area of the discharge port in the upper stage.
  2. 浸漬ノズル内部の流路において吐出口上孔上端までの内径Rに対する、吐出口上孔上端から浸漬ノズル下端底までの内径rの比r/Rが0.6以上1.0未満の範囲である、請求項1に記載の浸漬ノズル。 In the flow path inside the submerged nozzle, the ratio r/R of the internal diameter r from the upper end of the discharge port upper hole to the bottom of the lower end of the submerged nozzle to the inner diameter R to the upper end of the discharge port upper hole is in the range of 0.6 or more and less than 1.0. , The submerged nozzle according to claim 1.
  3. 前記上段部の吐出口と前記下段部の吐出口との吐出方向が上面視で10°以内の角度θで配置される、請求項1または2に記載の浸漬ノズル。 The immersion nozzle according to claim 1 or 2, wherein the discharge direction of the discharge port of the upper stage portion and the discharge port of the lower stage portion are arranged at an angle θ of 10° or less when viewed from above.
  4. 請求項1~3のいずれか1項に記載の浸漬ノズルを有する連続鋳造機用の鋳型であって、
    下記(1)式で示される湯面変動に影響する指数Kが0.09~0.14の範囲にあるように、
    構成されている、鋳型。
    =(L+W/4)/TP          (1)
    ここで、Lはメニスカスから前記浸漬ノズルの前記吐出口上孔上端までの距離[m]、
        Wはメニスカス位置での前記鋳型の短辺間距離[m]、
        TPは単位時間当たりの溶鋼通過質量[t/min]である。
    A mold for a continuous casting machine having a submerged nozzle according to any one of claims 1 to 3,
    So that the index K, which affects the fluctuation of the hot water level as shown by the following formula (1), is in the range of 0.09 to 0.14.
    It is composed of a mold.
    K 2 =(L 2 +W 2 /4)/TP 2 (1)
    Here, L is the distance [m] from the meniscus to the upper end of the discharge port upper hole of the immersion nozzle,
    W is the distance between the short sides of the mold at the meniscus position [m],
    TP is the mass of molten steel passing per unit time [t/min].
  5. 前記浸漬ノズルの前記吐出口より上部の前記鋳型の長辺外部に設置し、前記鋳型内溶鋼に直流磁場に交流磁場を重畳した磁場を印加し得る直流コイルおよび交流コイルを有する電磁撹拌装置と、
    前記浸漬ノズルの前記吐出口より下部の前記鋳型の長辺外部に設置し、前記鋳型内溶鋼に直流磁場を印加し得る直流コイルを有する電磁ブレーキ装置と、
    を備える、請求項4に記載の鋳型。
    an electromagnetic stirring device having a DC coil and an AC coil, which are installed outside the long side of the mold above the discharge port of the immersion nozzle, and can apply a magnetic field in which a DC magnetic field and an AC magnetic field are superimposed to the molten steel in the mold;
    an electromagnetic brake device having a DC coil installed outside the long side of the mold below the discharge port of the immersion nozzle and capable of applying a DC magnetic field to the molten steel in the mold;
    The mold according to claim 4, comprising:
  6. 請求項1~3のいずれか1項に記載の浸漬ノズルを用いて鋼を連続鋳造する際に、下記(1)式で示される湯面変動指数Kが0.09~0.14の範囲にあるように調整する、鋼の連続鋳造方法。
    =(L+W/4)/TP          (1)
    ここで、Lはメニスカスから吐出口上孔上端までの距離[m]、
        Wはメニスカス位置での鋳型短辺間距離[m]、
        TPは単位時間当たりの溶鋼通過質量[t/min]
    である。
    When continuously casting steel using the immersion nozzle according to any one of claims 1 to 3, the melt level fluctuation index K shown by the following formula (1) is in the range of 0.09 to 0.14. Continuous casting method for steel.
    K 2 =(L 2 +W 2 /4)/TP 2 (1)
    Here, L is the distance [m] from the meniscus to the upper end of the upper hole of the discharge port,
    W is the distance between the short sides of the mold at the meniscus position [m],
    TP is mass of molten steel passing per unit time [t/min]
    It is.
  7. 前記鋳型内溶鋼に浸漬した前記浸漬ノズルの前記吐出口より上部の前記鋳型内溶鋼に磁束密度が0.1~0.8Tである直流磁場に磁束密度が0.03~0.1Tである交流磁場を重畳した磁場を印加し、前記吐出口より下部の前記鋳型内溶鋼に磁束密度が0.1~0.8Tである直流磁場を印加する、請求項6に記載の鋼の連続鋳造方法。 The molten steel in the mold above the discharge port of the immersion nozzle immersed in the molten steel in the mold is applied with a DC magnetic field having a magnetic flux density of 0.1 to 0.8T and an alternating current magnetic field having a magnetic flux density of 0.03 to 0.1T. 7. The continuous steel casting method according to claim 6, wherein a magnetic field with a superimposed magnetic field is applied, and a DC magnetic field having a magnetic flux density of 0.1 to 0.8 T is applied to the molten steel in the mold below the discharge port.
  8. Arガス流量QAr[NL/min]の溶鋼通過質量TP[t/min]に対する比QAr/TPが2.0以上5.0以下となるように調整して、上ノズルからArを流入させる、請求項6または7に記載の鋼の連続鋳造方法。

     
    Adjust the ratio Q Ar /TP of the Ar gas flow rate Q Ar [NL/min] to the mass of molten steel passing TP [t/min] to be 2.0 or more and 5.0 or less, and let Ar flow in from the upper nozzle. , The continuous casting method of steel according to claim 6 or 7.

PCT/JP2023/011462 2022-04-01 2023-03-23 Immersion nozzle, mold, and steel continuous casting method WO2023190017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023549865A JPWO2023190017A1 (en) 2022-04-01 2023-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061668 2022-04-01
JP2022061668 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023190017A1 true WO2023190017A1 (en) 2023-10-05

Family

ID=88202023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011462 WO2023190017A1 (en) 2022-04-01 2023-03-23 Immersion nozzle, mold, and steel continuous casting method

Country Status (2)

Country Link
JP (1) JPWO2023190017A1 (en)
WO (1) WO2023190017A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295654A (en) * 1989-05-10 1990-12-06 Kawasaki Steel Corp Nozzle for continuous casting and continuous casting method
JP4569715B1 (en) * 2009-11-10 2010-10-27 Jfeスチール株式会社 Steel continuous casting method
JP2015085370A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Continuous casting method of steel
JP2016073990A (en) * 2014-10-03 2016-05-12 新日鐵住金株式会社 Continuous casting method
JP2019063851A (en) * 2017-10-05 2019-04-25 Jfeスチール株式会社 Immersion nozzle for continuous casting and method for steel continuous casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295654A (en) * 1989-05-10 1990-12-06 Kawasaki Steel Corp Nozzle for continuous casting and continuous casting method
JP4569715B1 (en) * 2009-11-10 2010-10-27 Jfeスチール株式会社 Steel continuous casting method
JP2015085370A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Continuous casting method of steel
JP2016073990A (en) * 2014-10-03 2016-05-12 新日鐵住金株式会社 Continuous casting method
JP2019063851A (en) * 2017-10-05 2019-04-25 Jfeスチール株式会社 Immersion nozzle for continuous casting and method for steel continuous casting

Also Published As

Publication number Publication date
JPWO2023190017A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
JP6354341B2 (en) Method for imparting swirl flow to molten metal
KR101384019B1 (en) Continuous casting method for molten metal
KR101108316B1 (en) Molten metal continuous casting method
JP6115690B1 (en) Continuous casting method of slab slab
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method
JP2017064778A (en) Upper nozzle for continuous casting
JP7332885B2 (en) Molten metal continuous casting method and continuous casting apparatus
JP3324598B2 (en) Continuous slab casting method and immersion nozzle
JP5206584B2 (en) Tundish for continuous casting and continuous casting method
JP6331810B2 (en) Metal continuous casting method
JP2018051598A (en) Bottom pouring ingot-making equipment
JP7388599B1 (en) Immersion nozzle for continuous casting and continuous casting method of steel
JP4448452B2 (en) Steel continuous casting method
JP6497200B2 (en) Immersion nozzle for strip casting apparatus and strip casting apparatus
JP2018058097A (en) Immersion nozzle, continuous casting machine, and continuous casting method
JP2002248551A (en) Continuous casting method for steel
JP4319072B2 (en) Tundish with excellent inclusion levitation
JP5768751B2 (en) Method for continuous casting of molten metal
JP2006000896A (en) Continuous casting method
JP5673162B2 (en) Continuous casting method and continuous casting apparatus
JPH04238658A (en) Immersion nozzle for continuous casting
JP7031463B2 (en) Continuous casting method
JP2004283848A (en) Immersion nozzle for continuous casting of steel
JP2023178223A (en) Continuous casting method for steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023549865

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780028

Country of ref document: EP

Kind code of ref document: A1