JP5673162B2 - Continuous casting method and continuous casting apparatus - Google Patents

Continuous casting method and continuous casting apparatus Download PDF

Info

Publication number
JP5673162B2
JP5673162B2 JP2011022267A JP2011022267A JP5673162B2 JP 5673162 B2 JP5673162 B2 JP 5673162B2 JP 2011022267 A JP2011022267 A JP 2011022267A JP 2011022267 A JP2011022267 A JP 2011022267A JP 5673162 B2 JP5673162 B2 JP 5673162B2
Authority
JP
Japan
Prior art keywords
molten steel
continuous casting
tundish
nozzle
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011022267A
Other languages
Japanese (ja)
Other versions
JP2011245550A (en
Inventor
高橋 功一
功一 高橋
裕計 近藤
裕計 近藤
鈴木 真
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011022267A priority Critical patent/JP5673162B2/en
Publication of JP2011245550A publication Critical patent/JP2011245550A/en
Application granted granted Critical
Publication of JP5673162B2 publication Critical patent/JP5673162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続鋳造方法および連続鋳造装置に関し、詳しくは、タンディッシュ内に注入された溶鋼中の酸化物系非金属介在物を効率良く浮上分離することのできるものに関する。   The present invention relates to a continuous casting method and a continuous casting apparatus, and more particularly to an apparatus capable of efficiently levitating and separating oxide-based nonmetallic inclusions in molten steel injected into a tundish.

鋼の連続鋳造では、取鍋内の溶鋼を、取鍋底部に設置したロングノズル(「注入ノズル」ともいう)を通してタンディッシュに供給しながら、タンディッシュ内に所定量の溶鋼が滞在した状態で、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した溶鋼流出孔を通して各鋳型に分配・注入し、鋳片を製造している。溶鋼中には脱酸生成物を起源とするアルミナなどの酸化物系非金属介在物(以下「介在物」と記す)が懸濁しており、溶鋼が凝固する際に介在物が凝固層の中に取り込まれてしまうと、薄鋼板などの最終製品において介在物性の欠陥を引き起こす。そのため、タンディッシュには、介在物を浮上分離させる機能も求められている。   In continuous casting of steel, while supplying the molten steel in the ladle to the tundish through a long nozzle (also called “injection nozzle”) installed at the bottom of the ladle, a predetermined amount of molten steel stays in the tundish. The molten steel in the tundish is distributed and injected into each mold through molten steel outflow holes installed at the bottom of the tundish to produce slabs. In the molten steel, oxide-based non-metallic inclusions such as alumina originating from the deoxidation product (hereinafter referred to as “inclusions”) are suspended, and the inclusions are contained in the solidified layer when the molten steel solidifies. If it is taken in, it will cause defects in inclusion physical properties in the final product such as thin steel plate. Therefore, the tundish is also required to have a function of floating and separating inclusions.

一般に、タンディッシュ内の溶鋼流動を一様流れとして注入点から流出孔への短絡流が起こらないように溶鋼流動を制御するとタンディッシュ内の介在物浮上分離が最大化される。このような考え方に基づき、タンディッシュ内に堰を設置してタンディッシュ内の溶鋼流動を制御する方法が用いられるようになり、介在物の少ない鋳片が製造できるようになってきた。しかし、高品質材料では非常に高い清浄性が求められており、さらに優れた介在物分離方法が求められている。   In general, when the molten steel flow is controlled so that the molten steel flow in the tundish is a uniform flow and no short-circuit flow from the injection point to the outflow hole occurs, the floating separation of inclusions in the tundish is maximized. Based on such a concept, a method of controlling a molten steel flow in the tundish by installing a weir in the tundish has been used, and it has become possible to manufacture a slab with few inclusions. However, a high quality material is required to have a very high cleanliness, and an excellent inclusion separation method is required.

介在物の浮上・分離を促進するために、これまでにも様々なタンディッシュが提案されている。例えば、特許文献1には、ロングノズルからの溶鋼注入点と鋳型への溶鋼流出孔との間に少なくとも2個の堰を有し、第1の堰はタンディッシュ内溶鋼浴の一方の側壁側であって且つ溶鋼浴の上方部の溶鋼流を遮断することができ、第2の堰はタンディッシュ内溶鋼浴の他方の側壁側であって且つ溶鋼浴の上方部の溶鋼流を遮断することができ、第1、第2の堰何れも堰の反対側の側壁側は溶鋼属が流通することができる連続鋳造用タンディッシュが開示されている。   Various tundishes have been proposed so far to promote the floating and separation of inclusions. For example, Patent Document 1 has at least two weirs between a molten steel injection point from a long nozzle and a molten steel outflow hole into a mold, and the first weir is on one side of the molten steel bath in the tundish. And the second dam is on the other side wall side of the molten steel bath in the tundish and blocks the molten steel flow at the upper part of the molten steel bath. A continuous casting tundish is disclosed in which both the first and second weirs can allow the molten steel to circulate on the side wall opposite to the weir.

また、特許文献2には、取鍋からタンディッシュへ溶鋼を注入するための溶鋼注入点と鋳型への溶鋼流出孔との間に、溶鋼を通すための貫通孔を複数有し、貫通孔の総面積がタンディッシュ内の溶鋼流路断面積の50%以下であり、更に、貫通孔の位置がタンディッシュの長さ方向で交互になるようにした多孔堰を複数設置した連続鋳造用タンディッシュが開示されている。   Patent Document 2 has a plurality of through holes for passing molten steel between a molten steel injection point for injecting molten steel from a ladle to a tundish and a molten steel outflow hole to a mold. Tundish for continuous casting in which the total area is 50% or less of the cross-sectional area of the molten steel channel in the tundish, and furthermore, a plurality of porous weirs in which the positions of the through holes are alternated in the length direction of the tundish Is disclosed.

特開2005−103567号公報JP 2005-103567 A 特開2005−28376号公報JP 2005-28376 A

しかしながら上記従来技術には以下の問題点がある。即ち、特許文献1は、堰を設置することにより、ロングノズルから注入された溶鋼流が直接溶鋼流出孔から流出することを妨げ、介在物が浮上・分離できるだけの滞留時間を確保する方法である。また、特許文献2は、複数の貫通孔を有する堰を多段配置することによって溶鋼の一様流れを作り、溶鋼注入点から溶鋼流出孔への溶鋼の短絡流を防止する方法である。これらの発明はタンディッシュ内に堰を配置することで溶鋼がタンディッシュ内に留まっている時間(滞留時間)を長くし、介在物の浮上分離を促進する方法である。   However, the above prior art has the following problems. That is, Patent Document 1 is a method of preventing a molten steel flow injected from a long nozzle from flowing out directly from a molten steel outflow hole by installing a weir and ensuring a residence time sufficient for inclusions to float and separate. . Moreover, patent document 2 is a method of making the uniform flow of molten steel by arranging the weir which has a several through-hole multistage, and preventing the short circuit flow of the molten steel from a molten steel injection | pouring point to a molten steel outflow hole. These inventions are a method of locating a weir in a tundish to lengthen the time (residence time) that the molten steel stays in the tundish and promote the floating separation of inclusions.

しかしながら、特許文献1、2は小さな開口を多数設けた堰を用いているので、開口部詰まりの問題が起こりやすく、操業管理やメンテナンスが難しい問題がある。また、多数の堰を設けることはランニングコストの観点からも好ましくない。   However, since Patent Documents 1 and 2 use a weir provided with a large number of small openings, there is a problem that opening clogging is likely to occur, and operation management and maintenance are difficult. Also, providing a large number of weirs is not preferable from the viewpoint of running cost.

本発明は上記課題を解決する連続鋳造方法および連続鋳造用タンディッシュを提供することを目的とする。   An object of this invention is to provide the continuous casting method and the tundish for continuous casting which solve the said subject.

本発明の課題は以下の手段で達成可能である。
1.連続鋳造用タンディッシュに取鍋内から溶鋼を一つの注入ノズルで供給し、前記連続鋳造用タンディッシュ内から鋳型へ溶鋼を一つの溶鋼流出ノズルで供給する連続鋳造方法であって、前記連続鋳造用タンディッシュ内における、前記取鍋内から溶鋼を注入する前記注入ノズルの溶鋼注入点の設定位置と、前記溶鋼注入点における溶鋼深さが下式を満たすように、前記取鍋の注入ノズルと前記連続鋳造用タンディッシュの相対位置と、連続鋳造用タンディッシュ内における溶鋼量を制御することを特徴とする連続鋳造方法。
The object of the present invention can be achieved by the following means.
1. A continuous casting method for supplying molten steel from a ladle to a continuous casting tundish with a single injection nozzle and supplying molten steel from the continuous casting tundish to a mold with a single molten steel discharge nozzle, the continuous casting In the tundish, the setting position of the molten steel injection point of the injection nozzle for injecting molten steel from the ladle, and the injection nozzle of the ladle so that the molten steel depth at the molten steel injection point satisfies the following equation: A continuous casting method characterized by controlling a relative position of the continuous casting tundish and an amount of molten steel in the continuous casting tundish.

2×H < L1+L2+L3 < 4×H
ここで、L1は連続鋳造用タンディッシュの底面における、溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁面から溶鋼の注入点の直下となる位置までの距離、L2は溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁の溶鋼に浸漬している長さ、L3は溶鋼の溶鋼面(浴面)における、溶鋼の注入ノズルの中心線から側壁面までの距離、Hは注入ノズルの中心線の位置における溶鋼深さ
2.更に、溶鋼注入点と溶鋼流出点間の水平距離が下式を満たすことを特徴とする1記載の連続鋳造方法。
2 × H <L1 + L2 + L3 <4 × H
Here, L1 is the distance from the side wall surface opposite to the molten steel outflow nozzle as viewed from the molten steel injection point on the bottom surface of the continuous casting tundish to the position directly below the molten steel injection point, and L2 is the molten steel injection The length immersed in the molten steel on the side wall opposite to the molten steel outflow nozzle as viewed from the point, L3 is the distance from the center line of the molten steel injection nozzle to the side wall surface on the molten steel surface (bath surface) of the molten steel, H Is the depth of the molten steel at the center line of the injection nozzle. 2. The continuous casting method according to 1, wherein the horizontal distance between the molten steel injection point and the molten steel outflow point satisfies the following formula.

2×H < L4 < 4×H
ここで、L4は注入ノズルの中心線から溶鋼流出ノズルの中心線までの距離、Hは注入ノズルの中心線の位置における溶鋼深さ
3.取鍋と連続鋳造用タンディッシュと連続鋳造用鋳型と前記連続鋳造用タンディッシュ内における湯面高さを制御する湯面制御装置を備えた連続鋳造装置であって、
前記取鍋と前記連続鋳造用タンディッシュの位置関係と、前記連続鋳造用タンディッシュの寸法形状は、前記湯面制御装置による前記溶鋼注入点における溶鋼深さをHとした場合に、下式を満足することを特徴とする連続鋳造装置。
2×H < L1+L2+L3 < 4×H
ここで、L1は連続鋳造用タンディッシュの底面における、溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁面から溶鋼の注入点の直下となる位置までの距離、L2は溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁の溶鋼に浸漬している長さ、L3は溶鋼の溶鋼面(浴面)における、溶鋼の注入ノズルの中心線から側壁面までの距離、Hは注入ノズルの中心線の位置における溶鋼深さ
4.更に、前記取鍋と前記連続鋳造用タンディッシュの位置関係と、前記連続鋳造用タンディッシュの形状寸法が下式を満たすことを特徴とする3記載の連続鋳造装置。
2×H < L4 < 4×H
ここで、L4は注入ノズルの中心線から溶鋼流出ノズルの中心線までの距離、Hは注入ノズルの中心線の位置における溶鋼深さ
2 × H <L4 <4 × H
Here, L4 is the distance from the center line of the injection nozzle to the center line of the molten steel outflow nozzle, and H is the depth of the molten steel at the position of the center line of the injection nozzle. A continuous casting apparatus comprising a ladle, a continuous casting tundish, a continuous casting mold, and a molten metal surface control device for controlling the molten metal surface height in the continuous casting tundish,
The positional relationship between the ladle and the continuous casting tundish, and the dimensional shape of the continuous casting tundish, when the molten steel depth at the molten steel injection point by the molten metal level control device is H, A continuous casting machine characterized by satisfaction.
2 × H <L1 + L2 + L3 <4 × H
Here, L1 is the distance from the side wall surface opposite to the molten steel outflow nozzle as viewed from the molten steel injection point on the bottom surface of the continuous casting tundish to the position directly below the molten steel injection point, and L2 is the molten steel injection The length immersed in the molten steel on the side wall opposite to the molten steel outflow nozzle as viewed from the point, L3 is the distance from the center line of the molten steel injection nozzle to the side wall surface on the molten steel surface (bath surface) of the molten steel, H Is the depth of molten steel at the center line of the injection nozzle. 4. The continuous casting apparatus according to 3, wherein a positional relationship between the ladle and the continuous casting tundish and a shape dimension of the continuous casting tundish satisfy the following expression.
2 × H <L4 <4 × H
Here, L4 is the distance from the center line of the injection nozzle to the center line of the molten steel outflow nozzle, and H is the depth of the molten steel at the position of the center line of the injection nozzle.

本発明によればタンディッシュ内流動を一様流れとして、介在物の浮上分離に必要な時間を確保することが可能なため、堰を多数設けることなく鋼中介在物が少なく清浄性に優れた連続鋳造スラブおよびそれを用いた各種鋼材が得られ、産業上極めて有用である。   According to the present invention, since the flow in the tundish is made uniform and the time required for the floating separation of inclusions can be secured, there are few inclusions in the steel and excellent cleanliness without providing many weirs. Continuously cast slabs and various steel materials using the same can be obtained and are extremely useful in industry.

本発明に係る連続鋳造方法における、取鍋の溶鋼注入ノズルと連続鋳造用タンディッシュの位置関係を説明する図。The figure explaining the positional relationship of the molten steel injection | pouring nozzle of a ladle and the tundish for continuous casting in the continuous casting method which concerns on this invention. 本発明による連続鋳造用タンディッシュ内の溶鋼の流れを示す模式図。The schematic diagram which shows the flow of the molten steel in the tundish for continuous casting by this invention. 比較例:連続鋳造用タンディッシュ内の溶鋼の流れを説明する模式図。Comparative example: Schematic explaining the flow of molten steel in the tundish for continuous casting. 比較例:連続鋳造用タンディッシュ内の溶鋼の流れを説明する模式図。Comparative example: Schematic explaining the flow of molten steel in the tundish for continuous casting. 本発明を彎曲した側壁を有する連続鋳造用タンディッシュに適用する場合の、側壁寸法を説明する模式図。The schematic diagram explaining the side wall dimension in the case of applying this invention to the tundish for continuous casting which has the curved side wall. 実施例(数値流体シミュレーション結果を示す図)。Example (a figure showing a numerical fluid simulation result).

本発明は、連続鋳造用タンディッシュに取鍋内から溶鋼を注入する注入ノズルと、前記連続鋳造用タンディッシュ内から鋳型へ溶鋼を供給する溶鋼流出ノズルの相対的位置関係を、連続鋳造用タンディッシュ内の溶鋼深さに関連して規定することを特徴とする。
以下、図面を参照して本発明を具体的に説明する。
The present invention relates to a relative positional relationship between an injection nozzle for injecting molten steel from a ladle into a continuous casting tundish and a molten steel outflow nozzle for supplying molten steel from the inside of the continuous casting tundish to a mold. It is specified in relation to the depth of molten steel in the dish.
Hereinafter, the present invention will be specifically described with reference to the drawings.

図1に本発明に係る連続鋳造方法における、取鍋の溶鋼注入ノズルと連続鋳造用タンディッシュの位置関係を示す。図において、1は連続鋳造用タンディッシュ、2は取鍋(図では省略)の注入ノズル、3は溶鋼流出ノズル、4は溶鋼、4aは溶鋼面(浴面)、5は溶鋼流出ノズルの中心線、6は注入ノズル2の中心線、11、12は連続鋳造用タンディッシュ1の側壁、11a、12aは側壁11、12の側壁面、13は連続鋳造用タンディッシュ1の底部、13aは底部13の底面、14は注入ノズル2の先端部における中心線6の位置で注入点、15は底面13aにおける溶鋼流出ノズル3の中心線5の位置で流出点、L1は連続鋳造用タンディッシュ1の底面13aにおける、溶鋼の注入点14から見て溶鋼流出ノズル3と反対側となる側壁面12aから溶鋼の注入点14の直下となる位置までの距離、L2は溶鋼の注入点14から見て溶鋼流出ノズル3と反対側となる側壁12の溶鋼4に浸漬している長さ、L3は溶鋼4の溶鋼面(浴面)4aにおける、溶鋼の注入ノズル2の中心線6から側壁面12aまでの距離、L4は注入ノズル2の中心線6から溶鋼流出ノズル3の中心線5までの距離(L4を溶鋼の注入点14と溶鋼の流出点15の水平距離という場合がある)、Hは注入ノズル2の中心線6の位置における溶鋼深さ(Hを溶鋼深さと言う場合がある)を示す。   FIG. 1 shows the positional relationship between a molten steel injection nozzle of a ladle and a tundish for continuous casting in the continuous casting method according to the present invention. In the figure, 1 is a tundish for continuous casting, 2 is an injection nozzle for a ladle (not shown), 3 is a molten steel outflow nozzle, 4 is molten steel, 4a is a molten steel surface (bath surface), and 5 is the center of the molten steel outflow nozzle. 6 is a center line of the injection nozzle 2, 11 and 12 are side walls of the tundish 1 for continuous casting, 11a and 12a are side walls of the side walls 11 and 12, 13 is a bottom of the tundish 1 for continuous casting, and 13a is a bottom. The bottom surface of 13, 14 is an injection point at the position of the center line 6 at the tip of the injection nozzle 2, 15 is the outflow point at the position of the center line 5 of the molten steel outflow nozzle 3 on the bottom surface 13 a, and L 1 is the tundish 1 for continuous casting. The distance from the side wall surface 12a on the bottom surface 13a opposite to the molten steel outflow nozzle 3 when viewed from the molten steel injection point 14 to the position directly below the molten steel injection point 14, L2 is the molten steel viewed from the molten steel injection point 14. Leaked nose L3 is the length immersed in the molten steel 4 of the side wall 12 opposite to the steel plate 3, L3 is the distance from the center line 6 of the molten steel injection nozzle 2 to the side wall surface 12a on the molten steel surface (bath surface) 4a of the molten steel 4 , L4 is a distance from the center line 6 of the injection nozzle 2 to the center line 5 of the molten steel outflow nozzle 3 (L4 may be referred to as a horizontal distance between the molten steel injection point 14 and the molten steel outflow point 15), and H is the injection nozzle 2 The molten steel depth at the position of the center line 6 (H may be referred to as molten steel depth) is shown.

本発明は、連続鋳造用タンディッシュ1に取鍋内から溶鋼4を一つの注入ノズル2で供給し、溶鋼4は、連続鋳造用タンディッシュ1から鋳型(図示しない)へ底面13aに設けた、一つの溶鋼流出ノズル3で供給する場合を対象とする。   In the present invention, molten steel 4 is supplied to the continuous casting tundish 1 from the ladle with one injection nozzle 2, and the molten steel 4 is provided on the bottom surface 13a from the continuous casting tundish 1 to a mold (not shown). The case where it supplies with one molten steel outflow nozzle 3 is made into object.

本発明では、注入ノズル2と溶鋼流出ノズル3の相対的位置関係を、注入ノズル2の中心線6における溶鋼深さHを用いて(1)式を満たすように規定する。注入ノズル2と溶鋼流出ノズル3の相対的位置関係は例えば連続鋳造用タンディッシュに対して取鍋を移動させて行うことで可能である。   In the present invention, the relative positional relationship between the injection nozzle 2 and the molten steel outflow nozzle 3 is defined using the molten steel depth H at the center line 6 of the injection nozzle 2 so as to satisfy the expression (1). The relative positional relationship between the injection nozzle 2 and the molten steel outflow nozzle 3 can be achieved, for example, by moving the ladle relative to the continuous casting tundish.

2×H < L1+L2+L3 < 4×H・・・(1)
ここで、L1:連続鋳造用タンディッシュの底面13aにおける、溶鋼の注入点14から見て溶鋼流出ノズル3と反対側となる側壁面12aから注入点14の直下となる位置bまでの距離、L2:溶鋼の注入点14から見て溶鋼の流出ノズル3と反対側となる側壁12の溶鋼に浸漬している長さ、L3は溶鋼4の溶鋼面(浴面)4aにおける、溶鋼の注入ノズル2の中心線6から側壁面12aまでの距離、Hは注入ノズル2の中心線6の位置における溶鋼深さを示す。注入ノズル2と溶鋼流出ノズル3の相対的位置関係の調整は、例えば、取鍋を連続鋳造用タンディッシュに対して移動させて行うことで可能である。
2 × H <L1 + L2 + L3 <4 × H (1)
Here, L1: distance from the side wall surface 12a opposite to the molten steel outflow nozzle 3 when viewed from the molten steel injection point 14 on the bottom surface 13a of the continuous casting tundish to the position b immediately below the injection point 14, L2. : The length immersed in the molten steel of the side wall 12 opposite to the molten steel outflow nozzle 3 when viewed from the molten steel injection point 14, L3 is the molten steel injection nozzle 2 on the molten steel surface (bath surface) 4a of the molten steel 4 The distance H from the center line 6 to the side wall surface 12a, H indicates the molten steel depth at the position of the center line 6 of the injection nozzle 2. Adjustment of the relative positional relationship between the injection nozzle 2 and the molten steel outflow nozzle 3 can be performed, for example, by moving the ladle with respect to the tundish for continuous casting.

図2は、本発明による、連続鋳造用タンディッシュ1の内部での溶鋼4の流れを示す模式図で、溶鋼の注入点14から連続鋳造用タンディッシュ1の内部に流入した溶鋼は主に2種類の経路7、8を通って溶鋼の流出ノズル3(溶鋼流出点15)へ流れる。   FIG. 2 is a schematic view showing the flow of the molten steel 4 in the continuous casting tundish 1 according to the present invention. The molten steel flowing into the continuous casting tundish 1 from the injection point 14 of the molten steel is mainly 2 in FIG. It flows to the molten steel spill nozzle 3 (molten steel spill point 15) through the kinds of paths 7 and 8.

経路7は直接、鋳型(図示しない)に向かってタンディッシュの底面13aに沿う流れ(底流れ)、経路8は側壁面12aで反転して浴面4aを通る流れ(反転流れ)である。本発明によれば、経路7(底流れ)と浴面を流れる経路8(反転流れ)とが同程度の強さとなり、タンディッシュ内の溶鋼流れは一様流れとなる。溶鋼流れが一様流れに近づくほど介在物は浮上分離されやすくなるので、タンディッシュ内の介在物の除去性能を向上することができる。   The path 7 is a flow (bottom flow) along the bottom surface 13a of the tundish directly toward the mold (not shown), and the path 8 is a flow (inverted flow) that reverses at the side wall surface 12a and passes through the bath surface 4a. According to the present invention, the path 7 (bottom flow) and the path 8 (reversal flow) flowing on the bath surface have the same strength, and the molten steel flow in the tundish becomes a uniform flow. Inclusions are more easily levitated and separated as the molten steel flow approaches a uniform flow, so that the removal performance of inclusions in the tundish can be improved.

経路8(反転流れ)は底面13a、側壁面12、浴面4aに沿って流れるので、L1+L2+L3の距離が大きくなるほど浴面流速が減衰して小さくなる。   Since the path 8 (reversal flow) flows along the bottom surface 13a, the side wall surface 12, and the bath surface 4a, the bath surface flow velocity attenuates and decreases as the distance of L1 + L2 + L3 increases.

L1+L2+L3の値がHの4倍以上の場合(図3)、タンディッシュ内の溶鋼流動分布は底面13aで強く浴面4aで弱い分布になり、タンディッシュ底部に短絡流が発生して介在物の浮上分離性が悪化する。
一方、L1+L2+L3の値がHの2倍以下の場合(図4)、反転流れがうまく形成されなくなり、注入点14から流入した溶鋼が全てタンディッシュ底を伝って流れ、タンディッシュ底に短絡流が発生して介在物の浮上分離特性が悪化する。
When the value of L1 + L2 + L3 is four times as large as H (FIG. 3), the molten steel flow distribution in the tundish is strong at the bottom surface 13a and weak at the bath surface 4a, and a short-circuit flow is generated at the bottom of the tundish, resulting in inclusions. Floatability is deteriorated.
On the other hand, when the value of L1 + L2 + L3 is less than twice H (FIG. 4), the reversal flow is not formed well, all the molten steel flowing from the injection point 14 flows along the tundish bottom, and a short-circuit flow is generated at the tundish bottom. Occurring and the floating separation characteristics of inclusions deteriorate.

更に、介在物の浮上分離性を向上させる場合、溶鋼の注入点14と溶鋼の流出点15の水平距離L4と溶鋼深さHは(2)式を満たすように設定することが好ましい。
2×H < L4 < 4×H・・・(2)
介在物の浮上分離は主に一様流れとなっている部分で起こるので、溶鋼の注入点14と溶鋼の流出点15の水平距離L4が深さHの2倍よりも小さいと介在物の浮上分離が不十分となり、介在物が鋳型へ流出する。一方、L4が大きいほど介在物の浮上分離が促進されるが、L4がHの4倍以上になると、L4を大きくしても介在物分離能力が変わらなくなる。また、L4を大きくすると、タンディッシュの浴面4aからの冷却が強くなって溶鋼4の温度が低下するので、温度低下による鋳片品質や加熱コストの悪化を考慮して、L4は深さHの4倍未満とすることが好ましい。
Furthermore, when improving the floating separation property of inclusions, the horizontal distance L4 and the molten steel depth H between the molten steel injection point 14 and the molten steel outflow point 15 are preferably set so as to satisfy the equation (2).
2 × H <L4 <4 × H (2)
Since the floating separation of inclusions occurs mainly in the part where the flow is uniform, if the horizontal distance L4 between the molten steel injection point 14 and the molten steel outflow point 15 is smaller than twice the depth H, the floating of the inclusions Separation becomes insufficient, and inclusions flow out into the mold. On the other hand, as L4 is larger, the floating separation of inclusions is promoted. However, when L4 is four times or more than H, inclusion separation ability does not change even if L4 is increased. Further, when L4 is increased, cooling from the tundish bath surface 4a is strengthened and the temperature of the molten steel 4 is decreased. Therefore, considering the deterioration of the slab quality and the heating cost due to the temperature decrease, L4 has a depth H. Is preferably less than 4 times.

以上の説明に用いた図において、連続鋳造用タンディッシュの側壁、底部はいずれも直線状であったが、溶鋼の注入点14から見て溶鋼の流出点15と反対側に位置する側壁12は必ずしも鉛直でなくてもよく、傾斜した側壁や、湾曲した側壁でもよい。側壁が湾曲している場合は、図5のように側壁の湾曲に沿った側壁面12aの長さをL2とする。底部の場合も同様にする。   In the drawings used for the above description, the side wall and bottom of the continuous casting tundish were both linear, but the side wall 12 located on the opposite side of the molten steel pouring point 15 from the molten steel pouring point 14 is It may not necessarily be vertical, and may be an inclined side wall or a curved side wall. When the sidewall is curved, the length of the sidewall surface 12a along the curvature of the sidewall is set to L2 as shown in FIG. The same applies to the bottom.

尚、相似な形状のタンディッシュ間では、溶鋼流動状態は同等になることが過去の実験やシミュレーションによる検討で判明しているので、本発明では最適なL1、L2、L3、L4の値を溶鋼の深さHに対する比で与えた。   In addition, since it has been clarified from past experiments and simulations that the molten steel flow state is the same between the tundish of similar shapes, in the present invention, the optimum values of L1, L2, L3, and L4 are set to the molten steel. Is given as a ratio to the depth H.

また、本発明による装置は、取鍋と連続鋳造用タンディッシュと連続鋳造用鋳型と前記連続鋳造用タンディッシュ内における湯面高さを制御する湯面制御装置を備えた連続鋳造装置であって、前記取鍋と前記連続鋳造用タンディッシュの位置関係と、前記連続鋳造用タンディッシュの寸法形状は、前記湯面制御装置による前記取鍋の注入ノズルの位置における溶鋼深さをHとした場合に、上記(1)式を満足することを特徴とする連続鋳造装置で、更に、前記取鍋と前記連続鋳造用タンディッシュの位置関係と、前記連続鋳造用タンディッシュの形状寸法が上記(2)式を満たす連続鋳造装置である。   The apparatus according to the present invention is a continuous casting apparatus provided with a ladle, a continuous casting tundish, a continuous casting mold, and a molten metal surface control device for controlling a molten metal surface height in the continuous casting tundish. The positional relationship between the ladle and the continuous casting tundish, and the dimensional shape of the continuous casting tundish, when the molten steel depth at the position of the pouring nozzle of the ladle by the molten metal surface control device is H Further, in the continuous casting apparatus satisfying the above formula (1), the positional relationship between the ladle and the continuous casting tundish and the shape dimension of the continuous casting tundish are the above (2). ) Is a continuous casting device that satisfies the formula.

本発明の効果を数値流体シミュレーションで検証した。シミュレーションは有限体積法を用い、乱流モデルにk−ε乱流モデルを用いた。またタンディッシュ壁面の境界条件は標準壁関数を用い、浴面はすべり壁条件を用いた。そしてシミュレーションで得られた流れ場に対して粒子追跡法を用い、溶鋼注入点から径50μmの介在物粒子を投入してその運動軌跡を計算した。浴面に到達した介在物粒子は消失するとして計算し、最終的に溶鋼流出ノズルから流出する介在物数をカウントすることで評価した。   The effect of the present invention was verified by numerical fluid simulation. The simulation used the finite volume method, and used the k-epsilon turbulence model for the turbulence model. The boundary condition of the tundish wall surface was a standard wall function, and the bath surface was a slip wall condition. Then, using the particle tracking method for the flow field obtained by the simulation, inclusion particles having a diameter of 50 μm were introduced from the molten steel injection point, and the motion trajectory was calculated. The inclusion particles that reached the bath surface were calculated to disappear, and the number of inclusions finally flowing out from the molten steel outflow nozzle was counted for evaluation.

タンディッシュは溶鋼容量が55トンで堰を使用しないとした。溶鋼の注入ノズルにおける溶鋼深さHは1250mmおよび950mmとした。表1に、シミュレーションモデル毎の、図1で規定した各部の寸法を示す。   Tundish has a molten steel capacity of 55 tons and does not use a weir. The molten steel depth H in the molten steel injection nozzle was 1250 mm and 950 mm. Table 1 shows the dimensions of each part defined in FIG. 1 for each simulation model.

Figure 0005673162
Figure 0005673162

図6に表1の各シミュレーションモデル毎の介在物流出数を示す。介在物流出数を実施例1における介在物流出数を1とした指数で表している。   FIG. 6 shows the number of inclusion outflows for each simulation model in Table 1. The number of inclusion outflows is represented by an index where the number of inclusion outflows in Example 1 is 1.

実施例1、2、3、7、8、9、10、11は(1)、(2)式の両者を満たす場合で、比較例4は(1)式を満たさない条件、すなわち側壁の位置を変えてL1+L2+L3の値を(1)式の下限よりも小さくした条件、比較例5は、(1)式の上限よりも大きくした条件である。比較例6は(1)式のみを満たし(2)式は満たさない条件、L1+L2+L3は適正な値であり、L4のみが(2)式の下限より小さい場合である。比較例12は、L1+L2+L3は適正な値であり、L4のみが(2)式の上限より大きい場合である。   Examples 1, 2, 3, 7, 8, 9, 10, and 11 are cases where both of the expressions (1) and (2) are satisfied, and Comparative Example 4 is a condition that does not satisfy the expression (1), that is, the position of the side wall. And the value of L1 + L2 + L3 is made smaller than the lower limit of the expression (1), and Comparative Example 5 is a condition made larger than the upper limit of the expression (1). Comparative Example 6 is a condition in which only Expression (1) is satisfied and Expression (2) is not satisfied, L1 + L2 + L3 is an appropriate value, and only L4 is smaller than the lower limit of Expression (2). In Comparative Example 12, L1 + L2 + L3 is an appropriate value, and only L4 is larger than the upper limit of the expression (2).

図6より実施例1,2,3、7,8,9,10,11は比較例4,5に対して1/2から1/3程度まで介在物流出が減っていることが分かる。比較例6は比較例4、5に対して介在物流出指数を低減できているが、実施例1、2、3ではさらに優れた介在物流出特性を示していることが確認された。以上より、本発明例で介在物の浮上分離特性が向上していることが確認できた。また、比較例12はL4を本発明の範囲よりさらに大きくした条件であり、実施例と同等の介在物指数の減少を示しているが、介在物指数は本発明の実施例7,9と同程度である。L4を本発明の範囲よりも大きくしても更なる介在物除去効果は得られておらず、一方鋼温度低下防止の観点からはL4を小さくしたほうが好ましいので、L4は本発明の範囲内とすることが最良である。   6 that Examples 1, 2, 3, 7, 8, 9, 10, and 11 show that the outflow of inclusions is reduced from about 1/2 to about 1/3 of Comparative Examples 4 and 5. Although Comparative Example 6 was able to reduce the inclusion outflow index compared to Comparative Examples 4 and 5, it was confirmed that Examples 1, 2, and 3 showed even better inclusion outflow characteristics. From the above, it was confirmed that the floating separation characteristics of inclusions were improved in the inventive examples. Further, Comparative Example 12 is a condition in which L4 is further increased from the range of the present invention, and shows a decrease in inclusion index equivalent to that of the Example, but the inclusion index is the same as that of Examples 7 and 9 of the present invention. Degree. Even if L4 is made larger than the range of the present invention, no further inclusion removal effect is obtained. On the other hand, it is preferable to make L4 smaller from the viewpoint of preventing the steel temperature from falling, so L4 is within the range of the present invention. It is best to do.

1 連続鋳造用タンディッシュ
2 注入ノズル
3 溶鋼流出ノズル
4 溶鋼
4a 溶鋼面(浴面)
5、6 中心線
7、8 経路
9 溶鋼の流動分布
11、12 側壁
11a、12a 側壁面
13 底部
13a 底面
14 注入点
15 流出点
1 Tundish for continuous casting 2 Injection nozzle 3 Molten steel outflow nozzle 4 Molten steel 4a Molten steel surface (bath surface)
5, 6 Center lines 7, 8 Path 9 Flow distribution of molten steel 11, 12 Side wall 11a, 12a Side wall surface 13 Bottom portion 13a Bottom surface 14 Injection point 15 Outflow point

Claims (2)

連続鋳造用タンディッシュに取鍋内から溶鋼を一つの注入ノズルで供給し、前記連続鋳造用タンディッシュ内から鋳型へ溶鋼を一つの溶鋼流出ノズルで供給する連続鋳造方法であって、前記連続鋳造用タンディッシュ内における、前記取鍋内から溶鋼を注入する前記注入ノズルの溶鋼注入点の設定位置と、前記溶鋼注入点における溶鋼深さが下記の(1)式を満たし、更に、前記溶鋼注入点と前記溶鋼流出点との間の水平距離が下記の(2′)式を満たすように、前記取鍋の注入ノズルと前記連続鋳造用タンディッシュの相対位置と、連続鋳造用タンディッシュ内における溶鋼量と、を制御することを特徴とする連続鋳造方法。
2×H<L1+L2+L3<4×H・・・(1)
3.0×H≦L4<4×H・・・(2′)
但し、(1)式及び(2′)式において、L1は連続鋳造用タンディッシュの底面における、溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁面から溶鋼の注入点の直下となる位置までの距離、L2は溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁の溶鋼に浸漬している長さ、L3は溶鋼の溶鋼面(浴面)における、溶鋼の注入ノズルの中心線から溶鋼流出ノズルと反対側となる側壁面までの距離、L4は注入ノズルの中心線から溶鋼流出ノズルの中心線までの距離、Hは注入ノズルの中心線の位置における溶鋼深さである。
A continuous casting method for supplying molten steel from a ladle to a continuous casting tundish with a single injection nozzle and supplying molten steel from the continuous casting tundish to a mold with a single molten steel discharge nozzle, the continuous casting in use Tan in the dish, and setting the position of the molten steel injection point of the injection nozzle for injecting molten steel from the ladle, the molten steel depth in the molten steel injection point is less than the lower Symbol of (1), further, horizontal distance is Suyo meet (2 ') below, the injection nozzle of the ladle and the relative position between the continuous casting tundish, continuous casting between the molten steel outflow point and the molten steel injection point continuous casting method and controlling the a molten steel quantity in use tan the dish.
2 × H <L1 + L2 + L3 <4 × H (1)
3.0 × H ≦ L4 <4 × H (2 ′)
However, in the formulas (1) and (2 ′) , L1 is a bottom surface of the tundish for continuous casting, directly below the molten steel injection point from the side wall surface opposite to the molten steel outflow nozzle as viewed from the molten steel injection point. L2 is the length immersed in the molten steel on the side wall opposite to the molten steel outflow nozzle when viewed from the molten steel injection point, L3 is the molten steel injection nozzle on the molten steel surface (bath surface) of the molten steel distance from the centerline to the sidewall surface on the opposite side of the molten steel flow nozzle, L4 is the distance from the center line of the injection nozzle to the center line of the molten steel flow nozzle, H is in the molten steel depth at the position of the center line of the injection nozzle is there.
取鍋と連続鋳造用タンディッシュと連続鋳造用鋳型と前記連続鋳造用タンディッシュ内における湯面高さを制御する湯面制御装置を備えた連続鋳造装置であって、
前記取鍋と前記連続鋳造用タンディッシュの位置関係と、前記連続鋳造用タンディッシュの寸法形状とが、前記湯面制御装置による前記溶鋼注入点における溶鋼深さをHとした場合に、下記の(1)式及び下記の(2′)式を満足することを特徴とする連続鋳造装置。
2×H<L1+L2+L3<4×H・・・(1)
3.0×H≦L4<4×H・・・(2′)
但し、(1)式及び(2′)式において、L1は連続鋳造用タンディッシュの底面における、溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁面から溶鋼の注入点の直下となる位置までの距離、L2は溶鋼の注入点から見て溶鋼流出ノズルと反対側となる側壁の溶鋼に浸漬している長さ、L3は溶鋼の溶鋼面(浴面)における、溶鋼の注入ノズルの中心線から溶鋼流出ノズルと反対側となる側壁面までの距離、L4は注入ノズルの中心線から溶鋼流出ノズルの中心線までの距離、Hは注入ノズルの中心線の位置における溶鋼深さである。
A continuous casting apparatus comprising a molten metal surface control device for controlling the melt-surface height ladle and a continuous casting tundish and the continuous casting mold in the continuous casting Tan in the dish,
The positional relationship between the ladle and the continuous casting tundish, the size and shape of the tundish for continuous casting, molten steel depth in the molten steel injection point by the melt-surface control device when a H, lower A continuous casting apparatus satisfying the following formula (1) and the following formula (2 ′) .
2 × H <L1 + L2 + L3 <4 × H (1)
3.0 × H ≦ L4 <4 × H (2 ′)
However, in the formulas (1) and (2 ′) , L1 is a bottom surface of the tundish for continuous casting, directly below the molten steel injection point from the side wall surface opposite to the molten steel outflow nozzle as viewed from the molten steel injection point. L2 is the length immersed in the molten steel on the side wall opposite to the molten steel outflow nozzle when viewed from the molten steel injection point, L3 is the molten steel injection nozzle on the molten steel surface (bath surface) of the molten steel distance from the centerline to the sidewall surface on the opposite side of the molten steel flow nozzle, L4 is the distance from the center line of the injection nozzle to the center line of the molten steel flow nozzle, H is in the molten steel depth at the position of the center line of the injection nozzle is there.
JP2011022267A 2010-04-26 2011-02-04 Continuous casting method and continuous casting apparatus Active JP5673162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011022267A JP5673162B2 (en) 2010-04-26 2011-02-04 Continuous casting method and continuous casting apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010100442 2010-04-26
JP2010100442 2010-04-26
JP2011022267A JP5673162B2 (en) 2010-04-26 2011-02-04 Continuous casting method and continuous casting apparatus

Publications (2)

Publication Number Publication Date
JP2011245550A JP2011245550A (en) 2011-12-08
JP5673162B2 true JP5673162B2 (en) 2015-02-18

Family

ID=45411450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022267A Active JP5673162B2 (en) 2010-04-26 2011-02-04 Continuous casting method and continuous casting apparatus

Country Status (1)

Country Link
JP (1) JP5673162B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167862B2 (en) * 2013-11-08 2017-07-26 新日鐵住金株式会社 Molten metal cleaning method and molten metal cleaning apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193056A (en) * 1997-01-07 1998-07-28 Nkk Corp Method for removing inclusion in continuous casting tundish

Also Published As

Publication number Publication date
JP2011245550A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5807719B2 (en) High cleanliness steel slab manufacturing method and tundish
CN103781572A (en) Continuous casting device for steel
JP4714539B2 (en) Tundish for continuous casting
JP4271551B2 (en) Continuous casting equipment for high cleanliness steel by tundish
JP2006150434A (en) Continuous casting method
CN108025352B (en) Immersion nozzle
JP5673162B2 (en) Continuous casting method and continuous casting apparatus
JP2006346688A (en) Long nozzle with swing flow
JP2017177178A (en) Tundish for continuous casting, and continuous casting method using the tundish
JP5867531B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP2011143449A (en) Method for removing inclusion in tundish for continuous casting
JP5751078B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5556465B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP2006239746A (en) Tundish for continuous casting of steel
JP5206591B2 (en) Tundish for continuous casting
JP2008087065A (en) Tundish for continuous casting
JP4998705B2 (en) Steel continuous casting method
JP2008254028A (en) Tundish for continuous casting
JP5206584B2 (en) Tundish for continuous casting and continuous casting method
JP6527069B2 (en) Operating method of intermediate container for molten steel
JP6668568B2 (en) Tundish for continuous casting and continuous casting method using the tundish
JP5053226B2 (en) Tundish for continuous casting
JP2008132504A (en) Tundish for continuous casting
KR101981455B1 (en) Processing apparatus for molten material
EP3725430A1 (en) Molten material processing device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250