JP2006150434A - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP2006150434A
JP2006150434A JP2004348779A JP2004348779A JP2006150434A JP 2006150434 A JP2006150434 A JP 2006150434A JP 2004348779 A JP2004348779 A JP 2004348779A JP 2004348779 A JP2004348779 A JP 2004348779A JP 2006150434 A JP2006150434 A JP 2006150434A
Authority
JP
Japan
Prior art keywords
immersion nozzle
discharge
discharge hole
mold
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348779A
Other languages
Japanese (ja)
Inventor
Yuichi Tsukaguchi
友一 塚口
Koji Takatani
幸司 高谷
Hiroshi Hayashi
浩史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004348779A priority Critical patent/JP2006150434A/en
Publication of JP2006150434A publication Critical patent/JP2006150434A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the surface defect, such as brake-out, cracking, without lowering casting speed, even in the case of deviating an immersion nozzle to one side of a short sides. <P>SOLUTION: A continuous casting method is performed in a such way that the immersion nozzle 1 setting one pair of spouting holes 2 facingly disposed on the sidewalls near the bottom part toward the short side direction of a mold 6 is set so as to be deviated to one side of the short sides. Molten steel 7 is supplied into the mold 4 by using the immersion nozzle 1, in which the recession 3 having 10-45mm depth d is formed on the inner surface of the bottom part and the respective spouting holes 3 having the rectangular shape at longer width length with 0.5-0.8 H/W ratio of the height and the width, dividing the outlet height H with the outlet width W on the outer peripheral surface of the immersion nozzle 1 are arranged, and in the case of observing the position containing the spouting holes 2 in the immersion nozzle 1 with the vertical cross-sectional plane, an average downward angle α1 of the upper wall 2a in the spouting hole is larger than an average downward angle α2 of the lower wall 2b in the spouting hole. This immersion nozzle can soundly improve the growth of the short side solidified shell at the narrow width side, even in the case of deviating the immersion nozzle to one side of the short sides. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、浸漬ノズルを用いた鋼スラブの連続鋳造に際し、設備上の都合により浸漬ノズルが鋳型幅中央よりも一方の短辺側に偏って設置されている場合に適した連続鋳造方法に関するものである。   The present invention relates to a continuous casting method suitable for continuous casting of a steel slab using an immersion nozzle, when the immersion nozzle is installed on one short side from the mold width center for convenience of equipment. It is.

スラブの連続鋳造では、浸漬ノズルを鋳型幅方向中央に設置し、鋳型内流動を鋳型の幅方向で対称に形成することが、健全な鋳型内凝固シェルの成長にとって好ましい。その理由は、浸漬ノズルが一方の鋳型短辺寄りに偏って設置されると、浸漬ノズルと短辺間の狭い側(以下、「狭幅側」と言う。)において、鋳型短辺凝固シェルへの吐出流の衝突速度が高まり、凝固シェルの健全な形成が阻害される結果、凝固シェルの再溶解によるブレークアウトや、割れ性の表面欠陥が引き起こされ易くなるからである。   In continuous casting of a slab, it is preferable for the growth of a solidified shell in a mold that a dip nozzle is installed at the center in the mold width direction and the flow in the mold is formed symmetrically in the mold width direction. The reason for this is that when the immersion nozzle is installed close to one mold short side, the mold short side solidified shell is formed on the narrow side between the immersion nozzle and the short side (hereinafter referred to as “narrow side”). This is because the collision speed of the discharge flow increases and the solid formation of the solidified shell is hindered, and as a result, breakout due to remelting of the solidified shell and cracking surface defects are likely to occur.

しかしながら、設備上の制約により、浸漬ノズルを鋳型の幅方向中央に設置できない場合がある。そのような場合には、上記問題を解消するために、鋳造速度を低下させざるを得ないという問題があった。   However, due to equipment limitations, the immersion nozzle may not be installed in the center of the mold in the width direction. In such a case, there was a problem that the casting speed had to be reduced in order to solve the above problem.

ここで言う、設備上の制約で、浸漬ノズルを鋳型の幅中央に設置できない場合とは、例えば、以下のような場合である。
1)広幅鋳型の幅中央に中仕切短辺を挿入して、二つの鋳型が隣接した形態となした、いわゆるツインキャスティングにおいて、当初の鋳造では、各鋳型の幅中央に浸漬ノズルを配置できるが、たとえば片側または両方の外側の短辺を移動して鋳型幅を変更した場合。この場合は、浸漬ノズルと中仕切短辺との間隔が固定されているために、外側の短辺を移動させた方の鋳型では、浸漬ノズルを鋳型の幅中央に設置できなくなる。
特公平1−54148号公報
The case where the immersion nozzle cannot be installed in the center of the width of the mold due to the restrictions on the equipment is, for example, the following case.
1) In the so-called twin casting in which the short side of the partition is inserted in the center of the width of the wide mold and the two molds are adjacent to each other, in the initial casting, an immersion nozzle can be arranged in the center of the width of each mold. For example, if you change the mold width by moving the short side on one or both sides. In this case, since the distance between the immersion nozzle and the short side of the partition is fixed, the immersion nozzle cannot be installed at the center of the width of the mold in which the outer short side is moved.
Japanese Examined Patent Publication No. 1-54148

2)タンディッシュの底部に設けられたスライディングゲートが、上固定盤と下スライダーからなる2枚プレート式で、下スライダーの摺動方向が鋳型幅方向である場合。この場合は、下スライダーの開閉動作に伴い、スライダーに取り付けられた浸漬ノズルが鋳型幅方向に移動するために、浸漬ノズルを鋳型の幅中央に設置できなくなる。 2) When the sliding gate provided at the bottom of the tundish is a two-plate type consisting of an upper fixed platen and a lower slider, and the sliding direction of the lower slider is the mold width direction. In this case, the immersion nozzle attached to the slider moves in the mold width direction in accordance with the opening / closing operation of the lower slider, so that the immersion nozzle cannot be installed at the center of the mold width.

本発明が解決しようとする問題点は、従来、設備上の制約で、浸漬ノズルを鋳型の幅中央に設置できない場合には、ブレークアウトや、割れ性の表面欠陥を防止するためには、鋳造速度を低下させざるを得なかったという点である。   The problem to be solved by the present invention is that, conventionally, when the immersion nozzle cannot be installed at the center of the mold width due to equipment limitations, in order to prevent breakout and cracking surface defects, casting The point was that we had to reduce the speed.

本発明の連続鋳造方法は、
設備上の制約で、浸漬ノズルを鋳型の幅中央に設置できない場合にも、鋳造速度を低下することなく、ブレークアウトや、割れ性の表面欠陥を防止するために、
底部近傍側壁に対向配置した一対の吐出孔を、鋳型短辺方向に向けて設置した浸漬ノズルが、鋳型幅中央よりも一方の短辺寄りの位置に偏って設置された場合における連続鋳造方法であって、
深さが10mm〜45mmの窪みを底部内面に形成し、
前記吐出孔は、
前記浸漬ノズルの外周面における出口高さを出口幅で除した縦横比が0.5〜0.8の横長の矩形状で、
前記浸漬ノズルの吐出孔を含む位置を縦断面して見た場合に、吐出孔上壁の平均下向角度が吐出孔下壁の平均下向角度よりも大きくなした、
浸漬ノズルを使用して鋳型内に溶鋼を供給することを最も主要な特徴としている。
The continuous casting method of the present invention comprises:
In order to prevent breakout and cracking surface defects without lowering the casting speed even when the immersion nozzle cannot be installed in the center of the mold width due to equipment restrictions,
In the continuous casting method when the immersion nozzle in which the pair of discharge holes arranged facing the side wall in the vicinity of the bottom portion is installed toward the short side of the mold is disposed at a position closer to one short side than the center of the mold width. There,
Forming a recess having a depth of 10 mm to 45 mm on the inner surface of the bottom,
The discharge hole is
A laterally long rectangular shape with an aspect ratio of 0.5 to 0.8 obtained by dividing the outlet height on the outer peripheral surface of the immersion nozzle by the outlet width,
When the vertical position of the position including the discharge hole of the immersion nozzle is viewed, the average downward angle of the discharge hole upper wall is larger than the average downward angle of the discharge hole lower wall.
The main feature is to supply molten steel into the mold using an immersion nozzle.

本発明によれば、吐出孔形状を適正になすことで、狭幅側の吐出孔からの吐出流量が、浸漬ノズルと短辺間の広い側(以下、「広幅側」と言う。)の吐出孔からの吐出流量に比べて増大するという問題を解決でき、設備上の制約によって浸漬ノズルを鋳型幅方向中央に設置できない場合にも、狭幅側における短辺凝固シェルの健全な成長が図れ、鋳造速度を低下しなくても、ブレークアウトや、割れ性の表面欠陥の発生を防止できる。   According to the present invention, by appropriately forming the discharge hole shape, the discharge flow rate from the discharge hole on the narrow side is discharged on the wide side (hereinafter referred to as “wide side”) between the immersion nozzle and the short side. Can solve the problem of increasing compared to the discharge flow rate from the hole, and even when the immersion nozzle cannot be installed in the center of the mold width direction due to equipment restrictions, the solid growth of the short-side solidified shell on the narrow side can be achieved, Even if the casting speed is not reduced, breakout and the occurrence of cracking surface defects can be prevented.

以下、本発明を実施するための最良の形態について、発明成立に至るまでの過程と共に添付図面を用いて詳細に説明する。
本発明者等は、浸漬ノズルが鋳型幅中央よりも一方の短辺側に偏って設置されている場合の鋳型内流動について、フルスケールの水モデル実験および計算機を用いたシミュレーションによって検討した。その結果、浸漬ノズルが一方の短辺側に偏っていることに起因する二つの問題があることを見出した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings along with the processes leading to the establishment of the invention.
The present inventors examined the flow in the mold in the case where the immersion nozzle is installed so as to be biased to one short side with respect to the mold width center by a full-scale water model experiment and a simulation using a computer. As a result, it has been found that there are two problems caused by the immersion nozzle being biased toward one short side.

第1の問題は、容易に想像されるように、狭幅側では、鋳型短辺近傍において形成する浸漬ノズルから鋳型短辺に向かう吐出流の水平方向流速が大きく、短辺凝固シェルの再溶解が生じ易いことである。   As can be easily imagined, the first problem is that on the narrow side, the horizontal flow velocity of the discharge flow from the immersion nozzle formed in the vicinity of the mold short side to the mold short side is large, and the short side solidified shell is remelted. Is likely to occur.

第2の問題は、浸漬ノズルの吐出孔形状が不適切な場合には、狭幅側の吐出孔からの吐出流量が、広幅側の吐出孔からの吐出流量に比べて増大し、前記第1の問題を助長することである。この第2の問題が生じる原因は解明されていないが、狭幅側においては高流速の短辺反転循環流が生じ、この高速循環流が吐出流を吸い出す現象が生じているためと考えられる。   The second problem is that when the shape of the discharge hole of the submerged nozzle is inappropriate, the discharge flow rate from the discharge port on the narrow side increases compared to the discharge flow rate from the discharge port on the wide side. It is to help the problem. The cause of the occurrence of the second problem has not been clarified, but it is considered that a short-side reversal circulation flow having a high flow velocity occurs on the narrow width side, and this high-speed circulation flow causes a phenomenon of sucking out the discharge flow.

本発明者等は、これら二つの問題の内、特に第2の問題に着目し、この解消に取り組んだ。その結果、浸漬ノズルの特に吐出孔形状を適正になせば、狭幅側の吐出孔からの吐出流量が、広幅側の吐出孔からの吐出流量に比べて増大するという現象を効果的に抑制できることを見出した。さらに、非対称な静磁場印加を組み合わせることによって、第1の問題も合わせて解決できることを見出し、本発明を成すに至った。   The inventors of the present invention focused on the second problem among these two problems and worked to solve this problem. As a result, the phenomenon that the discharge flow rate from the discharge port on the narrow side increases compared to the discharge flow rate from the discharge port on the wide side can be effectively suppressed if the shape of the discharge hole of the immersion nozzle is made appropriate. I found. Furthermore, the present inventors have found that the first problem can be solved by combining asymmetrical static magnetic field application, and have achieved the present invention.

つまり、本発明者等は、狭幅側の吐出孔からの吐出流量が、広幅側の吐出孔からの吐出流量に比べて増大するという現象が生じる条件について実験およびシミュレーションを重ねて検討した結果、吐出孔全面から有効な吐出が行われず、吐出孔上部などに吐出流速が小さいか、あるいは、吸い込み流となる領域が存在する場合に、上記現象が顕著に生じることを知見した。   In other words, the present inventors have conducted experiments and simulations as a result of examining the conditions that cause the phenomenon that the discharge flow rate from the discharge port on the narrow side increases compared to the discharge flow rate from the discharge port on the wide side, It has been found that the above phenomenon remarkably occurs when effective discharge is not performed from the entire surface of the discharge hole and the discharge flow velocity is low or the region where the suction flow is present in the upper part of the discharge hole.

かかる知見より、狭幅側の吐出孔からの吐出流量が、広幅側の吐出孔からの吐出流量に比べて増大するという現象を防止するには、吐出孔全面から有効な吐出が行われるような形状に設計すれば良いことが判明した。   From such knowledge, in order to prevent the phenomenon that the discharge flow rate from the discharge port on the narrow side increases compared to the discharge flow rate from the discharge port on the wide side, effective discharge is performed from the entire discharge hole. It turned out that it should just design to a shape.

一般に、浸漬ノズル内の流れは、本体部分が円筒状の浸漬ノズル内を下降する流れがノズル底部に衝突して水平方向の速度ベクトルを与えられる流れである。そのような流れの特性として、吐出流速はノズル底部に近いほど大きく、ノズル底部から上方に離れるほど小さくなる。また、吐出角度はノズル底部に近いほど小さく(水平方向速度ベクトルが大きく)、ノズル底部から上方に離れるほど大きく(水平方向速度ベクトルが小さく)なる。   In general, the flow in the submerged nozzle is a flow in which the main body portion descends through the cylindrical submerged nozzle and collides with the nozzle bottom to give a horizontal velocity vector. As a characteristic of such a flow, the discharge flow velocity increases as it approaches the nozzle bottom, and decreases as it moves away from the nozzle bottom. Further, the discharge angle becomes smaller as the nozzle bottom is closer (the horizontal velocity vector is larger), and becomes larger as the distance from the nozzle bottom is higher (the horizontal velocity vector is smaller).

このような特性ゆえに、吐出孔が正方形あるいは縦長の形状であると、吐出孔上部の流速が低下し、場合によっては吸い込み領域が生じる傾向にあり、吐出孔全面から有効な吐出が行われる状態とはなり難い。   Because of these characteristics, if the discharge holes are square or vertically long, the flow velocity at the top of the discharge holes tends to decrease, and in some cases, a suction region tends to occur, and effective discharge is performed from the entire surface of the discharge holes. It's hard to fall.

浸漬ノズル内流動が前記の特性を有することを考慮し、吐出孔上部の流速低減を防止するには、以下の3条件を同時に満たす必要があることを本発明者等は見出した。
第1は、図1〜図3の(a)図に示したように、浸漬ノズル1の外周面における吐出孔2を、その出口高さHを出口幅Wで除した縦横比H/Wが0.5〜0.8の横長の矩形状となすことである。これは、吐出流が集中するノズル底近傍に吐出孔2を開孔するという手法である。
In consideration of the fact that the flow in the immersion nozzle has the above-mentioned characteristics, the present inventors have found that the following three conditions must be satisfied at the same time in order to prevent a reduction in the flow velocity at the upper portion of the discharge hole.
First, as shown in FIG. 1 to FIG. 3A, the aspect ratio H / W of the discharge hole 2 on the outer peripheral surface of the immersion nozzle 1 divided by the outlet height H is divided by the outlet width W. This is to form a horizontally long rectangular shape of 0.5 to 0.8. This is a method of opening the discharge hole 2 near the nozzle bottom where the discharge flow is concentrated.

第2は、浸漬ノズル1の底部内面に深さdが10〜45mmのたとえば滝壷状の窪み3を設けることである。これは、窪み3から跳ね上がる流れを形成し、吐出孔2の上部への流れの分配を高めるという手法である。   The second is to provide, for example, a waterfall-shaped depression 3 having a depth d of 10 to 45 mm on the inner surface of the bottom of the immersion nozzle 1. This is a method of forming a flow that jumps up from the recess 3 and enhancing the distribution of the flow to the upper part of the discharge hole 2.

この窪み3は、深さdが10mm未満であるとその効果が低減する一方、45mmを超えると跳ね上がり流が弱まると共に浸漬ノズル1が不必要に長くなって操業性が悪化する。   When the depth d is less than 10 mm, the effect of the recess 3 is reduced. On the other hand, when the depth d exceeds 45 mm, the jumping flow is weakened and the immersion nozzle 1 becomes unnecessarily long and the operability is deteriorated.

第3は、図1〜図3の(b)図のように、吐出孔2を含む位置を縦断面して見た場合に、吐出孔2の上壁2aの平均下向角度α1を吐出孔2の下壁2bの平均下向角度α2よりも大きく形成し、吐出孔2の出口に向かって吐出孔2の面積を絞ることである。   Third, as shown in FIGS. 1 to 3B, when the position including the discharge hole 2 is viewed in a longitudinal section, the average downward angle α1 of the upper wall 2a of the discharge hole 2 is set to the discharge hole. 2 is formed to be larger than the average downward angle α2 of the lower wall 2b, and the area of the discharge hole 2 is reduced toward the outlet of the discharge hole 2.

これは、前記ノズル内流動の特性に倣った形状に吐出孔2の上下壁2a,2bを形成することにより、吐出流が吐出孔2の上下壁2a,2bから剥離することを防止する手法である。   This is a method for preventing the discharge flow from being separated from the upper and lower walls 2a and 2b of the discharge hole 2 by forming the upper and lower walls 2a and 2b of the discharge hole 2 in a shape following the characteristics of the flow in the nozzle. is there.

すなわち、浸漬ノズル1の底部近傍では吐出流の下向き角度が小さいので、それに倣って吐出孔2の下壁2bは下向き角度を小さくする一方、浸漬ノズル1の底部から離れると吐出流の下向き角度が大きくなるので、それに倣って吐出孔2の上壁2aは下向き角度を大きくするのである。   That is, since the downward angle of the discharge flow is small in the vicinity of the bottom of the immersion nozzle 1, the lower wall 2b of the discharge hole 2 decreases the downward angle accordingly, while the downward angle of the discharge flow decreases as it moves away from the bottom of the immersion nozzle 1. Accordingly, the upper wall 2a of the discharge hole 2 increases the downward angle accordingly.

同時に、吐出孔2の上壁2aと下壁2bとの平均下向き角度α1,α2を前記のようになし、吐出孔2の出口に向かって吐出孔2の面積を絞ることによって、吐出孔2の出口における流速分布を均等化する手法でもある。なお、吐出孔2の上壁2aあるいは下壁2bが湾曲状など直線状でない場合は、その傾きの平均値を求めて壁の角度とする。   At the same time, the average downward angle α1, α2 between the upper wall 2a and the lower wall 2b of the discharge hole 2 is formed as described above, and the area of the discharge hole 2 is reduced toward the outlet of the discharge hole 2, thereby It is also a technique for equalizing the flow velocity distribution at the outlet. In addition, when the upper wall 2a or the lower wall 2b of the discharge hole 2 is not linear, such as a curved shape, the average value of the inclination is obtained as the wall angle.

すなわち、本発明者等は前記のように検討を重ねた結果、浸漬ノズル2の外周面における吐出孔2の出口高さHを出口幅Wで除した縦横比H/Wが0.5〜0.8の横長の矩形状とし、浸漬ノズル2の底部内面に深さdが10mm〜45mmの窪み3を設けると共に、吐出孔2を含む位置を縦断面して見た場合に、吐出孔2の上壁2aの平均下向角度α1を吐出孔2の下壁2bの平均下向角度α2よりも大きくすれば、吐出孔2に吸い込み域が生じ難く、吐出流速の均等性が高まることを見出したのである。   That is, as a result of repeated studies as described above, the present inventors have an aspect ratio H / W of 0.5 to 0 obtained by dividing the outlet height H of the discharge hole 2 on the outer peripheral surface of the immersion nozzle 2 by the outlet width W. .8 in the shape of a horizontally long rectangle, and a recess 3 having a depth d of 10 mm to 45 mm is provided on the inner surface of the bottom of the immersion nozzle 2 and the position including the discharge hole 2 is viewed in a longitudinal section. It has been found that if the average downward angle α1 of the upper wall 2a is made larger than the average downward angle α2 of the lower wall 2b of the discharge hole 2, a suction area is hardly generated in the discharge hole 2 and the uniformity of the discharge flow rate is improved. It is.

本発明の連続鋳造方法は、前述の知見を基になされたものであり、
図5に示すように、底部近傍側壁に対向配置した一対の吐出孔2を、鋳型6の短辺方向に向けて設置した浸漬ノズル1が、鋳型6の幅中央よりも一方の短辺寄りの位置に偏って設置された場合における連続鋳造方法であって、
深さdが10mm〜45mmの窪み3を底部内面に形成し、
前記吐出孔2は、
前記浸漬ノズル1の外周面における出口高さHを出口幅Wで除した縦横比H/Wが0.5〜0.8の横長の矩形状で、
前記浸漬ノズル1の吐出孔2を含む位置を縦断面して見た場合に、吐出孔2の上壁2aの平均下向角度α1が吐出孔2の下壁2bの平均下向角度α2よりも大きくなした、
図1に示すような浸漬ノズルを1使用して鋳型6内に溶鋼7を供給するものである。
The continuous casting method of the present invention is based on the aforementioned knowledge,
As shown in FIG. 5, the immersion nozzle 1 in which a pair of discharge holes 2 arranged opposite to the side wall near the bottom portion is installed in the short side direction of the mold 6 is closer to one short side than the center of the width of the mold 6. A continuous casting method in the case of being biased to a position,
Forming a recess 3 having a depth d of 10 mm to 45 mm on the inner surface of the bottom;
The discharge hole 2 is
A horizontal rectangular shape with an aspect ratio H / W of 0.5 to 0.8 obtained by dividing the outlet height H on the outer peripheral surface of the immersion nozzle 1 by the outlet width W,
When the position including the discharge hole 2 of the immersion nozzle 1 is viewed in a longitudinal section, the average downward angle α1 of the upper wall 2a of the discharge hole 2 is larger than the average downward angle α2 of the lower wall 2b of the discharge hole 2. Big,
The molten steel 7 is supplied into the mold 6 by using one immersion nozzle as shown in FIG.

前記の本発明の連続鋳造方法において、吐出孔2の上壁2aの平均下向角度α1を吐出孔2の下壁2bの平均下向角度α2よりも大きくなすという、吐出孔2の上下壁2a,2bからの吐出流の剥離を防止する手法をより理想的に実現するには、浸漬ノズル1の吐出孔2を含む位置を縦断面して見た場合に、図2,3に示すように、吐出孔2の上壁2aのうちの浸漬ノズル1の内周面側を、その半径Rが30mm〜180mmの円弧状に成形することが望ましい。このようにすることで、吐出孔2の上壁2aからの吐出流の剥離がより効果的に抑制され、吐出流速が均一に近づくことになる。   In the continuous casting method of the present invention, the upper and lower walls 2a of the discharge hole 2 are such that the average downward angle α1 of the upper wall 2a of the discharge hole 2 is larger than the average downward angle α2 of the lower wall 2b of the discharge hole 2. In order to more ideally realize the technique for preventing the separation of the discharge flow from the nozzle 2b, when the position including the discharge hole 2 of the immersion nozzle 1 is viewed in a longitudinal section, as shown in FIGS. The inner peripheral surface side of the immersion nozzle 1 in the upper wall 2a of the discharge hole 2 is desirably formed into an arc shape having a radius R of 30 mm to 180 mm. By doing in this way, peeling of the discharge flow from the upper wall 2a of the discharge hole 2 is suppressed more effectively, and the discharge flow velocity approaches uniformly.

前記半径Rは、30mm未満であると、吐出孔2の上壁2aの傾きの変化が急激となり吐出流が剥離しやすくなる。また、半径Rが180mmを超えるほど大きいと、吐出孔2の上壁2aの肉厚が薄くなって溶損や亀裂発生の危険性が高くなる。本発明者等の実験およびシミュレーションによれば、前記半径Rのより好ましい範囲は、40mmから120mmの間である。   When the radius R is less than 30 mm, the change in the inclination of the upper wall 2a of the discharge hole 2 is abrupt and the discharge flow is easily separated. On the other hand, if the radius R is larger than 180 mm, the thickness of the upper wall 2a of the discharge hole 2 is reduced, and the risk of melting and cracking increases. According to the experiments and simulations of the inventors, a more preferable range of the radius R is between 40 mm and 120 mm.

また、吐出孔2の下壁2bの下向き角度α2は、水平(0°)よりも上向きになると、下壁2bに跳ね上げられた流れと上壁2aに沿って斜め下向きに流れる流れとが干渉し、吐出流が乱れるので好ましくない。また、下向き角度α2が35°よりも大きくなると、吐出流が下壁2bから剥離しやすくなるので好ましくない。   Further, when the downward angle α2 of the lower wall 2b of the discharge hole 2 is upward from the horizontal (0 °), the flow bounced up to the lower wall 2b interferes with the flow flowing obliquely downward along the upper wall 2a. However, the discharge flow is disturbed, which is not preferable. On the other hand, when the downward angle α2 is larger than 35 °, it is not preferable because the discharge flow is easily separated from the lower wall 2b.

つまり、前記の本発明の連続鋳造方法においては、
浸漬ノズル1の吐出孔2を含む位置を縦断面して見た場合に、
前記吐出孔2の上壁2aのうちの浸漬ノズル1の内周面側は、半径Rが30mm〜180mmの円弧状であって、
前記吐出孔2の下壁2bの下向き角度α2が0°(水平)〜35°の範囲にある、
前記浸漬ノズル1を使用して鋳型6内に溶鋼7を供給することが望ましい。
That is, in the continuous casting method of the present invention,
When the position including the discharge hole 2 of the immersion nozzle 1 is viewed in a longitudinal section,
The inner peripheral surface side of the immersion nozzle 1 in the upper wall 2a of the discharge hole 2 has an arc shape with a radius R of 30 mm to 180 mm,
The downward angle α2 of the lower wall 2b of the discharge hole 2 is in the range of 0 ° (horizontal) to 35 °.
It is desirable to supply the molten steel 7 into the mold 6 using the immersion nozzle 1.

また、前記の本発明の連続鋳造方法において、図2,3に示すように、浸漬ノズル1の横断面位置から底部内面方向を見た場合に、吐出方向に平行に延びた一本の突起4を底部内面に形成した場合には、浸漬ノズル1の底部において、図4に矢印で示すような渦が常に形成されるので、前記窪み3から跳ね上がる流れを安定して形成でき、吐出孔2の上部への流れの分配を高めるという作用が高まることになる。   In the continuous casting method of the present invention, as shown in FIGS. 2 and 3, when the bottom inner surface direction is viewed from the cross-sectional position of the immersion nozzle 1, one protrusion 4 extending parallel to the discharge direction. Is formed on the inner surface of the bottom portion, a vortex as indicated by an arrow in FIG. 4 is always formed at the bottom portion of the immersion nozzle 1, so that a flow that jumps up from the recess 3 can be stably formed. The effect of increasing the distribution of the flow to the upper part will be enhanced.

この突起4の高さhは、特に限定されるものではないが、前記窪み3の深さdを超えない範囲にとどめることが好ましい。これは、突起4の高さhが高くなりすぎると、窪み3内への流れの侵入を妨げ、窪み3による跳ね上げ流の形成作用を減じてしまうからである。   The height h of the protrusion 4 is not particularly limited, but it is preferable to keep it within a range not exceeding the depth d of the recess 3. This is because if the height h of the protrusion 4 becomes too high, the flow intrusion into the recess 3 is prevented, and the effect of forming the splash flow by the recess 3 is reduced.

また、前記突起4の高さhは、少なくとも5mm好ましくは10mm以上必要である。突起4の高さhがそれよりも低いと、その効果が失われるからである。突起4は、図3に示したように高さhが一定であっても良いが、図2に示したように中央部が高く、吐出孔2に近づくにつれて低くなる形状とした方が、前述の突起4が高すぎることの悪影響が生じにくいので、より好ましい。   Further, the height h of the protrusion 4 needs to be at least 5 mm, preferably 10 mm or more. This is because the effect is lost if the height h of the protrusion 4 is lower than that. The protrusion 4 may have a constant height h as shown in FIG. 3. However, the protrusion 4 has a shape in which the central portion is high as shown in FIG. Since the adverse effect of the protrusion 4 being too high is less likely to occur, it is more preferable.

また、前記突起4の厚みtは、図2に示したように一定であっても、図3に示したように上部に行くほど薄くしたものでも良い。   Further, the thickness t of the protrusion 4 may be constant as shown in FIG. 2 or may be made thinner toward the top as shown in FIG.

また、前記の本発明の連続鋳造方法によって、狭幅側の吐出孔2からの吐出流量が、広幅側の吐出孔2からの吐出流量に比べて増大するという現象は防止できるものの、狭幅側の鋳型短辺へ衝突する流速が広幅側のそれに比べて大きいことに変わりはない。   In addition, the continuous casting method of the present invention can prevent the phenomenon that the discharge flow rate from the discharge port 2 on the narrow side increases compared to the discharge flow rate from the discharge port 2 on the wide side, but the narrow side The flow velocity that collides with the short side of the mold is still larger than that on the wide side.

そこで、電磁ブレーキ装置を用いて、狭幅側の吐出流に対して印加する静磁場を、広幅側の吐出流に対して印加する静磁場よりも強くなし、浸漬ノズル1の偏りに起因する鋳型内流動の不均等を解消するとさらに良い結果が得られる。このとき、狭幅側のみに静磁場を印可しても良い。   Therefore, by using an electromagnetic brake device, the static magnetic field applied to the discharge flow on the narrow side is made stronger than the static magnetic field applied to the discharge flow on the wide side, and the mold caused by the bias of the immersion nozzle 1 is used. Better results can be obtained by eliminating the unevenness of internal flow. At this time, a static magnetic field may be applied only to the narrow side.

以下、本発明の効果を確認するために行った実施結果について説明する。
下記表1には本発明の実施例を、また、下記表2には比較例を示す。表1および表2に示す各種指標は、フルスケールの水モデル実験および計算機を用いたシミュレーションによって得られた値である。
Hereinafter, the implementation results performed to confirm the effect of the present invention will be described.
Table 1 below shows examples of the present invention, and Table 2 below shows comparative examples. The various indexes shown in Table 1 and Table 2 are values obtained by full-scale water model experiments and simulations using a computer.

Figure 2006150434
Figure 2006150434

Figure 2006150434
Figure 2006150434

実施例Aは、本発明の請求項1を満たす実施例である(図1参照)。
この実施例Aは、本発明の請求項1を満たす効果として、吐出流量差が5%と小さい。また、狭幅側短辺衝突流速も0.45m/sと比較的低位に抑えられている。
Example A is an example that satisfies claim 1 of the present invention (see FIG. 1).
In this embodiment A, as an effect of satisfying claim 1 of the present invention, the discharge flow rate difference is as small as 5%. Further, the narrow side short side collision flow velocity is also suppressed to a relatively low level of 0.45 m / s.

実施例Bは、本発明の請求項1および請求項2を満たす実施例である。
この実施例Bは、前記実施例Aに対し、吐出孔の上壁を円弧状に形成している。その効果として、吐出孔の上壁から吐出流が剥離しにくく、安定した吐出流が形成される。また、実際の鋳造においては、吐出孔の上壁への非金属介在物の付着が少なくなる効果が期待できる。
Example B is an example that satisfies claims 1 and 2 of the present invention.
In this example B, the upper wall of the discharge hole is formed in an arc shape with respect to the example A. As an effect thereof, the discharge flow is hardly separated from the upper wall of the discharge hole, and a stable discharge flow is formed. In actual casting, an effect of reducing the adhesion of nonmetallic inclusions to the upper wall of the discharge hole can be expected.

この実施例Bでは、吐出流量差が3%と小さい。この3%と言う値と、前記実施例Aの5%と言う値との間に有意な差があるかどうかは、鋳造条件差や実験あるいは測定の誤差を考慮すると微妙であるが、定性的には上壁を円弧状に形成する効果はあると考えられる。狭幅側短辺への衝突流速は0.41m/sと比較的低位である。   In Example B, the discharge flow rate difference is as small as 3%. Whether there is a significant difference between the value of 3% and the value of 5% in Example A is subtle in consideration of differences in casting conditions and experimental or measurement errors, but is qualitative. Is considered to have the effect of forming the upper wall in an arc shape. The collision flow velocity to the narrow side short side is relatively low at 0.41 m / s.

実施例Cおよび実施例Dは、本発明の請求項1から請求項3を満たす実施例である。
これらの実施例Cおよび実施例Dは、前記実施例Bに対し、突起をノズル底部に設けたものである。その結果として、吐出孔上部における吐出流速が高まり、実施例Aあるいは実施例Bよりも吐出流速の分布が均一に近づいている。
Examples C and D are examples that satisfy claims 1 to 3 of the present invention.
In these Examples C and D, a protrusion is provided on the bottom of the nozzle as compared with Example B. As a result, the discharge flow rate at the upper portion of the discharge hole is increased, and the distribution of the discharge flow rate is closer to that of Example A or Example B.

突起の形状は、実施例Cでは、図2(b)に示すように、横から見た形状が二等辺三角形で底辺の長さがノズル底部の内径と等しく、頂点の高さ(突起の高さh)が15mm、厚みtは10mmで一定である。実施例Dの突起は、長さがノズル底部の内径に等しく、高さhが15mmの一定で、厚みtは上部が5mmで、下部が15mmである。   In Example C, as shown in FIG. 2 (b), the shape of the protrusion is an isosceles triangle as viewed from the side, the length of the base is equal to the inner diameter of the nozzle bottom, and the height of the apex (the height of the protrusion). The thickness h) is constant at 15 mm and the thickness t is 10 mm. The protrusion of Example D has a length equal to the inner diameter of the nozzle bottom, a constant height h of 15 mm, a thickness t of 5 mm at the top, and 15 mm at the bottom.

実施例Cおよび実施例Dでは、吐出流量差が1%および2%と小さく抑えられた。これらの値が実施例Bの3%に対して有意な差をもつかどうかは、鋳造条件差や実験あるいは測定の誤差を考慮すると微妙であるが、実施例Aの5%とは有意差があると判断する。この差は、請求項2および3の相乗効果と考えられる。   In Example C and Example D, the discharge flow rate difference was suppressed to 1% and 2%. Whether these values have a significant difference with respect to 3% of Example B is delicate considering the difference in casting conditions and experimental or measurement errors, but is significantly different from 5% of Example A. Judge that there is. This difference is considered to be a synergistic effect of claims 2 and 3.

実施例Eは、本発明の全ての請求項を満たす実施例である。
この実施例Eは、実施例Cと同じノズルを適用したうえで、狭幅側のみに電磁ブレーキを印可したものである。電磁ブレーキのコイル5の配置を図6に示す。電磁ブレーキ印加の結果、吐出流量差は2%となり、狭幅側の流量が広幅側の流量に対して増えるという現象は完全に防止された。また、狭幅側短辺への衝突流速も0.29m/sと十分に低下した。
Example E is an example that satisfies all the claims of the present invention.
In Example E, the same nozzle as in Example C is applied, and an electromagnetic brake is applied only to the narrow side. The arrangement of the electromagnetic brake coil 5 is shown in FIG. As a result of applying the electromagnetic brake, the discharge flow rate difference was 2%, and the phenomenon that the flow rate on the narrow side increased with respect to the flow rate on the wide side was completely prevented. Moreover, the collision flow velocity to the narrow side short side was sufficiently lowered to 0.29 m / s.

狭幅側への電磁ブレーキ印加が狭幅側短辺への衝突流速の低下のみならず吐出流量差の解消にも効果を発揮したのは、実施例Eの条件では静磁場が狭幅側の吐出孔にまで制動作用をおよぼし、吐出流速を低下させたためと考えられる。   The application of the electromagnetic brake to the narrow side was effective not only in reducing the collision flow velocity on the short side on the narrow side but also in eliminating the discharge flow rate difference. This is thought to be because the braking action was exerted on the discharge holes and the discharge flow velocity was reduced.

表2に示したFからHは、本発明の請求範囲を満たさない比較例である。
これら比較例においては、吐出孔開孔形状が正方形(比較例F:図7参照)あるいは縦長(比較例G,H)であり、吐出孔上下壁の角度が同一の浸漬ノズルを用いたものである。
F to H shown in Table 2 are comparative examples that do not satisfy the claims of the present invention.
In these comparative examples, the shape of the opening of the discharge hole is square (Comparative Example F: see FIG. 7) or vertically long (Comparative Examples G and H), and an immersion nozzle having the same angle of the upper and lower walls of the discharge hole is used. is there.

その結果、狭幅側の吐出流量が広幅側の吐出流量に比べて増大するという現象が生じ、吐出流量差は電磁ブレーキを印可しない比較例Fおよび比較例Gでは20%を超え、電磁ブレーキを狭幅側と広幅側で均等に印可した比較例Hでも10%を超えた。   As a result, a phenomenon occurs in which the discharge flow rate on the narrow side increases compared to the discharge flow rate on the wide side, and the difference in discharge flow rate exceeds 20% in Comparative Example F and Comparative Example G where the electromagnetic brake is not applied. Even in Comparative Example H applied evenly on the narrow side and the wide side, it exceeded 10%.

また、狭幅側短辺への衝突流速は、電磁ブレーキを印可しない比較例Fおよび比較例Gでは0.6m/sを超えた。電磁ブレーキを狭幅側と広幅側で均等に印可した比較例Hの狭幅側短辺への衝突流速は、0.34m/sと低位であったが、狭幅側の吐出流量が多いという問題が解消されていないことから、狭幅側への熱供給量が多く、凝固シェルの成長が遅れる危険性は解消されていない。比較例Hの電磁ブレーキコイル配置は図6に示したものである。   Moreover, the collision flow velocity to the narrow side short side exceeded 0.6 m / s in Comparative Example F and Comparative Example G where the electromagnetic brake was not applied. The collision flow velocity to the short side of the narrow side of Comparative Example H in which the electromagnetic brake was applied equally on the narrow side and the wide side was as low as 0.34 m / s, but the discharge flow rate on the narrow side is large. Since the problem has not been solved, the amount of heat supplied to the narrow side is large, and the risk of delaying the growth of the solidified shell has not been solved. The electromagnetic brake coil arrangement of Comparative Example H is as shown in FIG.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範囲内で、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiment may be appropriately changed within the scope of the technical idea described in each claim.

本発明は、設備上の制約により、浸漬ノズルを鋳型の幅方向中央に設置できない場合であれば、トリプルキャスティングなどにも適用できる。   The present invention can also be applied to triple casting or the like if the immersion nozzle cannot be installed at the center in the width direction of the mold due to restrictions on equipment.

請求項1に記載の本発明に係る連続鋳造方法に使用する浸漬ノズルである実施例Aの要部を示した図で、(a)は吐出口側から見た図、(b)は(a)図のB−B断面図である。It is the figure which showed the principal part of Example A which is an immersion nozzle used for the continuous casting method which concerns on this invention of Claim 1, (a) is the figure seen from the discharge outlet side, (b) is (a) ) Is a cross-sectional view along the line B-B in the figure. 請求項3に記載の本発明に係る連続鋳造方法に使用する浸漬ノズルである実施例Cの要部を示した図1と同様の図である。It is the same figure as FIG. 1 which showed the principal part of Example C which is an immersion nozzle used for the continuous casting method which concerns on this invention of Claim 3. 請求項3に記載の本発明に係る連続鋳造方法に使用する浸漬ノズルである実施例Dの要部を示した図1と同様の図である。It is the same figure as FIG. 1 which showed the principal part of Example D which is an immersion nozzle used for the continuous casting method which concerns on this invention of Claim 3. 請求項3に記載の本発明に係る連続鋳造方法に使用する浸漬ノズルを使用した場合に形成される渦を説明する図1と同様の図である。It is a figure similar to FIG. 1 explaining the vortex formed when the immersion nozzle used for the continuous casting method which concerns on this invention of Claim 3 is used. 浸漬ノズルが鋳型幅中央よりも一方の短辺側に偏って設置されている場合の説明図である。It is explanatory drawing in case the immersion nozzle is biased and installed in the one short side rather than the mold width center. 請求項4に記載の本発明に係る連続鋳造方法に使用する電磁ブレーキコイルの配置例を示した図である。It is the figure which showed the example of arrangement | positioning of the electromagnetic brake coil used for the continuous casting method which concerns on this invention of Claim 4. 従来の連続鋳造方法に使用する比較例Fの浸漬ノズルの要部を示した図1と同様の図である。It is the same figure as FIG. 1 which showed the principal part of the immersion nozzle of the comparative example F used for the conventional continuous casting method.

符号の説明Explanation of symbols

1 浸漬ノズル
2 吐出孔
2a 上壁
2b 下壁
3 窪み
4 突起
5 コイル
6 鋳型
7 溶鋼
DESCRIPTION OF SYMBOLS 1 Immersion nozzle 2 Discharge hole 2a Upper wall 2b Lower wall 3 Depression 4 Protrusion 5 Coil 6 Mold 7 Molten steel

Claims (4)

底部近傍側壁に対向配置した一対の吐出孔を、鋳型短辺方向に向けて設置した浸漬ノズルが、鋳型幅中央よりも一方の短辺寄りの位置に偏って設置された場合における連続鋳造方法であって、
深さが10mm〜45mmの窪みを底部内面に形成し、
前記吐出孔は、
前記浸漬ノズルの外周面における出口高さを出口幅で除した縦横比が0.5〜0.8の横長の矩形状で、
前記浸漬ノズルの吐出孔を含む位置を縦断面して見た場合に、吐出孔上壁の平均下向角度が吐出孔下壁の平均下向角度よりも大きくなした、
浸漬ノズルを使用して鋳型内に溶鋼を供給することを特徴とする連続鋳造方法。
In the continuous casting method when the immersion nozzle in which the pair of discharge holes arranged facing the side wall in the vicinity of the bottom portion is installed toward the short side of the mold is disposed at a position closer to one short side than the center of the mold width. There,
Forming a recess having a depth of 10 mm to 45 mm on the inner surface of the bottom,
The discharge hole is
A laterally long rectangular shape with an aspect ratio of 0.5 to 0.8 obtained by dividing the outlet height on the outer peripheral surface of the immersion nozzle by the outlet width,
When the vertical position of the position including the discharge hole of the immersion nozzle is viewed, the average downward angle of the discharge hole upper wall is larger than the average downward angle of the discharge hole lower wall.
A continuous casting method characterized by supplying molten steel into a mold using an immersion nozzle.
前記浸漬ノズルの吐出孔を含む位置を縦断面して見た場合に、
前記吐出孔上壁のうちの前記浸漬ノズルの内周面側は、半径が30mm〜180mmの円弧状であって、
前記吐出孔下壁の平均下向き角度が0°〜35°の範囲にある、
前記浸漬ノズルを使用して鋳型内に溶鋼を供給することを特徴とする請求項1に記載の連続鋳造方法。
When looking at the position including the discharge hole of the immersion nozzle in a longitudinal section,
The inner peripheral surface side of the immersion nozzle in the upper wall of the discharge hole has an arc shape with a radius of 30 mm to 180 mm,
An average downward angle of the discharge hole lower wall is in a range of 0 ° to 35 °;
The continuous casting method according to claim 1, wherein molten steel is supplied into the mold using the immersion nozzle.
前記浸漬ノズルの横断面位置から底部内面方向を見た場合に、
吐出方向に平行に延びた一本の突起を底部内面に有する、
前記浸漬ノズルを使用して鋳型内に溶鋼を供給することを特徴とする請求項1又は2に記載の連続鋳造方法。
When looking at the bottom inner surface direction from the cross-sectional position of the immersion nozzle,
It has one protrusion on the bottom inner surface that extends parallel to the discharge direction.
The continuous casting method according to claim 1, wherein molten steel is supplied into the mold using the immersion nozzle.
浸漬ノズルからの吐出流に静磁場の電磁力を作用させる連続鋳造方法であって、
浸漬ノズルから短辺までの距離が短い側に吐出される吐出流に対して印加する静磁場を、前記距離が長い側に吐出される吐出流に対して印加する静磁場よりも強くなすか、
または、前記距離が短い側に吐出される吐出流に対してのみ静磁場を印加することを特徴とする請求項1〜3の何れかに記載の連続鋳造方法。
A continuous casting method in which an electromagnetic force of a static magnetic field acts on a discharge flow from an immersion nozzle,
Whether the static magnetic field applied to the discharge flow discharged to the short side from the immersion nozzle to the short side is stronger than the static magnetic field applied to the discharge flow discharged to the long side,
The continuous casting method according to any one of claims 1 to 3, wherein a static magnetic field is applied only to a discharge flow discharged to the short side.
JP2004348779A 2004-12-01 2004-12-01 Continuous casting method Pending JP2006150434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348779A JP2006150434A (en) 2004-12-01 2004-12-01 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348779A JP2006150434A (en) 2004-12-01 2004-12-01 Continuous casting method

Publications (1)

Publication Number Publication Date
JP2006150434A true JP2006150434A (en) 2006-06-15

Family

ID=36629328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348779A Pending JP2006150434A (en) 2004-12-01 2004-12-01 Continuous casting method

Country Status (1)

Country Link
JP (1) JP2006150434A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018449A (en) * 2006-07-12 2008-01-31 Kobe Steel Ltd Method for managing immersed nozzle
JP2008161921A (en) * 2006-12-28 2008-07-17 Kobe Steel Ltd Immersed nozzle with divided type weir
JP2008200705A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Grooved immersion nozzle
JP2009106968A (en) * 2007-10-30 2009-05-21 Kobe Steel Ltd Continuous casting method for medium to high carbon steel, using immersion nozzle with hourglass-shaped weir
JP2009248089A (en) * 2008-04-01 2009-10-29 Kobe Steel Ltd Continuous casting method for extralow carbon steel or low carbon steel using grooved immersion nozzle
JP2009285677A (en) * 2008-05-28 2009-12-10 Sumitomo Metal Ind Ltd Continuous casting method for steel
JP2010036191A (en) * 2008-07-31 2010-02-18 Sumitomo Metal Ind Ltd Continuous casting method for steel
WO2013068296A1 (en) 2011-11-09 2013-05-16 Techcom Gmbh Method for continuous casting of steel and submersible nozzle for the same
CN103894596A (en) * 2014-03-21 2014-07-02 上海大学 Slab submersed nozzle controlling flowing of metal fluid
JP2016209924A (en) * 2015-05-13 2016-12-15 品川リフラクトリーズ株式会社 Immersion nozzle for continuous casting and continuous casting method using immersion nozzle
CN109333926A (en) * 2018-11-07 2019-02-15 宁波帅特龙集团有限公司 It is a kind of for manufacturing the mold of sound box for vehicle cover board
CN111655399A (en) * 2018-01-26 2020-09-11 Ak钢铁产权公司 Submerged entry nozzle for continuous casting
JP2021126663A (en) * 2020-02-12 2021-09-02 明智セラミックス株式会社 Immersed nozzle

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018449A (en) * 2006-07-12 2008-01-31 Kobe Steel Ltd Method for managing immersed nozzle
JP2008161921A (en) * 2006-12-28 2008-07-17 Kobe Steel Ltd Immersed nozzle with divided type weir
JP4686442B2 (en) * 2006-12-28 2011-05-25 株式会社神戸製鋼所 Split nozzle with immersion weir
JP2008200705A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Grooved immersion nozzle
JP2009106968A (en) * 2007-10-30 2009-05-21 Kobe Steel Ltd Continuous casting method for medium to high carbon steel, using immersion nozzle with hourglass-shaped weir
JP2009248089A (en) * 2008-04-01 2009-10-29 Kobe Steel Ltd Continuous casting method for extralow carbon steel or low carbon steel using grooved immersion nozzle
JP2009285677A (en) * 2008-05-28 2009-12-10 Sumitomo Metal Ind Ltd Continuous casting method for steel
JP2010036191A (en) * 2008-07-31 2010-02-18 Sumitomo Metal Ind Ltd Continuous casting method for steel
WO2013068296A1 (en) 2011-11-09 2013-05-16 Techcom Gmbh Method for continuous casting of steel and submersible nozzle for the same
CN103894596A (en) * 2014-03-21 2014-07-02 上海大学 Slab submersed nozzle controlling flowing of metal fluid
JP2016209924A (en) * 2015-05-13 2016-12-15 品川リフラクトリーズ株式会社 Immersion nozzle for continuous casting and continuous casting method using immersion nozzle
CN111655399A (en) * 2018-01-26 2020-09-11 Ak钢铁产权公司 Submerged entry nozzle for continuous casting
JP2021511215A (en) * 2018-01-26 2021-05-06 エーケー スティール プロパティ−ズ、インク. Immersion inlet nozzle for continuous casting
CN111655399B (en) * 2018-01-26 2022-12-09 Ak钢铁产权公司 Submerged entry nozzle for continuous casting
JP7531397B2 (en) 2018-01-26 2024-08-09 クリーブランド-クリフス スティール プロパティーズ、インク. Submerged entry nozzle for continuous casting.
CN109333926A (en) * 2018-11-07 2019-02-15 宁波帅特龙集团有限公司 It is a kind of for manufacturing the mold of sound box for vehicle cover board
CN109333926B (en) * 2018-11-07 2023-10-17 宁波帅特龙集团有限公司 A mould for making automobile-used audio amplifier apron
JP2021126663A (en) * 2020-02-12 2021-09-02 明智セラミックス株式会社 Immersed nozzle
JP7175513B2 (en) 2020-02-12 2022-11-21 明智セラミックス株式会社 immersion nozzle

Similar Documents

Publication Publication Date Title
JP2006150434A (en) Continuous casting method
WO2010052906A1 (en) Device for continuously casting steel
JP4508110B2 (en) Immersion nozzle for continuous casting and continuous casting method using the same
JP5014934B2 (en) Steel continuous casting method
KR101087318B1 (en) Method for manufacture of ultra-low carbon steel slab
JP2005125389A (en) Immersion nozzle for continuous casting
US11052459B2 (en) Submerged entry nozzle for continuous casting
JP4220840B2 (en) Method for removing inclusions in tundish and weir used therefor
JP3566904B2 (en) Steel continuous casting method
KR100654889B1 (en) Nozzle for continuous casting
JP2017087264A (en) Immersed nozzle
JP5249425B2 (en) Tundish impact pad
JP6862547B2 (en) Deflector for continuous casting nozzles
JP2008087065A (en) Tundish for continuous casting
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JP7134105B2 (en) immersion nozzle
JP4448452B2 (en) Steel continuous casting method
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP2004283850A (en) Continuous casting method
JP2011245550A (en) Continuous casting method and continuous casting device
JP2010274321A (en) Tundish for continuous casting
JP4421136B2 (en) Continuous casting method
JP2001087843A (en) Immersion nozzle for continuous casting
US20060118272A1 (en) Method and apparatus for melt flow control in continuous casting mold
JP2005246442A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006