JP2015085370A - Continuous casting method of steel - Google Patents

Continuous casting method of steel Download PDF

Info

Publication number
JP2015085370A
JP2015085370A JP2013227611A JP2013227611A JP2015085370A JP 2015085370 A JP2015085370 A JP 2015085370A JP 2013227611 A JP2013227611 A JP 2013227611A JP 2013227611 A JP2013227611 A JP 2013227611A JP 2015085370 A JP2015085370 A JP 2015085370A
Authority
JP
Japan
Prior art keywords
molten steel
magnetic field
mold
casting
discharge hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013227611A
Other languages
Japanese (ja)
Other versions
JP5929872B2 (en
Inventor
章敏 松井
Akitoshi Matsui
章敏 松井
晋一 泉川
Shinichi Izumikawa
晋一 泉川
満園 将行
Masayuki Mitsuzono
将行 満園
三木 祐司
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013227611A priority Critical patent/JP5929872B2/en
Publication of JP2015085370A publication Critical patent/JP2015085370A/en
Application granted granted Critical
Publication of JP5929872B2 publication Critical patent/JP5929872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method of steel which provides a high quality slab hardly causing defect due to entrainment of minute air bubble or mold flux when casting a slab having a wide casting width with high through-put by the method of continuously casting steel while controlling molten steel flow in a casing mold by using electromagnetic force.SOLUTION: When continuously casting molten steel in such high efficiency conditions that a molten steel through-put Q is 6.0 to 7.5 ton/min, and a casting width is 1850 mm or more, a molten steel ejection angle of an immersion nozzle and an immersion depth and, further, the strength of vertical DC magnetic field and the strength of upper AC moving magnetic field are caused to fall into an optimal range and, moreover, the ratio R/Q of inactive gas blowing amount R from the immersion nozzle to molten steel through-put Q is satisfied by the relations:(15-Q)/3.75≤R/Q≤(16.5-Q)/3.75.

Description

本発明は、鋳造幅が広いスラブの連続鋳造方法であって、電磁力によって鋳型内の溶鋼流動を制御しながら鋼を連続鋳造する方法に関する。   The present invention relates to a continuous casting method of a slab having a wide casting width, and relates to a method of continuously casting steel while controlling a flow of molten steel in a mold by electromagnetic force.

近年、自動車用鋼板、缶用鋼板などの高級鋼製品の品質要求が厳格化しており、鋳片(スラブ)の製造段階(連続鋳造段階)からの高品質化が要望されている。スラブに要求される品質の1つとして、スラブ表層の介在物量が少ないことが挙げられる。スラブ表層に捕捉される介在物には、下記(1)〜(3)などがある。これらは何れも製品段階で表面欠陥となるため、スラブ表層に捕捉される量を少なくすることが重要である。
(1)アルミニウムなどによる溶鋼の脱酸工程で生成し、溶鋼中に懸濁している脱酸生成物
(2)タンディッシュや浸漬ノズルで溶鋼内に吹き込まれるArガス気泡
(3)鋳型内の溶鋼湯面上に散布したモールドパウダーが溶鋼中に巻き込まれて懸濁したもの
In recent years, quality requirements for high-grade steel products such as automobile steel plates and steel plates for cans have become stricter, and there has been a demand for higher quality from the slab manufacturing stage (continuous casting stage). One of the qualities required for slabs is a small amount of inclusions on the slab surface layer. The inclusions captured by the slab surface include the following (1) to (3). Since all of these become surface defects at the product stage, it is important to reduce the amount captured by the slab surface layer.
(1) Deoxidation products produced in the deoxidation process of molten steel with aluminum and suspended in the molten steel (2) Ar gas bubbles blown into the molten steel with a tundish or immersion nozzle (3) Molten steel in the mold Mold powder sprayed on the surface of the molten steel and suspended in molten steel

従来、溶鋼中の非金属介在物、モールドフラックス、気泡が凝固シェルに捕捉され、製品欠陥となることを防止するために、鋳型内で溶鋼流に磁界を印加し、磁界による電磁気力を利用して溶鋼の流動を制御することが行われており、この技術に関して数多くの提案がなされている。
例えば、特許文献1には、静磁場により溶鋼流速を制動する技術が開示されている。この方法は、浸漬ノズルの吐出孔から吐出された溶鋼流を直流磁界で制動することで、溶鋼流に随伴する非金属介在物やモールドフラックスが凝固シェルに捕捉されないようにするものである。
Conventionally, in order to prevent non-metallic inclusions, mold flux, and bubbles in molten steel from being trapped in the solidified shell and resulting in product defects, a magnetic field is applied to the molten steel flow in the mold and electromagnetic force generated by the magnetic field is used. The flow of molten steel has been controlled, and many proposals have been made regarding this technology.
For example, Patent Document 1 discloses a technique for braking a molten steel flow velocity by a static magnetic field. In this method, the molten steel flow discharged from the discharge hole of the immersion nozzle is braked by a DC magnetic field, so that non-metallic inclusions and mold flux accompanying the molten steel flow are not captured by the solidified shell.

また、特許文献2には、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極に各々印加される直流磁界により溶鋼流を制動するとともに、上部磁極または下部磁極に交流磁界を重畳して印加する方法が開示されている。この方法は、直流磁界による溶鋼流の制動を行うとともに、交流磁界による溶鋼の撹拌により、凝固シェル界面での非金属介在物などの洗浄効果を得ようとするものである。
また、特許文献3には、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極に各々直流磁界を印加するとともに、上部磁極に交流磁界を重畳印加する方法において、直流磁界の強度や交流磁界の強度を、鋳造幅と鋳造速度に応じて特定の数値範囲とする方法が開示されている。
Patent Document 2 discloses that a molten steel flow is braked by a DC magnetic field applied to each of a pair of upper magnetic poles and a pair of lower magnetic poles that are opposed to each other with a long side of the mold interposed therebetween, and AC is applied to the upper magnetic pole or the lower magnetic pole. A method of applying a superimposed magnetic field is disclosed. In this method, the molten steel flow is braked by a DC magnetic field, and the cleaning effect of nonmetallic inclusions and the like at the solidified shell interface is obtained by stirring the molten steel by an AC magnetic field.
Patent Document 3 discloses a method in which a DC magnetic field is applied to each of a pair of upper magnetic poles and a pair of lower magnetic poles that are opposed to each other with a long side of the mold interposed therebetween, and an AC magnetic field is applied to the upper magnetic poles in a superimposed manner. A method is disclosed in which the strength of the magnetic field and the strength of the alternating magnetic field are set to a specific numerical range depending on the casting width and casting speed.

一方、鋼の連続鋳造においては、スラブの品質を確保するだけでなく、生産性の向上を図る必要もある。生産性の向上には、鋳型内に注入する単位時間あたりの溶鋼量を増加させる必要があり、このための具体的な対応としては、鋳造速度の向上や鋳造幅の拡大が挙げられる。しかし、その際の問題として、浸漬ノズルからの吐出流速が増大して、溶鋼中の介在物などを鋳型内溶鋼深部へ運んでしまい、製品欠陥の要因となる。また、鋳造幅が広い場合には、幅方向両端部において溶鋼流速が十分に稼げず、非金属介在物等の洗浄効果が十分に得られないため、幅方向両端部での製品欠陥発生率が増加してしまうという問題がある。   On the other hand, in continuous casting of steel, it is necessary not only to ensure the quality of slabs but also to improve productivity. In order to improve productivity, it is necessary to increase the amount of molten steel per unit time injected into the mold, and specific measures for this include improving the casting speed and increasing the casting width. However, as a problem at that time, the discharge flow rate from the immersion nozzle increases, and the inclusions in the molten steel are carried to the deep part of the molten steel in the mold, which causes a product defect. In addition, when the casting width is wide, the molten steel flow velocity cannot be sufficiently obtained at both ends in the width direction, and a cleaning effect such as non-metallic inclusions cannot be sufficiently obtained. There is a problem that it increases.

特許第2726096号公報Japanese Patent No. 2726096 特開平10−305353号公報JP-A-10-305353 特許第4569715号公報Japanese Patent No. 4567715

近年の自動車外板用鋼板等の品質厳格化に伴い、これまで問題にならなかった微小な気泡やモールドフラックスの巻き込みに起因する欠陥が問題視されるようになりつつあり、特許文献1,2に示されるような連続鋳造方法では、そのような厳しい品質要求に十分対応できない。特に、合金化溶融亜鉛めっき鋼板は、溶融めっき後、加熱して母材鋼板の鉄成分を亜鉛めっき層に拡散させるものであり、母材鋼板の表層性状が合金化溶融亜鉛めっき層の品質に大きく影響する。すなわち、母材鋼板の表層に気泡性やフラックス性の欠陥があると、小さな欠陥であってもめっき層の厚みにむらが生じ、それが表面に筋状の欠陥として現れ、自動車外板などのような品質要求の厳しい用途には使用できなくなる。
また、特許文献3では、鋳造条件に応じて適切な磁場条件を開示しているものの、その鋳造条件は鋳造幅が1850mm未満に限定されており、鋳造能率を向上すべく1850mm以上の広幅鋳造を行う場合には対応できない。
With the stricter quality of steel plates for automobile outer plates in recent years, defects caused by entrapment of minute bubbles and mold flux that have not been a problem until now are becoming a problem. However, the continuous casting method as shown in FIG. In particular, alloyed hot-dip galvanized steel sheets are heated after hot-dip plating to diffuse the iron component of the base steel sheet into the galvanized layer, and the surface layer properties of the base steel sheet contribute to the quality of the alloyed hot-dip galvanized layer. A big influence. In other words, if there are bubbles or flux defects on the surface layer of the base steel plate, even if it is a small defect, unevenness in the thickness of the plating layer occurs, which appears as a streak defect on the surface, such as an automobile outer plate It cannot be used for such a demanding quality requirement.
Further, in Patent Document 3, although an appropriate magnetic field condition is disclosed according to the casting condition, the casting condition is limited to a casting width of less than 1850 mm, and a wide casting of 1850 mm or more is required to improve casting efficiency. If you do, you can't.

したがって本発明の目的は、上記のような従来技術の課題を解決し、電磁力を利用して鋳型内の溶鋼流動を制御しながら鋼を連続鋳造する方法により、高スループットで鋳造幅が広いスラブを鋳造するにあたり、非金属介在物や微小な気泡及びモールドフラックスの巻き込みによる欠陥が少ない高品質のスラブを得ることができる連続鋳造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and by using a method of continuously casting steel while controlling the flow of molten steel in a mold using electromagnetic force, a slab having a high throughput and a wide casting width is obtained. It is an object of the present invention to provide a continuous casting method capable of obtaining a high-quality slab with few defects due to inclusion of non-metallic inclusions, minute bubbles, and mold flux.

本発明は、上記課題を解決するために、溶鋼スループットQを6.0〜7.5ton/min、鋳造幅を1850mm以上とする高能率条件で溶鋼を連続鋳造するにあたり、浸漬ノズルの溶鋼吐出角度と浸漬深さ、さらに上下直流磁場の強度と上部交流移動磁場の強度を最適な範囲とした上で、浸漬ノズルからの不活性ガス吹き込み量Rと溶鋼スループットQの比R/Qを最適化するものであり、その要旨は以下のとおりである。   In order to solve the above-mentioned problems, the present invention provides a molten steel discharge angle of a submerged nozzle when continuously casting molten steel under a high efficiency condition in which a molten steel throughput Q is 6.0 to 7.5 ton / min and a casting width is 1850 mm or more. The ratio R / Q of the inert gas blowing amount R from the immersion nozzle to the molten steel throughput Q is optimized after setting the immersion depth, the upper and lower DC magnetic field strength, and the upper AC moving magnetic field strength to the optimum ranges. The summary is as follows.

[1]鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、前記上部磁極の直流磁場のピーク位置と前記下部磁極の直流磁場のピーク位置の間に、溶鋼を注入するための浸漬ノズルの溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の下部磁極に直流磁界を印加することにより溶鋼流を制動し、且つ前記1対の上部磁極に直流磁界と交流移動磁界を重畳印加することにより、溶鋼流の制動と溶鋼の撹拌を行いつつ鋼を連続鋳造する方法であって、
溶鋼スループットQを6.0〜7.5ton/minとし、鋳造幅が1850mm以上のスラブを鋳造するに当たり、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が15〜35°、浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)が180mm以上300mm未満の浸漬ノズルを用い、上部磁極に印加する交流移動磁界の強度を0.07〜0.09T、上部磁極に印加する直流磁界の強度を0.25〜0.32T、下部磁極に印加する直流磁界の強度を0.35〜0.40Tとし、浸漬ノズルの内壁面からの不活性ガスの吹き込み量R(NL/min)と溶鋼スループットQ(ton/min)との比R/Qが、下記(1)式を満足することを特徴とする鋼の連続鋳造方法。
(15−Q)/3.75≦R/Q≦(16.5−Q)/3.75 …(1)
[1] A pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold are provided outside the mold, and the DC magnetic field peak position of the upper magnetic pole and the DC magnetic field peak position of the lower magnetic pole In between, using a continuous casting machine in which a molten steel discharge hole of a submerged nozzle for pouring molten steel is located, a DC magnetic field is applied to the pair of lower magnetic poles to brake the molten steel flow, and the pair of pairs A method of continuously casting steel while applying a DC magnetic field and an AC moving magnetic field to the upper magnetic pole while superimposing the molten steel flow and stirring the molten steel,
When casting a slab having a molten steel throughput Q of 6.0 to 7.5 ton / min and a casting width of 1850 mm or more, the molten steel discharge angle from the horizontal direction of the molten steel discharge hole is 15 to 35 °, and the immersion depth (however, , The distance from the meniscus to the molten steel discharge hole upper end) is 180 mm or more and less than 300 mm, the intensity of the AC moving magnetic field applied to the upper magnetic pole is 0.07 to 0.09 T, and the intensity of the DC magnetic field applied to the upper magnetic pole Is 0.25 to 0.32 T, the intensity of the DC magnetic field applied to the lower magnetic pole is 0.35 to 0.40 T, the amount R (NL / min) of the inert gas blown from the inner wall surface of the immersion nozzle, and the molten steel throughput. A steel continuous casting method, wherein a ratio R / Q with Q (ton / min) satisfies the following formula (1).
(15-Q) /3.75≦R/Q≦ (16.5-Q) /3.75 (1)

[2]上記[1]の連続鋳造方法において、浸漬ノズルは、ノズル内径(但し、溶鋼吐出孔の位置でのノズル内径)が70〜90mm、各溶鋼吐出孔の開口面積が3600〜8100mmであることを特徴とする鋼の連続鋳造方法。 [2] In the continuous casting method of [1] above, the immersion nozzle has a nozzle inner diameter (however, a nozzle inner diameter at the position of the molten steel discharge hole) of 70 to 90 mm, and an opening area of each molten steel discharge hole is 3600 to 8100 mm 2 . A method for continuous casting of steel, characterized in that there is.

本発明によれば、溶鋼スループットQを6.0〜7.5ton/min、鋳造幅を1850mm以上とする高能率条件で溶鋼を連続鋳造するにあたり、微小な気泡による気泡性欠陥、非金属介在物性欠陥、フラックス性欠陥が非常に少ない高品質のスラブを高能率で製造することが可能となる。   According to the present invention, in continuous casting of molten steel under a high efficiency condition in which the molten steel throughput Q is 6.0 to 7.5 ton / min and the casting width is 1850 mm or more, bubble defects due to fine bubbles, non-metallic inclusion physical properties High-quality slabs with very few defects and flux defects can be produced with high efficiency.

本発明の実施に供される連続鋳造機の鋳型および浸漬ノズルの一実施形態を示す縦断面図The longitudinal cross-sectional view which shows one Embodiment of the casting_mold | template and immersion nozzle of a continuous casting machine with which implementation of this invention is carried out 図1のII-II線に沿う断面図Sectional view along the line II-II in FIG. 本発明の実施に供される連続鋳造機において、互いに独立した直流磁界用磁極と交流磁界用磁極を備えた上部磁極の一実施形態を模式的に示す平面図The top view which shows typically one Embodiment of the upper magnetic pole provided with the magnetic pole for DC magnetic fields and AC magnetic pole which were mutually independent in the continuous casting machine with which implementation of this invention is carried out

本発明では、鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、前記上部磁極の直流磁場のピーク位置と前記下部磁極の直流磁場のピーク位置の間に、溶鋼を注入するための浸漬ノズルの溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の下部磁極に直流磁界を印加することにより溶鋼流を制動し、且つ前記1対の上部磁極に直流磁界と交流移動磁界を重畳印加することにより、溶鋼流の制動と溶鋼の撹拌を行いつつ鋼を連続鋳造する方法を用いる。
本発明は、このような連続鋳造法において、スラブの生産性を高めるために、溶鋼スループットQを6.0〜7.5ton/min、鋳造幅を1850mm以上とする高能率条件で溶鋼を鋳造する。ここで、溶鋼スループットとは、単位時間当たりの溶鋼鋳造量である。
In the present invention, a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold are provided outside the mold, and the DC magnetic field peak position of the upper magnetic pole and the DC magnetic field peak of the lower magnetic pole are provided. Using a continuous casting machine in which a molten steel discharge hole of a submerged nozzle for pouring molten steel is positioned between the positions, a DC magnetic field is applied to the pair of lower magnetic poles to brake the molten steel flow, and the pair A method of continuously casting the steel while braking the molten steel flow and stirring the molten steel is used by applying a DC magnetic field and an AC moving magnetic field superimposed on the upper magnetic pole of the steel.
According to the present invention, in such a continuous casting method, in order to increase the productivity of the slab, the molten steel is cast under a high efficiency condition in which the molten steel throughput Q is 6.0 to 7.5 ton / min and the casting width is 1850 mm or more. . Here, molten steel throughput is the amount of molten steel cast per unit time.

本発明者らは、上記のような電磁力を利用して溶鋼の流動制御を行う連続鋳造方法において、溶鋼スループットQを6.0〜7.5ton/min、鋳造幅を1850mm以上とする高能率条件で溶鋼を連続鋳造した場合について、鋳型内の溶鋼流動状況に関する調査を行った。この調査では、数値計算や実機1/4サイズの低融点合金(Bi、Pb、Sn、Cd合金:融点70℃)装置による流速測定により、鋳型内の流速分布を繰り返し求めた。その結果、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が15〜35°、浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)が180mm以上300mm未満の浸漬ノズルを用い、上部磁極に印加する交流移動磁界の強度を0.07〜0.09T、上部磁極に印加する直流磁界の強度を0.25〜0.32T、下部磁極に印加する直流磁界の強度を0.35〜0.40Tとした上で、浸漬ノズルの内壁面からの不活性ガスの吹き込み量R(NL/min)と溶鋼スループットQ(ton/min)との比R/Qが下記(1)式を満足するように鋳造を行うことにより、溶鋼スループットQを6.0〜7.5ton/min、鋳造幅を1850mm以上とする高能率条件でも、欠陥の少ない高品質のスラブが得られることを見出した。
(15−Q)/3.75≦R/Q≦(16.5−Q)/3.75 …(1)
In the continuous casting method in which flow control of molten steel is performed using the electromagnetic force as described above, the present inventors have achieved high efficiency with a molten steel throughput Q of 6.0 to 7.5 ton / min and a casting width of 1850 mm or more. When the molten steel was continuously cast under the conditions, the investigation on the molten steel flow in the mold was conducted. In this investigation, the flow velocity distribution in the mold was repeatedly obtained by numerical calculation and measurement of the flow velocity with a low-melting-point alloy (Bi, Pb, Sn, Cd alloy: melting point 70 ° C.) of an actual machine 1/4 size. As a result, a molten steel discharge angle from the horizontal direction of the molten steel discharge hole is 15 to 35 °, and an immersion depth (however, a distance from the meniscus to the upper end of the molten steel discharge hole) is 180 mm or more and less than 300 mm. The strength of the AC moving magnetic field applied to the upper magnetic pole is 0.07 to 0.09 T, the strength of the DC magnetic field applied to the upper magnetic pole is 0.25 to 0.32 T, and the strength of the DC magnetic field applied to the lower magnetic pole is 0.35 to 0 The ratio R / Q between the amount R (NL / min) of the inert gas blown from the inner wall surface of the immersion nozzle and the molten steel throughput Q (ton / min) satisfies the following formula (1). It has been found that high quality slabs with few defects can be obtained even under high efficiency conditions where the molten steel throughput Q is 6.0 to 7.5 ton / min and the casting width is 1850 mm or more by performing casting in this manner. .
(15-Q) /3.75≦R/Q≦ (16.5-Q) /3.75 (1)

ここで、R/Qが上記(1)式の左辺で表される数値よりも小さい場合には、広幅材の幅方向両端部の流速が低下し、非金属介在物や気泡の洗浄効果が乏しくなり、両端部領域にこれらが捕捉されて欠陥となることが判った。このような条件で鋳造した製品の欠陥分布を調査すると、欠陥発生領域が幅方向端部に集中しており、上記の調査結果と一致することが判った。一方、R/Qが上記(1)式の右辺で表される数値よりも大きい場合には、表面流速が大きくなるためモールドパウダーの巻き込みが起こりやすくなり、製品欠陥の要因となることが判った。   Here, when R / Q is smaller than the numerical value represented by the left side of the above equation (1), the flow velocity at both ends in the width direction of the wide material decreases, and the cleaning effect of nonmetallic inclusions and bubbles is poor. Thus, it was found that these were trapped in both end regions and became defects. When the defect distribution of the product cast under such conditions was investigated, it was found that the defect occurrence area was concentrated at the end in the width direction, which coincided with the above-described investigation result. On the other hand, it was found that when R / Q is larger than the value represented by the right side of the above formula (1), the surface flow velocity is increased, so that the mold powder is likely to be caught, resulting in a product defect. .

鋳型内での溶鋼流速制御は電磁力による方法が一般的であるが、電磁力は鋳型幅方向一定の制御である。鋳造幅1850mm以上で溶鋼スループットが6.0〜7.5ton/minのような、広幅・高スループット条件においては、浸漬ノズルから吹き込む不活性ガス流量の鋳型内流動への影響が大きく、鋳型幅方向での溶鋼流速の大小が生じやすい状況となる。このような溶鋼流速の変動を、幅方向一定の電磁力制御のみで制御しきることは困難であり、不活性ガス吹き込み量を細かい範囲で管理し、鋳型内の溶鋼流速をより厳密に制御することで、広幅・高スループット条件においても高品質なスラブを製造できることが、本発明者らの検討により明らかとなった。   The molten steel flow velocity control in the mold is generally performed by an electromagnetic force, but the electromagnetic force is a constant control in the mold width direction. In a wide and high throughput condition such as a cast width of 1850 mm or more and a molten steel throughput of 6.0 to 7.5 ton / min, the flow of inert gas blown from the immersion nozzle has a large effect on the flow in the mold, and the mold width direction It becomes a situation where the magnitude of the molten steel flow velocity is likely to occur. It is difficult to control such fluctuations in the molten steel flow rate only by electromagnetic force control that is constant in the width direction, and the amount of inert gas blown is managed in a fine range, and the molten steel flow rate in the mold is controlled more strictly. Thus, it has been clarified by the present inventors that high-quality slabs can be manufactured even under wide-width and high-throughput conditions.

以上のような知見に基づき本発明では、溶鋼スループットQを6.0〜7.5ton/minとし、鋳造幅が1850mm以上のスラブを連続鋳造するに当たり、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が15〜35°、浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)が180mm以上300mm未満の浸漬ノズルを用い、上部磁極に印加する交流移動磁界の強度を0.07〜0.09T、上部磁極に印加する直流磁界の強度を0.25〜0.32T、下部磁極に印加する直流磁界の強度を0.35〜0.40Tとし、浸漬ノズルの内壁面からの不活性ガスの吹き込み量R(NL/min)と溶鋼スループットQ(ton/min)との比R/Qが、下記(1)式を満足するように鋼の連続鋳造を行うものである。
(15−Q)/3.75≦R/Q≦(16.5−Q)/3.75 …(1)
なお、本発明では、溶鋼スループットQの上限を7.5ton/minとするものであるが、これは、7.5ton/minを超えるような高スループットでは、本発明の鋳造条件をもってしても高品質なスラブが得られないからである。また、スラブの鋳造幅には特に上限はないが、求められる製品サイズや設備的な制約などから、一般には2700mm程度が実質的な上限となる。
Based on the above knowledge, in the present invention, when continuously casting a slab having a molten steel throughput Q of 6.0 to 7.5 ton / min and a casting width of 1850 mm or more, molten steel is discharged downward from the horizontal direction of the molten steel discharge hole. Using an immersion nozzle with an angle of 15 to 35 ° and an immersion depth (distance from the meniscus to the upper end of the molten steel discharge hole) of 180 mm or more and less than 300 mm, the strength of the AC moving magnetic field applied to the upper magnetic pole is 0.07 to 0 0.09T, the intensity of the DC magnetic field applied to the upper magnetic pole is 0.25 to 0.32 T, the intensity of the DC magnetic field applied to the lower magnetic pole is 0.35 to 0.40 T, and the inert gas from the inner wall surface of the immersion nozzle The steel is continuously cast so that the ratio R / Q of the blow rate R (NL / min) and the molten steel throughput Q (ton / min) satisfies the following formula (1).
(15-Q) /3.75≦R/Q≦ (16.5-Q) /3.75 (1)
In the present invention, the upper limit of the molten steel throughput Q is set to 7.5 ton / min. This is a high throughput exceeding 7.5 ton / min, even if the casting conditions of the present invention are used. This is because a quality slab cannot be obtained. Further, although there is no particular upper limit to the casting width of the slab, in general, about 2700 mm is a practical upper limit due to required product size and equipment restrictions.

次に、浸漬ノズルの溶鋼吐出角度(溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度。以下、溶鋼吐出角度αという)と浸漬深さ、上部磁極および下部磁極の磁場強度の限定理由について説明する。
浸漬ノズルの浸漬深さと溶鋼吐出角度αにより鋳型内での溶鋼の流動状態が大きく変化する。すなわち、ノズル浸漬深さが小さいほど、浸漬ノズルから吐出される溶鋼の流動状態の影響が溶鋼表面(メニスカス)に伝わりやすく、一方、ノズル浸漬深さが大きくなると下方への流速が大きくなりやすい。また、溶鋼吐出角度αが大きくなると溶鋼上昇流に較べて溶鋼下降流が大きくなり、溶鋼吐出角度αが小さくなるとその逆になる。
Next, the reason for limiting the molten steel discharge angle of the immersion nozzle (the molten steel discharge angle downward from the horizontal direction of the molten steel discharge hole; hereinafter referred to as the molten steel discharge angle α), the immersion depth, and the magnetic field strength of the upper magnetic pole and the lower magnetic pole will be described. .
The flow state of the molten steel in the mold varies greatly depending on the immersion depth of the immersion nozzle and the molten steel discharge angle α. That is, the smaller the nozzle immersion depth, the more easily the influence of the flow state of the molten steel discharged from the immersion nozzle is transmitted to the molten steel surface (meniscus), while the lower the nozzle immersion depth, the greater the downward flow rate. Further, when the molten steel discharge angle α is increased, the molten steel downward flow is increased as compared with the molten steel upward flow, and when the molten steel discharge angle α is decreased, the reverse is achieved.

ノズル浸漬深さが大きすぎても、小さすぎても、浸漬ノズルから吐出される溶鋼の流動量や流速が変化したときに、鋳型内での溶鋼の流動状態が大きく変化するため、溶鋼流の適切な制御が難しくなる。ノズル浸漬深さが180mm未満では、浸漬ノズルから吐出される溶鋼の流動量や流速が変化したときに、ダイレクトに溶鋼表面(メニスカス)が変動し、表面の乱れが大きくなってモールドフラックスの巻き込みが起こり易くなり、一方、300mm以上では、溶鋼の流動量などが変動したときに、下方への流速が大きくなって非金属系介在物や気泡の潜り込みが大きくなる傾向がある。   Even if the nozzle immersion depth is too large or too small, the flow state of the molten steel in the mold changes greatly when the flow rate or flow velocity of the molten steel discharged from the immersion nozzle changes. Proper control becomes difficult. If the nozzle immersion depth is less than 180 mm, the molten steel surface (meniscus) will fluctuate directly when the flow rate or flow velocity of the molten steel discharged from the immersion nozzle changes, and the surface disturbance will increase and the mold flux will be entrained. On the other hand, at 300 mm or more, when the flow rate of the molten steel fluctuates, the flow rate downward tends to increase, and the non-metallic inclusions and bubbles tend to increase.

溶鋼吐出角度αが35°を超えると、下部磁極の直流磁界で溶鋼下降流を制動しても、非金属介在物や気泡が溶鋼下降流によって鋳型下方に運ばれて凝固シェルに捕捉されやすくなる。一方、溶鋼吐出角度αが15°未満では、直流磁界で溶鋼上昇流を制動しても、溶鋼表面の乱れを適切に制御できず、モールドフラックスの巻き込みが生じ易くなる。   When the molten steel discharge angle α exceeds 35 °, even if the molten steel descending flow is braked by the DC magnetic field of the lower magnetic pole, nonmetallic inclusions and bubbles are easily carried down by the molten steel descending mold and are easily captured by the solidified shell. . On the other hand, when the molten steel discharge angle α is less than 15 °, even if the molten steel upward flow is braked by a DC magnetic field, the turbulence of the molten steel surface cannot be appropriately controlled, and the mold flux is likely to be involved.

また、上部磁極に印加する直流磁界の強度が0.25T未満では、直流磁界による溶鋼上昇流の制動効果が不十分で湯面変動が大きく、モールドフラックスの巻き込みが起こりやすくなる。一方、直流磁界の強度が0.32Tを超えると、鋳型内の流動による非金属介在物等の洗浄効果が低下するため、それらが凝固シェルに捕捉されやすくなり、製品欠陥につながる。
また、下部磁極に印加する直流磁界の強度が0.35T未満では、直流磁界による溶鋼下降流の制動効果が不十分であるため、溶鋼下降流に随伴する非金属介在物や気泡が下方向に潜り込み、凝固シェルに捕捉されやすくなる。一方、直流磁界の強度が0.40Tを超えると、溶鋼下降流による洗浄効果が低下するため、非金属介在物や気泡が凝固シェルに捕捉されやすくなる。
Further, if the strength of the DC magnetic field applied to the upper magnetic pole is less than 0.25 T, the braking effect of the molten steel upward flow by the DC magnetic field is insufficient, the fluctuation of the molten metal surface is large, and the mold flux is likely to be involved. On the other hand, when the strength of the DC magnetic field exceeds 0.32 T, the cleaning effect of non-metallic inclusions and the like due to the flow in the mold is reduced, so that they are easily captured by the solidified shell, leading to product defects.
In addition, when the strength of the DC magnetic field applied to the lower magnetic pole is less than 0.35 T, the braking effect of the molten steel descending flow by the DC magnetic field is insufficient, so that non-metallic inclusions and bubbles accompanying the molten steel descending flow downward. It becomes easy to get into and get caught by the solidified shell. On the other hand, when the strength of the DC magnetic field exceeds 0.40 T, the cleaning effect due to the downflow of the molten steel is reduced, so that nonmetallic inclusions and bubbles are easily captured by the solidified shell.

上部磁極に直流磁界と重畳して印加される交流磁界は、後述するように交流移動磁界である。この交流移動磁界の強度が0.07T未満では、交流磁界による旋回流が溶鋼上昇流によって干渉を受けやすく、凝固界面流速を安定的に高めることができず、気泡性欠陥が生じやすくなる。一方、交流移動磁界の強度が0.09Tを超えると、旋回撹拌力が強くなりすぎ、モールドフラックスの巻き込みが生じやすくなる。   The AC magnetic field applied to the upper magnetic pole so as to overlap the DC magnetic field is an AC moving magnetic field as will be described later. If the strength of this AC moving magnetic field is less than 0.07 T, the swirling flow caused by the AC magnetic field is likely to be interfered by the molten steel ascending flow, the solidification interface flow rate cannot be stably increased, and bubble defects are likely to occur. On the other hand, when the intensity of the AC moving magnetic field exceeds 0.09 T, the swirl stirring force becomes too strong, and the mold flux is likely to be caught.

また、浸漬ノズルのノズル内径(但し、溶鋼吐出孔の位置でのノズル内径)は70〜90mmとすることが好ましい。溶鋼中に懸濁するアルミナ等の非金属介在物が浸漬ノズルの内側に部分的に付着した場合に、浸漬ノズルから吐出する溶鋼に偏流(幅方向での流速の対称性が悪くなる)が生じることがあり、ノズル内径が70mm未満では、そのような場合に偏流が極端に大きくなる恐れがある。このような極端な偏流が生じると、鋳型内での溶鋼流の制御が困難となる。一方、浸漬ノズル内を流れる溶鋼量の調整は、浸漬ノズル上方のスライディングノズルの開度調整により行われるが、ノズル内径が90mmを超えるとノズル内部に溶鋼が充填されない部分が生じる恐れがあり、この場合も上記同様、極端な偏流が生じる可能性があり、鋳型内での溶鋼流制御が困難となる場合がある。   The nozzle inner diameter of the immersion nozzle (however, the nozzle inner diameter at the position of the molten steel discharge hole) is preferably 70 to 90 mm. When non-metallic inclusions such as alumina suspended in the molten steel partially adhere to the inside of the immersion nozzle, drift occurs in the molten steel discharged from the immersion nozzle (the flow velocity symmetry in the width direction becomes worse). In some cases, if the nozzle inner diameter is less than 70 mm, the drift may become extremely large in such a case. When such an extreme drift occurs, it becomes difficult to control the molten steel flow in the mold. On the other hand, adjustment of the amount of molten steel flowing in the immersion nozzle is performed by adjusting the opening of the sliding nozzle above the immersion nozzle. However, if the nozzle inner diameter exceeds 90 mm, there may be a portion where the molten steel is not filled inside the nozzle. In this case, as described above, extreme drift may occur, and it may be difficult to control the molten steel flow in the mold.

また、浸漬ノズルの各溶鋼吐出孔の開口面積は3600〜8100mmとすることが好ましい。溶鋼吐出孔の開口面積が本発明の効果に影響を及ぼす理由は、溶鋼吐出孔の開口面積が小さすぎると溶鋼吐出孔から吐出される溶鋼流速が大きくなりすぎ、逆に開口面積が大きすぎると溶鋼流速が小さすぎ、いずれの場合も鋳型内の溶鋼流の流速を適正化しにくくなるためである。 The opening area of each molten steel discharge hole of the immersion nozzle is preferable to be 3600~8100mm 2. The reason why the opening area of the molten steel discharge hole affects the effect of the present invention is that if the opening area of the molten steel discharge hole is too small, the flow speed of the molten steel discharged from the molten steel discharge hole becomes too large, and conversely if the opening area is too large. This is because the molten steel flow velocity is too small, and in any case, it is difficult to optimize the flow velocity of the molten steel flow in the mold.

図1および図2は、本発明の実施に供される連続鋳造機の鋳型および浸漬ノズルの一実施形態を示すもので、図1は鋳型および浸漬ノズルの縦断面図、図2は同じく水平断面図(図1のII−II線に沿う断面図)である。
図において、1は鋳型であり、この鋳型1は鋳型長辺部10(鋳型側壁)と鋳型短辺部11(鋳型側壁)とにより水平断面矩形状に構成されている。
2は浸漬ノズルであり、この浸漬ノズル2を通じて鋳型1の上方に設置されたタンディッシュ(図示せず)内の溶鋼を鋳型1内に注入する。この浸漬ノズル2は、筒状のノズル本体の下端に底部21を有するとともに、この底部21の直上の側壁部に、両鋳型短辺部11と対向するように1対の溶鋼吐出孔20が貫設されている。
1 and 2 show an embodiment of a mold and an immersion nozzle of a continuous casting machine used for carrying out the present invention. FIG. 1 is a longitudinal sectional view of the mold and the immersion nozzle, and FIG. It is a figure (sectional drawing which follows the II-II line of FIG. 1).
In the figure, reference numeral 1 denotes a mold, and the mold 1 is constituted by a mold long side portion 10 (mold side wall) and a mold short side portion 11 (mold side wall) in a rectangular shape in a horizontal section.
Reference numeral 2 denotes an immersion nozzle, and molten steel in a tundish (not shown) installed above the mold 1 is injected into the mold 1 through the immersion nozzle 2. The immersion nozzle 2 has a bottom portion 21 at the lower end of a cylindrical nozzle body, and a pair of molten steel discharge holes 20 penetrates the side wall portion directly above the bottom portion 21 so as to face both mold short side portions 11. It is installed.

先に述べたように、この浸漬ノズル2は、溶鋼吐出孔20の水平方向から下向きの溶鋼吐出角度αが15〜35°、浸漬深さ(但し、メニスカス6から溶鋼吐出孔20上端までの距離)が180mm以上300mm未満であり、また、ノズル内径(但し、溶鋼吐出孔20の位置でのノズル内径)が70〜90mm、各溶鋼吐出孔20の開口面積が3600〜8100mmであることが好ましい。 As described above, the immersion nozzle 2 has a molten steel discharge angle α of 15 to 35 ° downward from the horizontal direction of the molten steel discharge hole 20 and an immersion depth (however, the distance from the meniscus 6 to the upper end of the molten steel discharge hole 20). ) Is 180 mm or more and less than 300 mm, the nozzle inner diameter (however, the nozzle inner diameter at the position of the molten steel discharge hole 20) is 70 to 90 mm, and the opening area of each molten steel discharge hole 20 is preferably 3600 to 8100 mm 2. .

溶鋼中のアルミナなどの非金属介在物が浸漬ノズル2の内壁面に付着・堆積してノズル閉塞を生じることを防止するため、浸漬ノズル2のノズル本体内部に設けられたガス流路にArガスなどの不活性ガスが導入され、この不活性ガスがノズル内壁面からノズル内に吹き込まれる。
タンディッシュから浸漬ノズル2に流入した溶鋼は、浸漬ノズル2の1対の溶鋼吐出孔20から鋳型1内に吐出される。吐出された溶鋼は、鋳型1内で冷却されて凝固シェル5を形成し、鋳型1の下方に連続的に引き抜かれ鋳片(スラブ)となる。鋳型1内のメニスカス6には、溶鋼の保温剤および凝固シェル5と鋳型1の潤滑剤として、モールドフラックスが添加される。
In order to prevent non-metallic inclusions such as alumina in the molten steel from adhering to and accumulating on the inner wall surface of the immersion nozzle 2 and blocking the nozzle, Ar gas is provided in the gas flow path provided inside the nozzle body of the immersion nozzle 2. An inert gas such as is introduced, and this inert gas is blown into the nozzle from the inner wall surface of the nozzle.
Molten steel flowing into the immersion nozzle 2 from the tundish is discharged into the mold 1 from a pair of molten steel discharge holes 20 of the immersion nozzle 2. The discharged molten steel is cooled in the mold 1 to form a solidified shell 5 and is continuously drawn below the mold 1 to form a slab. A mold flux is added to the meniscus 6 in the mold 1 as a heat insulating agent for molten steel and a lubricant for the solidified shell 5 and the mold 1.

また、浸漬ノズル2の内壁面から吹き込まれた不活性ガスの気泡は、溶鋼吐出孔20から溶鋼とともに鋳型1内に吐出される。
鋳型1の外側(鋳型側壁の背面)には、鋳型長辺部を挟んで対向する1対の上部磁極3a、3bと1対の下部磁極4a、4bが設けられ、これら上部磁極3a、3bと下部磁極4a、4bは、それぞれ鋳型長辺部10の幅方向において、その全幅に沿うように配置されている。
Further, the inert gas bubbles blown from the inner wall surface of the immersion nozzle 2 are discharged into the mold 1 from the molten steel discharge hole 20 together with the molten steel.
A pair of upper magnetic poles 3a and 3b and a pair of lower magnetic poles 4a and 4b that are opposed to each other with the long side of the mold interposed therebetween are provided on the outer side of the mold 1 (the back side of the mold side wall). The lower magnetic poles 4a and 4b are arranged along the entire width in the width direction of the mold long side portion 10, respectively.

上部磁極3a、3bと下部磁極4a、4bは、鋳型1の上下方向において、上部磁極3a、3bの直流磁場のピーク位置(上下方向でのピーク位置:通常は上部磁極3a、3bの上下方向中心位置)と下部磁極4a、4bの直流磁場のピーク位置(上下方向でのピーク位置:通常は下部磁極4a、4bの上下方向中心位置)の間に溶鋼吐出孔20が位置するように、配置される。また、1対の上部磁極3a、3bは、通常、メニスカス6をカバーする位置に配置される。   The upper magnetic poles 3a and 3b and the lower magnetic poles 4a and 4b have a DC magnetic field peak position of the upper magnetic poles 3a and 3b in the vertical direction of the mold 1 (vertical vertical position: usually the vertical center of the upper magnetic poles 3a and 3b. Position) and the peak position of the DC magnetic field of the lower magnetic poles 4a and 4b (the peak position in the vertical direction: usually the center position in the vertical direction of the lower magnetic poles 4a and 4b). The In addition, the pair of upper magnetic poles 3 a and 3 b are usually arranged at positions that cover the meniscus 6.

上部磁極3a、3bと下部磁極4a、4bには、それぞれ直流磁界が印加されるとともに、上部磁極3a、3bには交流磁界(交流移動磁界)が重畳して印加されるので、通常、上部磁極3a、3bは、互いに独立した直流磁界用磁極と交流磁界用磁極(いずれの磁極も鉄芯部とコイルとからなる)を備える。これにより、重畳印加される直流磁界と交流磁界の各々の強度を任意に選択することができる。図3は、そのような上部磁極3a、3bの一実施形態を模式的に示す平面図であり、鋳型1の両鋳型長辺部の外側に1対の交流磁界用磁極30a、30b(=交流磁場発生装置)が配置され、さらにその外側に1対の直流磁界用磁極31a、31b(=直流磁場発生装置)が配置されている。   Since a DC magnetic field is applied to the upper magnetic poles 3a and 3b and the lower magnetic poles 4a and 4b, respectively, and an AC magnetic field (AC moving magnetic field) is applied to the upper magnetic poles 3a and 3b in a superimposed manner. Each of 3a and 3b includes a magnetic pole for DC magnetic field and a magnetic pole for AC magnetic field (both magnetic poles are each composed of an iron core portion and a coil). Thereby, each intensity | strength of the direct current magnetic field and alternating current magnetic field which are superimposed and applied can be selected arbitrarily. FIG. 3 is a plan view schematically showing an embodiment of such upper magnetic poles 3a and 3b, and a pair of alternating magnetic field magnetic poles 30a and 30b (= AC) on the outside of both mold long sides of the mold 1. (Magnetic field generator) is disposed, and a pair of DC magnetic poles 31a and 31b (= DC magnetic field generator) are disposed outside the magnetic field generator.

また、上部磁極3a、3bは、共通の鉄芯部に対して直流磁界用コイルと交流磁界用コイルを備えるものであってもよく、このような独立して制御可能な直流磁場用コイルと交流磁場用コイルを備えることにより、重畳印加される直流磁界と交流磁界の各々の強度を任意に選択することができる。一方、下部磁極4a、4bは、鉄芯部と直流磁場用コイルとからなる。
また、直流磁界に重畳印加される交流磁界は交流移動磁界である。交流移動磁界とは、任意の隣接するN個のコイルに360°/Nずつ位相をずらした交流電流を通電して得られる磁界のことで、一般には、高効率であるためN=3(位相差120°)が用いられる。ここで、直流磁界に重畳印加される交流磁界を交流移動磁界とする理由は、鋳型内の溶鋼を撹拌するために、移動する磁界によって溶鋼の流れを作るためである。交流磁界であっても交流移動磁界でないもの、つまり、各コイルの電流位相が同じで磁束の位置が時間につれて移動しない磁界は、溶鋼の撹拌には寄与しない。
Further, the upper magnetic poles 3a and 3b may be provided with a DC magnetic field coil and an AC magnetic field coil with respect to a common iron core part. By providing the magnetic field coil, it is possible to arbitrarily select the strengths of the DC magnetic field and the AC magnetic field that are superimposed and applied. On the other hand, the lower magnetic poles 4a and 4b include an iron core portion and a DC magnetic field coil.
Moreover, the alternating magnetic field that is superimposed on the direct current magnetic field is an alternating current magnetic field. An AC moving magnetic field is a magnetic field obtained by energizing an arbitrary adjacent N coils with an AC current whose phase is shifted by 360 ° / N. Generally, N = 3 (position) because of high efficiency. A phase difference of 120 °) is used. Here, the reason why the AC magnetic field superimposed on the DC magnetic field is an AC moving magnetic field is to create a flow of the molten steel by the moving magnetic field in order to stir the molten steel in the mold. An AC magnetic field that is not an AC moving magnetic field, that is, a magnetic field in which the current phase of each coil is the same and the position of the magnetic flux does not move with time does not contribute to stirring of molten steel.

浸漬ノズル2の溶鋼吐出孔20から鋳型短辺部方向に吐出された溶鋼は、鋳型短辺部11の前面に生成した凝固シェル5に衝突して下降流と上昇流に分かれる。前記1対の上部磁極3a、3bと1対の下部磁極4a、4bには、各々直流磁界が印加されるが、これら磁極による基本的な作用は、直流磁界中を移動する溶鋼に作用する電磁気力を利用して、上部磁極3a、3bに印加される直流磁界で溶鋼上昇流を制動(減速させる)し、下部磁極4a、4bに印加される直流磁界で溶鋼下降流を制動(減速させる)するものである。
また、前記1対の上部磁極3a、3bにおいて、直流磁界に重畳して印加される交流移動磁界は、メニスカスの溶鋼を水平方向に旋回撹拌し、これにより生じる溶鋼流によって、凝固シェル界面の非金属介在物や気泡を洗浄する効果が得られる。
The molten steel discharged from the molten steel discharge hole 20 of the immersion nozzle 2 in the direction of the mold short side part collides with the solidified shell 5 generated on the front surface of the mold short side part 11 and is divided into a downward flow and an upward flow. A DC magnetic field is applied to each of the pair of upper magnetic poles 3a and 3b and the pair of lower magnetic poles 4a and 4b. The basic action of these magnetic poles is electromagnetic that acts on molten steel moving in the DC magnetic field. Using the force, the molten steel upward flow is braked (decelerated) by the DC magnetic field applied to the upper magnetic poles 3a, 3b, and the molten steel downward flow is braked (decelerated) by the DC magnetic field applied to the lower magnetic poles 4a, 4b. To do.
Further, in the pair of upper magnetic poles 3a and 3b, the AC moving magnetic field applied to be superimposed on the DC magnetic field swirls and stirs the meniscus molten steel in the horizontal direction, and the resulting molten steel flow causes non-solidification of the solidified shell interface. An effect of cleaning metal inclusions and bubbles can be obtained.

本発明において、鋳造されるスラブ厚さ、浸漬ノズル2の内壁面からの不活性ガス吹き込み量、上部磁極に印加する交流磁界の周波数などに特別な制限はないが、溶鋼の流動制御や気泡分布の制御などの観点から、以下のようにすることが好ましい。
浸漬ノズル2の溶鋼吐出孔20から吐出される溶鋼は気泡を随伴しており、スラブ厚さが小さすぎると、溶鋼吐出孔20から吐出される溶鋼流が鋳型長辺部側の凝固シェル5に近づき、凝固界面気泡濃度が高くなり、凝固シェル界面に気泡が捕捉されやすくなる。特に、スラブ厚さが220mm未満では、本発明のような溶鋼流の電磁流動制御を実施しても、上記のような理由により気泡分布の制御が難しくなりやすい。一方、スラブ厚さが300mmを超えると、熱延工程の生産性が低くなる難点がある。このため鋳造されるスラブ厚さは220〜300mmとすることが好ましい。
In the present invention, there are no particular restrictions on the thickness of the cast slab, the amount of inert gas blown from the inner wall surface of the immersion nozzle 2, the frequency of the alternating magnetic field applied to the upper magnetic pole, etc. From the viewpoint of controlling the above, the following is preferable.
The molten steel discharged from the molten steel discharge hole 20 of the immersion nozzle 2 is accompanied by bubbles, and if the slab thickness is too small, the molten steel flow discharged from the molten steel discharge hole 20 is directed to the solidified shell 5 on the long side of the mold. Approaching, the solidification interface bubble concentration becomes high, and the bubbles are easily trapped at the solidification shell interface. In particular, when the slab thickness is less than 220 mm, even if the electromagnetic flow control of the molten steel flow as in the present invention is performed, it is difficult to control the bubble distribution for the reasons described above. On the other hand, when the slab thickness exceeds 300 mm, the productivity of the hot rolling process is lowered. For this reason, it is preferable that the slab thickness cast is 220-300 mm.

浸漬ノズル2の内壁面からの不活性ガス吹き込み量が多くなると、凝固界面気泡濃度が高くなり、凝固シェル界面に気泡が捕捉されやすくなる。特に、不活性ガス吹き込み量が20NL/分を超えると、本発明のような溶鋼流の電磁流動制御を実施しても、上記のような理由により気泡分布の制御が難しくなりやすい。一方、不活性ガス吹き込み量が少なすぎるとノズル閉塞を起こしやすく、却って偏流を大きくするために流速の制御が困難となりやすい。このため、浸漬ノズル2の内壁面からの不活性ガス吹き込み量は3〜25NL/分とすることが好ましい。   When the amount of inert gas blown from the inner wall surface of the immersion nozzle 2 increases, the concentration of bubbles in the solidified interface increases, and bubbles are easily trapped at the solidified shell interface. In particular, when the inert gas blowing rate exceeds 20 NL / min, even if the electromagnetic flow control of the molten steel flow as in the present invention is performed, it is difficult to control the bubble distribution for the reasons described above. On the other hand, if the amount of inert gas blown is too small, nozzle clogging is likely to occur, and on the other hand, drift is increased and control of the flow rate tends to be difficult. For this reason, it is preferable that the amount of inert gas blown from the inner wall surface of the immersion nozzle 2 is 3 to 25 NL / min.

また、上部磁極に印加する交流磁界の周波数に特別な制限はないが、周波数が過小であると、交流磁界の印加により誘起される溶鋼流動の時間的変化が大きくなって溶鋼表面の流動に乱れが生じ、モールドパウダーの未溶解や湯面変動が生じやすくなる。一方、周波数が過大であると、溶鋼の撹拌に使われる磁場強度が減衰して、撹拌性が低下しやすい。以上の観点から、上部磁極に印加する交流磁界の周波数は1.5〜5.0Hzの範囲が最も好ましい。   In addition, there is no particular restriction on the frequency of the AC magnetic field applied to the upper magnetic pole, but if the frequency is too low, the temporal change in the molten steel flow induced by the application of the AC magnetic field becomes large and the flow on the molten steel surface is disturbed. This is likely to cause the mold powder to be undissolved and to change the molten metal surface. On the other hand, if the frequency is excessive, the magnetic field strength used for stirring the molten steel is attenuated, and the stirring property tends to be lowered. From the above viewpoint, the frequency of the AC magnetic field applied to the upper magnetic pole is most preferably in the range of 1.5 to 5.0 Hz.

[実施例1]
図1〜図3に示すような連続鋳造機、すなわち、鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、前記上部磁極の直流磁場のピーク位置と前記下部磁極の直流磁場のピーク位置の間に、溶鋼を注入するための浸漬ノズルの溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の下部磁極に直流磁界を印加することにより溶鋼流を制動し、且つ前記1対の上部磁極に直流磁界と交流移動磁界を重畳印加することにより溶鋼流の制動と溶鋼の撹拌を行う連続鋳造法により、約300トンのアルミキルド溶鋼を鋳造した。
[Example 1]
1 to 3, a continuous casting machine, that is, a pair of upper magnetic poles and a pair of lower magnetic poles that are opposed to each other with the long side of the mold interposed therebetween, and a DC magnetic field of the upper magnetic poles. Applying a DC magnetic field to the pair of lower magnetic poles using a continuous casting machine in which a molten steel discharge hole of an immersion nozzle for injecting molten steel is positioned between the peak position and the DC magnetic field peak position of the lower magnetic pole About 300 tons of aluminum killed molten steel is cast by a continuous casting method that brakes the molten steel flow and applies a DC magnetic field and an AC moving magnetic field to the pair of upper magnetic poles to superimpose the molten steel flow and stir the molten steel. did.

鋳造厚(スラブ厚)を220〜300mm、鋳造幅(スラブ幅)を1850〜2100mm、溶鋼スループットを6.0〜7.5ton/minとした。浸漬ノズルの溶鋼吐出角度αは15〜35°とし、浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)は180mm以上300mm未満の条件とした。浸漬ノズルの各溶鋼吐出孔は1辺の長さが80mmの正方形状とし(各溶鋼吐出孔の開口面積6400mm)、浸漬ノズルのノズル内径(但し、溶鋼吐出孔の位置でのノズル内径)は80mmとした。また、上部磁極に印加する交流移動磁界の強度を0.07〜0.09T、上部磁極に印加する直流磁界の強度を0.25〜0.32T、下部磁極に印加する直流磁界の強度を0.35〜0.40Tの条件とし、上部磁極に印加する交流磁界の周波数は3.3Hzとした。浸漬ノズルから吹き込む不活性ガスにはArガスを使用し、Arガスの吹き込み量を変えて鋳造を行った。 The casting thickness (slab thickness) was 220 to 300 mm, the casting width (slab width) was 1850 to 2100 mm, and the molten steel throughput was 6.0 to 7.5 ton / min. The molten steel discharge angle α of the immersion nozzle was 15 to 35 °, and the immersion depth (however, the distance from the meniscus to the upper end of the molten steel discharge hole) was 180 mm or more and less than 300 mm. Each molten steel discharge hole of the immersion nozzle has a square shape with a side length of 80 mm (open area of each molten steel discharge hole 6400 mm 2 ), and the nozzle inner diameter of the immersion nozzle (however, the nozzle inner diameter at the position of the molten steel discharge hole) is 80 mm. Further, the intensity of the AC moving magnetic field applied to the upper magnetic pole is 0.07 to 0.09 T, the intensity of the DC magnetic field applied to the upper magnetic pole is 0.25 to 0.32 T, and the intensity of the DC magnetic field applied to the lower magnetic pole is 0. The frequency of the alternating magnetic field applied to the upper magnetic pole was 3.3 Hz. Ar gas was used as the inert gas blown from the immersion nozzle, and casting was performed by changing the blow amount of Ar gas.

鋳造されたスラブを熱間圧延および冷間圧延して鋼板とし、この鋼板に合金化溶融亜鉛めっき処理を施した。この合金化溶融亜鉛めっき鋼板の表面欠陥をオンライン表面欠陥計で連続的に測定し、そのなかから欠陥外観およびSEM分析、ICP分析等により製鋼性欠陥(フラックス性欠陥および気泡性欠陥)を判別し、コイル長さ100mあたりの欠陥個数で評価した。   The cast slab was hot-rolled and cold-rolled into a steel plate, and this steel plate was subjected to alloying hot dip galvanizing treatment. The surface defects of this alloyed hot-dip galvanized steel sheet are continuously measured with an on-line surface defect meter, from which the defect appearance, SEM analysis, ICP analysis, etc. are used to identify steelmaking defects (flux defects and bubble defects). The number of defects per coil length of 100 m was evaluated.

その結果を、鋳造条件とともに表1〜表3に示す。発明例1〜30は、製品の欠陥個数が0.10〜0.20個/100mと非常に少なく、良好な品質が得られている。これに対して、比較例1〜15は、Arガスの吹き込み量R(NL/min)と溶鋼スループットQ(ton/min)との比R/Qが(1)式の条件を満たさないため、製品の欠陥個数が0.52〜0.65個/100mと多く、品質が劣っている。また、比較例16〜37は、溶鋼スループット、浸漬ノズルの溶鋼吐出角度、浸漬ノズルの浸漬深さ、上部磁極に印加する交流移動磁界の強度、上部磁極に印加する直流磁界の強度、下部磁極に印加する直流磁界の強度のうちのいずれかが本発明条件を満たさないため、製品の欠陥個数が0.51〜0.61個/100mと多く、品質が劣っている。   The results are shown in Tables 1 to 3 together with the casting conditions. In Invention Examples 1 to 30, the number of product defects is as very small as 0.10 to 0.20 / 100 m, and good quality is obtained. On the other hand, in Comparative Examples 1 to 15, the ratio R / Q between the Ar gas blowing amount R (NL / min) and the molten steel throughput Q (ton / min) does not satisfy the condition of the formula (1). The number of product defects is as large as 0.52 to 0.65 / 100 m, and the quality is poor. Further, Comparative Examples 16 to 37 are the molten steel throughput, the molten steel discharge angle of the immersion nozzle, the immersion depth of the immersion nozzle, the strength of the AC moving magnetic field applied to the upper magnetic pole, the strength of the DC magnetic field applied to the upper magnetic pole, and the lower magnetic pole. Since any one of the strengths of the applied DC magnetic field does not satisfy the conditions of the present invention, the number of product defects is as large as 0.51 to 0.61 / 100 m, and the quality is poor.

Figure 2015085370
Figure 2015085370

Figure 2015085370
Figure 2015085370

Figure 2015085370
Figure 2015085370

[実施例2]
上記[実施例1]と同様の連続鋳造法により、約300トンのアルミキルド溶鋼を鋳造した。鋳造厚(スラブ厚)を220〜300mm、鋳造幅(スラブ幅)を1850〜2100mm、溶鋼スループットを6.0〜7.5ton/minとした。浸漬ノズルの溶鋼吐出角度αは15〜35°とし、浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)は180mm以上300mm未満の条件とした。上部磁極に印加する交流移動磁界の強度を0.07〜0.09T、上部磁極に印加する直流磁界の強度を0.25〜0.32T、下部磁極に印加する直流磁界の強度を0.35〜0.40Tの条件とし、上部磁極に印加する交流磁界の周波数は3.3Hzとした。浸漬ノズルから吹き込む不活性ガスにはArガスを使用し、Arガスの吹き込み量は溶鋼スループットに応じて(1)式を満たすようにした。浸漬ノズルの各溶鋼吐出孔を1辺の長さが50〜100mmの正方形状とし、各溶鋼吐出孔の開口面積を2500〜10000mmの範囲で変え、また、浸漬ノズルのノズル内径(但し、溶鋼吐出孔の位置でのノズル内径)を60〜100mmの範囲で変えて鋳造を行った。
[Example 2]
About 300 tons of aluminum killed molten steel was cast by the same continuous casting method as in [Example 1] above. The casting thickness (slab thickness) was 220 to 300 mm, the casting width (slab width) was 1850 to 2100 mm, and the molten steel throughput was 6.0 to 7.5 ton / min. The molten steel discharge angle α of the immersion nozzle was 15 to 35 °, and the immersion depth (however, the distance from the meniscus to the upper end of the molten steel discharge hole) was 180 mm or more and less than 300 mm. The intensity of the AC moving magnetic field applied to the upper magnetic pole is 0.07 to 0.09 T, the intensity of the DC magnetic field applied to the upper magnetic pole is 0.25 to 0.32 T, and the intensity of the DC magnetic field applied to the lower magnetic pole is 0.35. The frequency of the AC magnetic field applied to the upper magnetic pole was 3.3 Hz under the condition of .about.0.40 T. Ar gas was used as the inert gas blown from the immersion nozzle, and the amount of Ar gas blown was such that the formula (1) was satisfied according to the molten steel throughput. Each molten steel discharge hole of the immersion nozzle has a square shape with a side length of 50 to 100 mm, and the opening area of each molten steel discharge hole is changed in the range of 2500 to 10000 mm 2 , and the nozzle inner diameter of the immersion nozzle (however, molten steel) Casting was performed while changing the nozzle inner diameter at the position of the discharge hole in the range of 60 to 100 mm.

鋳造されたスラブを熱間圧延および冷間圧延して鋼板とし、この鋼板に合金化溶融亜鉛めっき処理を施した。この合金化溶融亜鉛めっき鋼板の表面欠陥をオンライン表面欠陥計で連続的に測定し、そのなかから欠陥外観およびSEM分析、ICP分析等により製鋼性欠陥(フラックス性欠陥および気泡性欠陥)を判別し、コイル長さ100mあたりの欠陥個数で評価した。   The cast slab was hot-rolled and cold-rolled into a steel plate, and this steel plate was subjected to alloying hot dip galvanizing treatment. The surface defects of this alloyed hot-dip galvanized steel sheet are continuously measured with an on-line surface defect meter, from which the defect appearance, SEM analysis, ICP analysis, etc. are used to identify steelmaking defects (flux defects and bubble defects). The number of defects per coil length of 100 m was evaluated.

その結果を、鋳造条件とともに表4、表5に示す。溶鋼吐出孔の開口面積を変えて実施した発明例31〜48のうち、溶鋼吐出孔の開口面積が3600〜8100mmのものは、製品の欠陥個数が0.10〜0.20個/100mと非常に少なく、良好な品質が得られている。一方、溶鋼吐出孔の開口面積が2500mmと10000mmのものは、製品の欠陥個数が0.22〜0.29個/100mと若干増えるが、これらも製品として十分に合格レベルである。
また、浸漬ノズルのノズル内径を変化させた発明例49〜63のうち、ノズル内径が70〜90mmのものは製品の欠陥個数が0.10〜0.19個/100mと非常に少なく、良好な品質が得られている。一方、ノズル内径が60mmと100mmのものは製品の欠陥個数が0.23〜0.29個/100mと若干増えるが、製品としては十分に合格レベルにある。
The results are shown in Tables 4 and 5 together with the casting conditions. Among Invention Examples 31 to 48 implemented by changing the opening area of the molten steel discharge hole, those having an opening area of the molten steel discharge hole of 3600 to 8100 mm 2 have a product defect number of 0.10 to 0.20 pieces / 100 m. Very little and good quality is obtained. On the other hand, when the opening area of the molten steel discharge hole is 2500 mm 2 and 10000 mm 2 , the number of defects of the product is slightly increased to 0.22 to 0.29 / 100 m, but these are sufficiently acceptable levels as a product.
Further, among the inventive examples 49 to 63 in which the nozzle inner diameter of the immersion nozzle is changed, those having a nozzle inner diameter of 70 to 90 mm have a very small number of product defects of 0.10 to 0.19 / 100 m, which is good. Quality is obtained. On the other hand, when the nozzle inner diameter is 60 mm and 100 mm, the number of product defects is slightly increased to 0.23 to 0.29 / 100 m, but the product is sufficiently acceptable.

Figure 2015085370
Figure 2015085370

Figure 2015085370
Figure 2015085370

1 鋳型
2 浸漬ノズル
3a,3b 上部磁極
4a,4b 下部磁極
5 凝固シェル
6 メニスカス
10 鋳型長辺部
11 鋳型短辺部
21 底部
20 溶鋼吐出孔
30a,30b 交流磁界用磁極
31a,31b 直流磁界用磁極
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3a, 3b Upper magnetic pole 4a, 4b Lower magnetic pole 5 Solidified shell 6 Meniscus 10 Mold long side 11 Mold short side 21 Bottom 20 Molten steel discharge hole 30a, 30b AC magnetic pole 31a, 31b DC magnetic pole

Claims (2)

鋳型外側に、鋳型長辺部を挟んで対向する1対の上部磁極と1対の下部磁極を備えるとともに、前記上部磁極の直流磁場のピーク位置と前記下部磁極の直流磁場のピーク位置の間に、溶鋼を注入するための浸漬ノズルの溶鋼吐出孔が位置する連続鋳造機を用い、前記1対の下部磁極に直流磁界を印加することにより溶鋼流を制動し、且つ前記1対の上部磁極に直流磁界と交流移動磁界を重畳印加することにより、溶鋼流の制動と溶鋼の撹拌を行いつつ鋼を連続鋳造する方法であって、
溶鋼スループットQを6.0〜7.5ton/minとし、鋳造幅が1850mm以上のスラブを鋳造するに当たり、溶鋼吐出孔の水平方向から下向きの溶鋼吐出角度が15〜35°、浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)が180mm以上300mm未満の浸漬ノズルを用い、上部磁極に印加する交流移動磁界の強度を0.07〜0.09T、上部磁極に印加する直流磁界の強度を0.25〜0.32T、下部磁極に印加する直流磁界の強度を0.35〜0.40Tとし、浸漬ノズルの内壁面からの不活性ガスの吹き込み量R(NL/min)と溶鋼スループットQ(ton/min)との比R/Qが、下記(1)式を満足することを特徴とする鋼の連続鋳造方法。
(15−Q)/3.75≦R/Q≦(16.5−Q)/3.75 …(1)
A pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the long side of the mold are provided outside the mold, and between the DC magnetic field peak position of the upper magnetic pole and the DC magnetic field peak position of the lower magnetic pole. The molten steel flow is braked by applying a DC magnetic field to the pair of lower magnetic poles using a continuous casting machine in which a molten steel discharge hole of a submerged nozzle for injecting molten steel is located, and to the pair of upper magnetic poles By applying a DC magnetic field and an AC moving magnetic field in a superimposed manner, a method of continuously casting steel while braking the molten steel flow and stirring the molten steel,
When casting a slab having a molten steel throughput Q of 6.0 to 7.5 ton / min and a casting width of 1850 mm or more, the molten steel discharge angle from the horizontal direction of the molten steel discharge hole is 15 to 35 °, and the immersion depth (however, , The distance from the meniscus to the molten steel discharge hole upper end) is 180 mm or more and less than 300 mm, the intensity of the AC moving magnetic field applied to the upper magnetic pole is 0.07 to 0.09 T, and the intensity of the DC magnetic field applied to the upper magnetic pole Is 0.25 to 0.32 T, the intensity of the DC magnetic field applied to the lower magnetic pole is 0.35 to 0.40 T, the amount R (NL / min) of the inert gas blown from the inner wall surface of the immersion nozzle, and the molten steel throughput. A steel continuous casting method, wherein a ratio R / Q with Q (ton / min) satisfies the following formula (1).
(15-Q) /3.75≦R/Q≦ (16.5-Q) /3.75 (1)
浸漬ノズルは、ノズル内径(但し、溶鋼吐出孔の位置でのノズル内径)が70〜90mm、各溶鋼吐出孔の開口面積が3600〜8100mmであることを特徴とする請求項1に記載の鋼の連続鋳造方法。 2. The steel according to claim 1, wherein the immersion nozzle has a nozzle inner diameter (however, a nozzle inner diameter at a position of the molten steel discharge hole) of 70 to 90 mm, and an opening area of each molten steel discharge hole is 3600 to 8100 mm 2. Continuous casting method.
JP2013227611A 2013-10-31 2013-10-31 Steel continuous casting method Active JP5929872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227611A JP5929872B2 (en) 2013-10-31 2013-10-31 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227611A JP5929872B2 (en) 2013-10-31 2013-10-31 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2015085370A true JP2015085370A (en) 2015-05-07
JP5929872B2 JP5929872B2 (en) 2016-06-08

Family

ID=53048752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227611A Active JP5929872B2 (en) 2013-10-31 2013-10-31 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5929872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047058A1 (en) * 2015-09-16 2017-03-23 Jfeスチール株式会社 Continuous casting method for slab casting piece
WO2018008814A1 (en) * 2016-07-08 2018-01-11 주식회사 포스코 Jig for casting and casting method using same
WO2023188837A1 (en) * 2022-04-01 2023-10-05 Jfeスチール株式会社 Submerged entry nozzle for continuous casting, and continuous casting method for steel
WO2023190017A1 (en) * 2022-04-01 2023-10-05 Jfeスチール株式会社 Immersion nozzle, mold, and steel continuous casting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058148A (en) * 2008-09-03 2010-03-18 Jfe Steel Corp Continuous casting method of steel
JP2010058147A (en) * 2008-09-03 2010-03-18 Jfe Steel Corp Continuous casting method of steel
JP2011121114A (en) * 2009-11-10 2011-06-23 Jfe Steel Corp Continuous casting method of steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058148A (en) * 2008-09-03 2010-03-18 Jfe Steel Corp Continuous casting method of steel
JP2010058147A (en) * 2008-09-03 2010-03-18 Jfe Steel Corp Continuous casting method of steel
JP2011121114A (en) * 2009-11-10 2011-06-23 Jfe Steel Corp Continuous casting method of steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047058A1 (en) * 2015-09-16 2017-03-23 Jfeスチール株式会社 Continuous casting method for slab casting piece
JP6115690B1 (en) * 2015-09-16 2017-04-19 Jfeスチール株式会社 Continuous casting method of slab slab
TWI599417B (en) * 2015-09-16 2017-09-21 Jfe Steel Corp Continuous Casting of Steel Emboss Casting
KR20180039686A (en) * 2015-09-16 2018-04-18 제이에프이 스틸 가부시키가이샤 Continuous casting method for slab casting piece
CN108025354A (en) * 2015-09-16 2018-05-11 杰富意钢铁株式会社 The continuous casing of slab
EP3332889A4 (en) * 2015-09-16 2018-10-03 JFE Steel Corporation Continuous casting method for slab casting piece
KR102088117B1 (en) * 2015-09-16 2020-03-11 제이에프이 스틸 가부시키가이샤 Continuous casting method for slab casting piece
WO2018008814A1 (en) * 2016-07-08 2018-01-11 주식회사 포스코 Jig for casting and casting method using same
WO2023188837A1 (en) * 2022-04-01 2023-10-05 Jfeスチール株式会社 Submerged entry nozzle for continuous casting, and continuous casting method for steel
WO2023190017A1 (en) * 2022-04-01 2023-10-05 Jfeスチール株式会社 Immersion nozzle, mold, and steel continuous casting method
JP7388599B1 (en) 2022-04-01 2023-11-29 Jfeスチール株式会社 Immersion nozzle for continuous casting and continuous casting method of steel

Also Published As

Publication number Publication date
JP5929872B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
KR101176816B1 (en) Method of continuous casting of steel
KR101168195B1 (en) Method of continuous casting of steel
JP5929872B2 (en) Steel continuous casting method
JP5217785B2 (en) Steel continuous casting method
JP6115690B1 (en) Continuous casting method of slab slab
JP2006281218A (en) Method for continuously casting steel
WO2018198181A1 (en) Continuous casting method for steel
JP2010058148A (en) Continuous casting method of steel
JP7332885B2 (en) Molten metal continuous casting method and continuous casting apparatus
JP5413277B2 (en) Continuous casting method for steel slabs
JP6036144B2 (en) Continuous casting method
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP5454664B2 (en) Steel continuous casting method
JP5874677B2 (en) Steel continuous casting method
JP5217784B2 (en) Steel continuous casting method
JP2010058147A (en) Continuous casting method of steel
JP5359653B2 (en) Steel continuous casting method
JP2011212723A (en) Continuous casting method of steel cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250