JP6036144B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP6036144B2
JP6036144B2 JP2012226732A JP2012226732A JP6036144B2 JP 6036144 B2 JP6036144 B2 JP 6036144B2 JP 2012226732 A JP2012226732 A JP 2012226732A JP 2012226732 A JP2012226732 A JP 2012226732A JP 6036144 B2 JP6036144 B2 JP 6036144B2
Authority
JP
Japan
Prior art keywords
mold
flux density
magnetic flux
molten steel
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012226732A
Other languages
Japanese (ja)
Other versions
JP2014076481A (en
Inventor
章敏 松井
章敏 松井
裕美 吉田
裕美 吉田
村井 剛
剛 村井
則親 荒牧
則親 荒牧
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012226732A priority Critical patent/JP6036144B2/en
Publication of JP2014076481A publication Critical patent/JP2014076481A/en
Application granted granted Critical
Publication of JP6036144B2 publication Critical patent/JP6036144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、磁場を用いて鋳型内溶鋼の流動を制御する連続鋳造設備及び連続鋳造方法に関する。   The present invention relates to a continuous casting equipment and a continuous casting method for controlling the flow of molten steel in a mold using a magnetic field.

近年、自動車用鋼板、缶用鋼板などの高級薄鋼板製品の品質要求が厳格化しており、これら高級薄鋼板製品の素材である、連続鋳造機によって製造される鋼のスラブ鋳片(以下、単に「鋳片」とも記す)の高品質化が要望されている。スラブ鋳片に要求される品質の1つとして、鋳片表層の介在物量が少ないことが挙げられる。スラブ鋳片の表層に捕捉される介在物には、[1]Alなどによる溶鋼の脱酸工程で発生し、溶鋼中に懸濁している脱酸生成物、[2]タンディッシュや浸漬ノズルで溶鋼内に吹き込まれるArガス気泡、[3]鋳型内溶鋼湯面上に散布したモールドパウダーが溶鋼中に巻込まれて懸濁したもの、などがある。これらは何れも薄鋼板製品段階で表面欠陥となるので、鋳片表層に捕捉される量を少なくすることが重要である。   In recent years, quality requirements for high-grade sheet steel products such as automotive steel plates and steel plates for cans have become stricter, and steel slab slabs (hereinafter simply referred to as “slab slabs”) manufactured by continuous casting machines, which are the materials of these high-grade thin steel plate products. There is a demand for higher quality) (also referred to as “slab”). One of the qualities required for slab slabs is that the amount of inclusions on the slab surface layer is small. Inclusions trapped in the surface layer of the slab slab are [1] Deoxidation products generated in the deoxidation process of molten steel with Al, etc., suspended in the molten steel, [2] Tundish and immersion nozzle There are Ar gas bubbles blown into the molten steel, and [3] a mold powder spread on the molten steel surface in the mold and suspended in the molten steel. Since all of these become surface defects at the stage of a thin steel plate product, it is important to reduce the amount captured by the slab surface layer.

また、連続鋳造操業においては同時に生産性の向上を図る必要がある。生産性の向上には鋳造速度の増加、つまり、鋳型内に注入する単位時間あたりの溶鋼量を増加させる必要がある。その場合の問題の1つとして、鋳型内に設置した浸漬ノズルからの溶鋼の吐出流速が増大し、鋳型内での溶鋼の流速が必要以上に増大するという問題がある。   In continuous casting operations, it is necessary to improve productivity at the same time. In order to improve productivity, it is necessary to increase the casting speed, that is, increase the amount of molten steel per unit time injected into the mold. As one of the problems in that case, there is a problem that the discharge speed of the molten steel from the immersion nozzle installed in the mold increases, and the flow speed of the molten steel in the mold increases more than necessary.

スラブ鋳片の連続鋳造においては、通常、鋳型長辺幅方向中央部に浸漬ノズルが設置され、浸漬ノズルの左右両側の吐出孔から鋳型内に吐出された溶鋼は、それぞれ鋳型短辺側に向かう溶鋼流となり、この溶鋼流は鋳型短辺側の凝固シェルに衝突する。鋳型短辺側の凝固シェルに衝突した溶鋼流は上下2方向に分岐し、上方に向いた溶鋼流(上昇反転流)は鋳型内溶鋼湯面(以下、「メニスカス」とも記す)で流れの方向を変え、鋳型短辺側から浸漬ノズル側に向かう流れとなる。このメニスカスでの溶鋼流速が速くなりすぎると、メニスカスに添加したモールドパウダーが溶鋼に巻き込まれ、凝固シェルに捕捉されて薄鋼板製品の表面欠陥となる。一方、凝固シェルに衝突した後に下方に向かう溶鋼流(下降反転流)は、溶鋼中の脱酸生成物を鋳型内溶鋼深部へと運び、浮上しきれなかった脱酸生成物は凝固シェルに捕捉され、薄鋼板製品の表面欠陥の原因となる。鋳造速度の増速によって、上昇反転流及び下降反転流ともに増速し、薄鋼板製品での表面欠陥発生頻度が高くなる。   In continuous casting of slab slabs, an immersion nozzle is usually installed at the center of the mold long side width direction, and the molten steel discharged into the mold from the discharge holes on both the left and right sides of the immersion nozzle is directed to the mold short side. The molten steel flow collides with the solidified shell on the short side of the mold. The molten steel flow that collides with the solidified shell on the short side of the mold branches in two directions, and the upward molten steel flow (upward reversal flow) flows in the molten steel surface in the mold (hereinafter also referred to as “meniscus”). The flow is directed from the short side of the mold toward the immersion nozzle. When the molten steel flow velocity at the meniscus becomes too fast, the mold powder added to the meniscus is caught in the molten steel and is captured by the solidified shell, resulting in a surface defect of the thin steel sheet product. On the other hand, the molten steel flow that moves downward after colliding with the solidified shell (downward reversal flow) carries the deoxidized product in the molten steel to the deep part of the molten steel in the mold, and the deoxidized product that could not float up is trapped in the solidified shell. And cause surface defects in thin steel sheet products. As the casting speed increases, both the upward and downward reversal flows increase, and the frequency of surface defects in the steel sheet product increases.

また、鋳型内の溶鋼流動は、鋳造条件が同一であっても、浸漬ノズル吐出孔へのアルミナ付着や浸漬ノズルの溶損などにより、経時的に変化する。特に、浸漬ノズルの左右2つの吐出孔でのアルミナ付着量が異なる場合には、浸漬ノズル左右の溶鋼吐出流量のバランスが崩れ、アルミナ付着量が少ない側からの吐出流量が増大する。浸漬ノズル左右の溶鋼吐出流量に差が生じる現象を「偏流現象」と称するが、この偏流現象によって鋳型内の溶鋼流動が左右非対称となり、溶鋼流動が強くなった側では、前述したメニスカスでの溶鋼流速が極端に増大するという問題が発生する。   Moreover, the molten steel flow in the mold changes with time due to the adhesion of alumina to the submerged nozzle discharge hole, the submerged nozzle or the like even if the casting conditions are the same. In particular, when the amount of alumina deposited on the left and right discharge holes of the immersion nozzle is different, the balance of the molten steel discharge flow rate on the left and right of the immersion nozzle is lost, and the discharge flow rate from the side with the smaller amount of alumina adhesion increases. The phenomenon in which the difference between the discharge flow rates of the molten steel on the left and right of the immersion nozzle is referred to as the “diffusion phenomenon”. On the side where the molten steel flow in the mold becomes asymmetrical due to this drift phenomenon, The problem arises that the flow velocity is extremely increased.

そこで、これらの問題を解決するべく以下のような技術が提案されている。例えば、特許文献1には、磁極の鉄芯の幅がスラブ鋳片の幅の少なくとも1倍になる磁極を、浸漬ノズル吐出孔の上部及び下部にそれぞれ配置し、この磁極から発生する静磁場によって浸漬ノズルから鋳型内に供給される溶鋼の吐出流に対して制動力を加えた連続鋳造方法が提案されている。   In order to solve these problems, the following techniques have been proposed. For example, in Patent Document 1, magnetic poles whose magnetic core width is at least one times the width of the slab slab are arranged at the upper and lower portions of the submerged nozzle discharge hole, respectively, and a static magnetic field generated from the magnetic poles is used. There has been proposed a continuous casting method in which a braking force is applied to a discharge flow of molten steel supplied into a mold from an immersion nozzle.

静磁場内を移動する溶鋼には、何れの方向に溶鋼が移動してもその移動方向とは逆方向の制動力が電磁気学的に作用することから、静磁場を印加することで溶鋼の流動は減速される。尚、静磁場のうちで、直流電流による直流電磁石から発生する静磁場を直流静磁場と呼んでいる。   For molten steel that moves in a static magnetic field, no matter which direction the molten steel moves, the braking force in the direction opposite to the moving direction acts electromagnetically. Is slowed down. Of the static magnetic fields, a static magnetic field generated from a direct current electromagnet by a direct current is called a direct current static magnetic field.

また、特許文献2には、鋳型内全幅に亘って厚み方向に同じ方向の直流静磁場を印加して溶鋼の鋳型内における流動を制御するスラブ鋳片の連続鋳造において、浸漬ノズルの吐出孔近傍に印加する磁束密度を周囲よりも相対的に小さくする技術が提案され、一方、特許文献3には、鋳型内全幅に亘って厚み方向に同じ方向の直流静磁場を印加してスラブ鋳片を連続鋳造する際に、特許文献2とは逆に、鋳型短辺付近の磁束密度が鋳片幅方向の中心付近に比べて小さくなるように直流静磁場を印加する技術が提案されている。   Further, in Patent Document 2, in the continuous casting of a slab slab in which a DC static magnetic field in the same direction in the thickness direction is applied over the entire width of the mold to control the flow of molten steel in the mold, the vicinity of the discharge hole of the immersion nozzle On the other hand, Patent Document 3 proposes that a slab slab is formed by applying a DC static magnetic field in the same direction in the thickness direction over the entire width of the mold. In contrast to Patent Document 2, a technique has been proposed in which a DC static magnetic field is applied so that the magnetic flux density in the vicinity of the mold short side is smaller than that in the vicinity of the center in the slab width direction.

特開平2−284750号公報JP-A-2-284750 特開2003−117636号公報JP 2003-117636 A 特開平10−263763号公報JP-A-10-263766

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

即ち、特許文献1では、静磁場を印加する際に、スラブ鋳片の幅方向での磁束密度を均一にしており、このため、浸漬ノズルからの吐出流による上昇反転流を制動するべく吐出孔上部の静磁場を強くすると、上昇反転流は制動されるが、吐出流の影響が少ない鋳片幅方向中心部では、溶鋼流速が極端に減少し、溶鋼流による洗浄効果がなくなって凝固シェルへの脱酸生成物及びArガス気泡の捕捉が増大する懸念がある。逆に、鋳片幅方向中心部での溶鋼流速を確保するべく吐出孔上部の静磁場を弱くすると、上昇反転流の制動が不十分になる。   That is, in Patent Document 1, when applying a static magnetic field, the magnetic flux density in the width direction of the slab slab is made uniform, and for this reason, the discharge hole is used to brake the upward reversal flow caused by the discharge flow from the immersion nozzle. When the upper static magnetic field is strengthened, the upward reversal flow is damped, but at the center of the slab width direction where the influence of the discharge flow is small, the molten steel flow velocity is extremely reduced, and the cleaning effect by the molten steel flow is lost, leading to the solidified shell. There is a concern that the trapping of deoxidation products and Ar gas bubbles will increase. Conversely, if the static magnetic field above the discharge hole is weakened to ensure the molten steel flow velocity at the center of the slab width direction, braking of the upward reversal flow becomes insufficient.

特許文献2及び特許文献3では、鋳片幅方向で異なる磁束密度の直流静磁場を印加することはできるが、磁極の構造上から鋳片幅方向の各位置でそれぞれ独立して磁束密度を変更することはできず、従って、鋳造速度や鋳片幅などが変化した場合には、最適な印加条件で直流静磁場を印加することができない。特に、偏流現象が発生したときには、その偏流の程度に応じて、鋳型幅方向左右で不均一な磁束密度の直流静磁場を印加することはできず、偏流現象に対応した制動制御を行うことはできない。   In Patent Document 2 and Patent Document 3, DC static magnetic fields having different magnetic flux densities in the slab width direction can be applied, but the magnetic flux density is changed independently at each position in the slab width direction from the magnetic pole structure. Therefore, when the casting speed, the slab width, and the like change, the DC static magnetic field cannot be applied under the optimum application conditions. In particular, when a drift phenomenon occurs, a DC static magnetic field with a non-uniform magnetic flux density cannot be applied to the left and right of the mold width direction depending on the degree of the drift, and braking control corresponding to the drift phenomenon is not possible. Can not.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、スラブ鋳片の幅方向全体に亘って直流静磁場を印加して連続鋳造する際に、鋳型の幅方向中心位置を境として鋳型幅方向左右で独立して磁束密度を調整することができ、脱酸生成物、Arガス気泡、モールドパウダーの凝固シェルへの捕捉を防止することができるのみならず、偏流現象が発生した場合には鋳型幅方向左右で不均一な磁束密度の直流静磁場を印加することのできる連続鋳造設備、並びに、連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to determine the center position in the width direction of the mold when continuously casting by applying a DC static magnetic field over the entire width direction of the slab slab. The magnetic flux density can be adjusted independently at the left and right of the mold width direction as a boundary, and not only the deoxidation product, Ar gas bubbles and mold powder can be prevented from being trapped in the solidified shell, but also a drift phenomenon occurs. In this case, it is to provide a continuous casting equipment and a continuous casting method capable of applying a DC static magnetic field having a non-uniform magnetic flux density on the left and right of the mold width direction.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]磁極の中心が浸漬ノズルの吐出孔よりも上方側に位置する、鋳型長辺を挟んで対向する1対の上部磁極と、磁極の中心が浸漬ノズルの吐出孔よりも下方側に位置する、鋳型長辺を挟んで対向する1対の下部磁極とを鋳型長辺の背面に備え、前記下部磁極からスラブ鋳片全幅に亘る直流静磁場を印加し、且つ、前記上部磁極からスラブ鋳片全幅に亘る直流静磁場と、スラブ鋳片全幅に亘る交流移動磁場とを、重畳して印加する連続鋳造設備であって、前記上部磁極の直流静磁場を印加するための直流電磁石が鋳型の幅方向で4つに分割されており、分割されたそれぞれの直流電磁石で、該直流電磁石から印加する磁束密度が独立して変更可能なように構成されていることを特徴とする連続鋳造設備。
[2]上記[1]に記載の連続鋳造設備を用いて溶鋼を連続鋳造する際に、前記下部磁極から印加する直流静磁場の磁束密度を磁束密度A(テスラ)、前記上部磁極の4つに分割した直流電磁石のうちの両端部側の2個の直流電磁石から印加する直流静磁場の磁束密度を磁束密度B(テスラ)、前記上部磁極の4つに分割した直流電磁石のうちの中央部側の2個の直流電磁石から印加する直流静磁場の磁束密度を磁束密度C(テスラ)としたとき、磁束密度A、磁束密度B、磁束密度Cが下記の(1)式及び(2)式を同時に満足するように、それぞれの磁束密度を調整して印加することを特徴とする連続鋳造方法。
0.4≦磁束密度C/磁束密度A≦0.9・・・(1)
0.3≦磁束密度B/磁束密度C≦0.8・・・(2)
[3]前記上部磁極の配置位置での鋳型内溶鋼の鋳型幅方向の溶鋼流速を測定し、測定される溶鋼流速から鋳型内での偏流現象が確認された場合には、前記4つに分割した直流電磁石に供給する電流値を制御し、鋳型内での偏流現象を解消することを特徴とする、上記[2]に記載の連続鋳造方法。
The gist of the present invention for solving the above problems is as follows.
[1] A pair of upper magnetic poles that are opposed to each other across the mold long side, the center of the magnetic pole is located above the ejection hole of the immersion nozzle, and the center of the magnetic pole is located below the ejection hole of the immersion nozzle A pair of lower magnetic poles facing each other across the long side of the mold is provided on the back side of the long side of the mold, a DC static magnetic field is applied from the lower magnetic pole to the entire width of the slab slab, and slab casting is performed from the upper magnetic pole. A continuous casting facility for applying a DC static magnetic field over the entire width of the slab and an AC moving magnetic field over the entire width of the slab slab, wherein the DC electromagnet for applying the DC static magnetic field of the upper magnetic pole is a mold A continuous casting facility, which is divided into four in the width direction, and is configured such that the magnetic flux density applied from each of the divided DC electromagnets can be changed independently.
[2] When continuously casting molten steel using the continuous casting equipment described in [1] above, a magnetic flux density of a DC static magnetic field applied from the lower magnetic pole is defined as a magnetic flux density A (Tesla), and the four upper magnetic poles. Among the DC electromagnets divided into two, the magnetic flux density of the DC static magnetic field applied from the two DC electromagnets on both ends is the magnetic flux density B (Tesla), and the center part of the DC electromagnets divided into four upper magnetic poles When the magnetic flux density of the DC static magnetic field applied from the two DC magnets on the side is defined as magnetic flux density C (Tesla), the magnetic flux density A, magnetic flux density B, and magnetic flux density C are the following formulas (1) and (2): The continuous casting method characterized by adjusting and applying each magnetic flux density so that it may satisfy | fill simultaneously.
0.4 ≦ magnetic flux density C / magnetic flux density A ≦ 0.9 (1)
0.3 ≦ magnetic flux density B / magnetic flux density C ≦ 0.8 (2)
[3] The molten steel flow velocity in the mold width direction of the molten steel in the mold at the position of the upper magnetic pole is measured, and when the drift phenomenon in the mold is confirmed from the measured molten steel flow velocity, the molten steel flow is divided into the four The continuous casting method according to the above [2], wherein the current value supplied to the direct current electromagnet is controlled to eliminate the drift phenomenon in the mold.

本発明によれば、下部磁極から印加する直流静磁場で浸漬ノズルの吐出孔から吐出される溶鋼吐出流及びこの溶鋼吐出流が鋳型短辺側の凝固シェルに衝突して分岐する下降反転流を制動し、且つ、上部磁極の4つに分割した直流電磁石からそれぞれ磁束密度を調整して印加する直流静磁場によって溶鋼吐出流が鋳型短辺側の凝固シェルに衝突して分岐する上昇反転流及びメニスカスの溶鋼流速を制動し、更に、上部磁極から印加する交流移動磁場によってメニスカスに適度の溶鋼流を付与することができるので、鋳片表層部への脱酸生成物、Arガス気泡及びモールドパウダーの捕捉を抑止することができ、清浄な高品質のスラブ鋳片を安定して製造することが実現される。また、鋳型内で偏流現象が起こった場合でも、上部磁極の4つに分割した直流電磁石からそれぞれ磁束密度の異なる直流静磁場を印加することで、鋳型内での偏流現象を解消させて鋳型内の溶鋼流動を均一化することが可能となる。   According to the present invention, the molten steel discharge flow discharged from the discharge hole of the immersion nozzle with a DC static magnetic field applied from the lower magnetic pole, and the downward reversal flow that branches off when the molten steel discharge flow collides with the solidified shell on the short side of the mold. Ascending reversal flow in which the molten steel discharge flow collides with the solidified shell on the short side of the mold and branches by a DC static magnetic field that is braked and applied by adjusting the magnetic flux density from each of the DC magnets divided into four upper magnetic poles. The molten steel flow velocity of the meniscus is braked, and an appropriate molten steel flow can be imparted to the meniscus by the AC moving magnetic field applied from the upper magnetic pole, so that the deoxidation product, Ar gas bubbles and mold powder to the slab surface layer portion It is possible to suppress the trapping and to stably produce a clean and high quality slab slab. Even if a drift phenomenon occurs in the mold, the drift phenomenon in the mold is eliminated by applying a DC static magnetic field having a different magnetic flux density from the DC magnet divided into four upper magnetic poles. It is possible to make the molten steel flow uniform.

本発明で使用した連続鋳造用鋳型の側面概略図である。1 is a schematic side view of a continuous casting mold used in the present invention. 比較のために使用した、鋳型幅方向に1つの電磁石で構成されている直流電磁石を備えた上部磁極位置での水平断面概略図である。It is the horizontal cross-sectional schematic diagram in the upper magnetic pole position provided with the direct-current electromagnet comprised with one electromagnet used for the mold width direction used for the comparison. 図1に示す下部磁極位置での水平断面概略図である。FIG. 2 is a schematic horizontal sectional view at the position of the lower magnetic pole shown in FIG. 1. 本発明で使用した上部磁極位置での水平断面概略図である。It is a horizontal section schematic diagram in the upper magnetic pole position used by the present invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、磁極の中心が浸漬ノズルの吐出孔よりも上方側に位置する上部磁極と、磁極の中心が浸漬ノズルの吐出孔よりも下方側に位置する下部磁極とを鋳型長辺の背面に備えた連続鋳造用鋳型を用い、上部磁極から直流静磁場と交流移動磁場とを重畳して印加すると同時に、下部磁極から直流静磁場を印加して溶鋼を連続鋳造するにあたり、鋳片表層部での脱酸生成物、Arガス気泡、モールドパウダーの捕捉量が少なく、清浄で高品質のスラブ鋳片を安定して製造することを目的として、上部磁極から印加する直流静磁場の磁束密度について検討した。   The inventors of the present invention have an upper magnetic pole whose center of the magnetic pole is located above the discharge hole of the immersion nozzle and a lower magnetic pole whose center of the magnetic pole is located below the discharge hole of the immersion nozzle. Using a continuous casting mold provided on the back side, a DC static magnetic field and an AC moving magnetic field are applied superimposed from the upper magnetic pole, and at the same time, a DC static magnetic field is applied from the lower magnetic pole to continuously cast molten steel. Magnetic flux density of DC static magnetic field applied from upper magnetic pole for the purpose of stably producing clean and high quality slab slabs with less deoxidation products, Ar gas bubbles and mold powder trapping Was examined.

使用した連続鋳造用鋳型の側面概略図を図1に示す。鋳型1は、対向する1対の鋳型長辺2の間に1対の鋳型短辺3が、対向するように挟持された構成であり、鋳型短辺3が鋳型長辺2の長さ方向に沿って移動することで、鋳造されるスラブ鋳片の幅、つまり鋳型幅が変更されるようになっている。鋳型内に溶鋼を注入するための浸漬ノズル4が鋳型1の幅方向の略中心に設置されており、浸漬ノズル4の下部には、鋳型短辺3を向いた吐出孔5がそれぞれ1個ずつ設けられており、溶鋼は吐出孔5から鋳型短辺3を向いた吐出流(「溶鋼吐出流」と呼ぶ)となって鋳型内に注入される。吐出孔5の吐出方向は下向き或いは上向きとなっており、通常は、下向き5〜50°程度の吐出角度が設けられている。   A schematic side view of the continuous casting mold used is shown in FIG. The mold 1 has a configuration in which a pair of mold short sides 3 are sandwiched between a pair of opposed mold long sides 2 so that the mold short sides 3 face each other in the length direction of the mold long side 2. By moving along, the width of the slab slab to be cast, that is, the mold width is changed. An immersion nozzle 4 for injecting molten steel into the mold is installed at the approximate center in the width direction of the mold 1, and one discharge hole 5 facing the mold short side 3 is provided below the immersion nozzle 4. The molten steel is provided as a discharge flow (referred to as “molten steel discharge flow”) directed from the discharge hole 5 toward the mold short side 3 and injected into the mold. The discharge direction of the discharge holes 5 is downward or upward, and normally, a discharge angle of about 5 to 50 degrees downward is provided.

この吐出孔5の上端位置よりも磁極の中心位置を上方側として、鋳型長辺2を挟んで対向する1対の上部磁極6が配置されている。この上部磁極6は、直流静磁場とリニア型の交流移動磁場とを重畳して鋳片全幅に亘って印加することができるように構成されている。また、吐出孔5の下端位置よりも磁極の中心位置を下方側として、鋳型長辺2を挟んで対向する1対の下部磁極9が配置されている。この下部磁極9は、直流静磁場を鋳片全幅に亘って印加することができるように構成されている。   A pair of upper magnetic poles 6 that are opposed to each other with the mold long side 2 interposed therebetween are arranged with the center position of the magnetic poles above the upper end position of the discharge hole 5. The upper magnetic pole 6 is configured so that a DC static magnetic field and a linear AC moving magnetic field can be superimposed and applied over the entire width of the slab. In addition, a pair of lower magnetic poles 9 that are opposed to each other with the mold long side 2 interposed therebetween are arranged with the center position of the magnetic poles below the lower end position of the discharge hole 5. The lower magnetic pole 9 is configured so that a DC static magnetic field can be applied over the entire width of the slab.

鋳型内のメニスカス位置(溶鋼湯面位置)は、吐出孔5の上端位置から150〜350mm程度離れた上方位置であり(この距離は連続鋳造機の仕様や操業上の制約によって異なる)、上部磁極6から印加する交流移動磁場によってメニスカス部の溶鋼は水平方向の同一方向に旋回するように攪拌され、また、上部磁極6から印加する直流静磁場によって、浸漬ノズル4からの溶鋼吐出流が鋳型短辺側の凝固シェルに衝突して上方側に分岐する上昇反転流は制動力を受けて減速する。また、上昇反転流が転じて鋳型短辺側から浸漬ノズル側に向いたメニスカスの溶鋼流も、上部磁極6から印加する直流静磁場によって制動力を受けて減速する。つまり、メニスカスでは、直流静磁場による制動力と交流移動磁場による攪拌力とが作用し、これらの強度を制御することで、メニスカスの溶鋼流が制御される。   The meniscus position (molten steel surface position) in the mold is an upper position about 150 to 350 mm away from the upper end position of the discharge hole 5 (this distance varies depending on the specifications of the continuous casting machine and operational restrictions). The molten steel in the meniscus portion is agitated so as to rotate in the same horizontal direction by the AC moving magnetic field applied from 6, and the molten steel discharge flow from the submerged nozzle 4 is caused by the short mold by the DC static magnetic field applied from the upper magnetic pole 6. The upward reversal flow that collides with the solidified shell on the side and branches upward is decelerated upon receiving the braking force. Further, the upward reversal flow turns and the meniscus molten steel flow directed from the mold short side toward the immersion nozzle is also decelerated by receiving a braking force by the DC static magnetic field applied from the upper magnetic pole 6. That is, in the meniscus, the braking force by the DC static magnetic field and the stirring force by the AC moving magnetic field act, and the molten steel flow of the meniscus is controlled by controlling these strengths.

一方、下部磁極9は、浸漬ノズル4からの溶鋼吐出流よりも下方に位置しており、従って、浸漬ノズル4からの溶鋼吐出流は下部磁極9によって制動力を受けて減速する。また、浸漬ノズル4からの溶鋼吐出流が鋳型短辺側の凝固シェルに衝突して下方側に分岐する下降反転流も下部磁極9によって制動力を受けて減速する。   On the other hand, the lower magnetic pole 9 is positioned below the molten steel discharge flow from the immersion nozzle 4. Therefore, the molten steel discharge flow from the immersion nozzle 4 receives the braking force from the lower magnetic pole 9 and decelerates. Further, the downward reversal flow in which the molten steel discharge flow from the immersion nozzle 4 collides with the solidified shell on the short side of the mold and branches downward also receives the braking force by the lower magnetic pole 9 and decelerates.

このように構成される連続鋳造用の鋳型1において、先ず、比較のために、上部磁極6から直流静磁場を印加するための直流電磁石として、従来から使用されている鋳型幅方向に1つの電磁石で構成されている直流電磁石を使用する試験を行った。図2に、比較のために使用した、鋳型幅方向に1つの電磁石で構成されている直流電磁石を備えた上部磁極6の位置での水平断面概略図を示す。また、図3に、図1に示す下部磁極9の位置での水平断面概略図を示す。図3に示す下部磁極9は直流静磁場を印加するためのものである。   In the continuous casting mold 1 configured as described above, for comparison, first, as a DC electromagnet for applying a DC static magnetic field from the upper magnetic pole 6, one electromagnet conventionally used in the mold width direction is used. A test using a DC electromagnet comprised of FIG. 2 is a schematic horizontal sectional view at the position of the upper magnetic pole 6 provided with a DC electromagnet composed of one electromagnet in the mold width direction used for comparison. FIG. 3 is a schematic horizontal sectional view at the position of the lower magnetic pole 9 shown in FIG. The lower magnetic pole 9 shown in FIG. 3 is for applying a DC static magnetic field.

図2に示すように、比較のために使用した上部磁極6は、鋳型長辺2に近接して配置される、交流移動磁場を印加するための交流移動磁場発生コイル8と、この交流移動磁場発生コイル8の外周に配置される、直流静磁場を印加するための直流電磁石7’とで構成されている。図2に示す直流電磁石7’及び図3に示す下部磁極9では、供給する直流電流値に応じて磁束密度は変化するが、磁束密度を鋳型幅方向の各位置で独立して変更することはできない。   As shown in FIG. 2, the upper magnetic pole 6 used for comparison includes an AC moving magnetic field generating coil 8 for applying an AC moving magnetic field, which is disposed close to the mold long side 2, and this AC moving magnetic field. A DC electromagnet 7 'for applying a DC static magnetic field, which is disposed on the outer periphery of the generating coil 8, is configured. In the DC electromagnet 7 ′ shown in FIG. 2 and the lower magnetic pole 9 shown in FIG. 3, the magnetic flux density changes according to the DC current value to be supplied. However, the magnetic flux density can be changed independently at each position in the mold width direction. Can not.

この上部磁極6を使用した場合における鋳型内の溶鋼流速分布を数値計算及び低融点合金(Bi、Pb、Sn、Cd合金:融点70℃)を用いた実機1/4サイズの試験装置によって調査した。その結果、鋳片幅方向の鋳型短辺近傍において低融点合金の表面流速の遅い領域が存在することが確認できた。   When the upper magnetic pole 6 was used, the molten steel flow velocity distribution in the mold was investigated by numerical calculation and an actual 1/4 size test apparatus using a low melting point alloy (Bi, Pb, Sn, Cd alloy: melting point 70 ° C.). . As a result, it was confirmed that there was a region with a low surface flow velocity of the low melting point alloy in the vicinity of the short side of the mold in the slab width direction.

また、図2に示す上部磁極6が配置された鋳型1を使用して鋳造したスラブ鋳片の欠陥発生分布を調査した結果、鋳片の欠陥が存在する領域は、実機1/4サイズの試験装置における「流速の遅い領域」と一致することがわかった。この原因は、種々の考察の結果から、上部磁極6から印加する直流静磁場が鋳型短辺近傍で強すぎることから、鋳型短辺近傍で低流速領域が発生し、その領域で脱酸生成物やArガス気泡が凝固シェルに捕捉されることであるとの知見を得た。   In addition, as a result of investigating the defect occurrence distribution of the slab slab cast using the mold 1 in which the upper magnetic pole 6 shown in FIG. 2 is disposed, the area where the slab defect exists is a test of 1/4 size of the actual machine. It was found to be consistent with the “slow flow area” in the device. This is because, as a result of various considerations, the DC static magnetic field applied from the upper magnetic pole 6 is too strong in the vicinity of the mold short side, so a low flow velocity region is generated in the vicinity of the mold short side, and the deoxidation product is generated in that region. And Ar gas bubbles were captured by the solidified shell.

一方、鋳型短辺近傍での低流速領域の発生を防止するべく、上部磁極6からの直流静磁場の磁束密度を低減した結果、鋳型短辺近傍での低流速領域の発生は解消されるものの、鋳片幅方向中心部の表面流速が速くなりすぎ、モールドパウダーの巻き込みによって鋳片幅方向中心部の品質が悪化することがわかった。   On the other hand, as a result of reducing the magnetic flux density of the DC static magnetic field from the upper magnetic pole 6 in order to prevent the occurrence of a low flow velocity region near the mold short side, the generation of the low flow velocity region near the mold short side is eliminated. It was found that the surface flow velocity at the center part in the slab width direction becomes too fast, and the quality of the center part in the slab width direction deteriorates due to the entrainment of mold powder.

これらの結果を踏まえ、本発明者らは、下部磁極9は変更せず、上部磁極6の直流電磁石を、鋳型の最大幅に対して鋳型幅方向で4つに均等分割し、それぞれの磁束密度を独立して制御する方法を検討した。図4に、本発明で使用する、鋳型幅方向で均等に4つに分割した直流電磁石7が配置された上部磁極6の位置での水平断面概略図を示す。図4に示すように、鋳型幅方向の長さをそれぞれ同一とする4つの直流電磁石7a、7b、7c、7dによって直流電磁石7が構成されている。   Based on these results, the present inventors did not change the lower magnetic pole 9 and equally divided the DC electromagnet of the upper magnetic pole 6 into four in the mold width direction with respect to the maximum width of the mold. The method of independently controlling was investigated. FIG. 4 is a schematic horizontal sectional view at the position of the upper magnetic pole 6 in which the DC electromagnets 7 equally divided in the mold width direction used in the present invention are arranged. As shown in FIG. 4, a DC electromagnet 7 is constituted by four DC electromagnets 7a, 7b, 7c, and 7d having the same length in the mold width direction.

図4に示す上部磁極6を備えた鋳型1を用いた場合には、前述した低融点合金を用いた実機1/4サイズの試験装置において、4つに分割した直流電磁石7のうちの両端部側の2個の直流電磁石7a、7dから印加する直流静磁場の磁束密度を、中央部側の2個の直流電磁石7b、7cから印加する直流静磁場の磁束密度よりも小さくすることで、鋳型短辺近傍の低流速領域は解消され、且つ、鋳片幅方向中心部の表面流速が高くなる現象も抑止することができた。   When the mold 1 having the upper magnetic pole 6 shown in FIG. 4 is used, both end portions of the DC electromagnet 7 divided into four parts in the above-described actual machine 1/4 size test apparatus using the low melting point alloy. By making the magnetic flux density of the DC static magnetic field applied from the two DC electromagnets 7a and 7d on the side smaller than the magnetic flux density of the DC static magnetic field applied from the two DC electromagnets 7b and 7c on the center side, The low flow velocity region in the vicinity of the short side was eliminated, and the phenomenon that the surface flow velocity at the center part in the slab width direction was increased could be suppressed.

更に本発明者らは数値計算及び実験を重ね、図4に示す上部磁極6から印加する直流静磁場の磁束密度と下部磁極9から印加する直流静磁場の磁束密度との比を最適とすることで、高品質のスラブ鋳片を安定して製造できることを確認した。   Furthermore, the present inventors have repeated numerical calculations and experiments to optimize the ratio between the magnetic flux density of the DC static magnetic field applied from the upper magnetic pole 6 and the magnetic flux density of the DC static magnetic field applied from the lower magnetic pole 9 shown in FIG. Thus, it was confirmed that high quality slab slabs could be manufactured stably.

即ち、下部磁極9から印加する直流静磁場の磁束密度を磁束密度A(テスラ)、上部磁極6の4つに分割したうちの両端部側の2個の直流電磁石7a、7dから印加する直流静磁場の磁束密度を磁束密度B(テスラ)、上部磁極6の4つに分割したうちの中央部側の2個の直流電磁石7b、7cから印加する直流静磁場の磁束密度を磁束密度C(テスラ)としたとき、磁束密度A、磁束密度B、磁束密度Cが下記の(1)式及び(2)式を同時に満足するように、それぞれの磁束密度を調整して印加することで、鋳型内の溶鋼流動を好適な条件に維持できることがわかった。   That is, the DC static magnetic field applied from the lower magnetic pole 9 is divided into the magnetic flux density A (Tesla) and the upper magnetic pole 6, and the DC static magnets applied from the two DC electromagnets 7a and 7d on both ends. The magnetic flux density of the DC static magnetic field applied from the two DC electromagnets 7b and 7c on the central part side of the magnetic flux density B (Tesla) and the upper magnetic pole 6 divided into four magnetic flux densities C (Tesla). ), The magnetic flux density A, the magnetic flux density B, and the magnetic flux density C are adjusted and applied so that the following equations (1) and (2) are satisfied simultaneously. It was found that the molten steel flow can be maintained under suitable conditions.

0.4≦磁束密度C/磁束密度A≦0.9・・・(1)
0.3≦磁束密度B/磁束密度C≦0.8・・・(2)
この条件を満たす場合に、脱酸生成物、Arガス気泡及びモールドパウダーの凝固シェルへの捕捉を抑止することが可能となる。
0.4 ≦ magnetic flux density C / magnetic flux density A ≦ 0.9 (1)
0.3 ≦ magnetic flux density B / magnetic flux density C ≦ 0.8 (2)
When this condition is satisfied, it is possible to prevent the deoxidation product, Ar gas bubbles, and mold powder from being trapped in the solidified shell.

尚、磁束密度C/磁束密度Aが0.4未満の場合には、鋳型幅中央部の溶鋼流速が速く、モールドパウダーの巻き込みが増加し、一方、磁束密度C/磁束密度Aが0.9を超える場合には、上部磁極位置での溶鋼流動が不足し、脱酸生成物及びArガス気泡の凝固シェルへの捕捉が増加する。また、磁束密度B/磁束密度Cが0.3未満の場合には、鋳型短辺側の直流静磁場が弱くなりすぎ、鋳型短辺側の溶鋼流速が速く、モールドパウダーの巻き込みが起こり、一方、磁束密度B/磁束密度Cが0.8を超える場合には、鋳型短辺側の溶鋼流速が低下し、脱酸生成物及びArガス気泡の凝固シェルへの捕捉が増加する。   When the magnetic flux density C / magnetic flux density A is less than 0.4, the molten steel flow velocity at the center of the mold width is high, and the entrainment of mold powder increases, while the magnetic flux density C / magnetic flux density A is 0.9. In the case of exceeding, the molten steel flow at the upper magnetic pole position is insufficient, and the trapping of the deoxidized product and Ar gas bubbles in the solidified shell increases. On the other hand, when the magnetic flux density B / magnetic flux density C is less than 0.3, the DC static magnetic field on the short side of the mold becomes too weak, the molten steel flow speed on the short side of the mold is high, and the mold powder is caught. When the magnetic flux density B / magnetic flux density C exceeds 0.8, the molten steel flow velocity on the short side of the mold decreases, and the trapping of the deoxidized product and Ar gas bubbles in the solidified shell increases.

また更に、本発明者らは、図4に示す上部磁極6では、上部磁極6から印加する直流静磁場を鋳片幅方向で独立して制御できるという特徴を活用することで、鋳型内で偏流現象(浸漬ノズル左右の溶鋼吐出量に差が生じ、鋳型内の左右で溶鋼流動が非対称となる現象)が発生した場合に、この偏流現象を解消することが可能かを検討した。   Furthermore, the inventors of the upper magnetic pole 6 shown in FIG. 4 use the characteristic that the DC static magnetic field applied from the upper magnetic pole 6 can be controlled independently in the slab width direction. We investigated whether this drift phenomenon could be eliminated when a phenomenon (a phenomenon in which the flow rate of molten steel between the left and right immersion nozzles differed and the flow of molten steel became asymmetrical between the left and right in the mold) occurred.

前述した低融点合金を用いた実機1/4サイズの試験装置において、浸漬ノズルの吐出孔の一方の流路がアルミナ付着で狭くなることによって偏流現象が発生する場合を想定し、意図的に浸漬ノズルの左右の吐出孔の開口面積を変更した試験を行った。鋳型内の低融点合金の表面流速を測定しながら、分割された4つの直流電磁石7a、7b、7c、7dの磁束密度を、低融点合金の表面流速が速い側の磁束密度が大きくなるように調整することで、鋳型幅方向左右の表面流速をほぼ対称に制御できることを確認した。   In the test equipment of 1/4 size actual machine using the low melting point alloy mentioned above, it is assumed that a drift phenomenon occurs due to narrowing of one flow path of the discharge hole of the immersion nozzle due to the adhesion of alumina. The test which changed the opening area of the discharge hole of the right and left of a nozzle was done. While measuring the surface flow velocity of the low melting point alloy in the mold, the magnetic flux density of the four divided DC electromagnets 7a, 7b, 7c, and 7d is set so that the magnetic flux density on the side where the surface flow velocity of the low melting point alloy is faster is increased. It was confirmed that the surface flow velocity on the left and right sides in the mold width direction can be controlled almost symmetrically by adjusting.

即ち、4つに分割された直流電磁石7を備える上部磁極6の配置位置での鋳型内溶鋼の鋳型幅方向の溶鋼流速を測定し、測定される溶鋼流速から鋳型内での偏流現象が確認された場合には、4つに分割した直流電磁石7a、7b、7c、7dに供給する直流電流値を制御することで、鋳型内での偏流現象が解消されることを確認した。   That is, the molten steel flow velocity in the mold width direction of the molten steel in the mold at the position where the upper magnetic pole 6 including the DC electromagnet 7 divided into four is measured, and the drift phenomenon in the mold is confirmed from the measured molten steel flow velocity. In this case, it was confirmed that the drift phenomenon in the mold was eliminated by controlling the DC current value supplied to the DC electromagnets 7a, 7b, 7c, 7d divided into four.

尚、鋼の連続鋳造では、鋳型長辺背面の幅方向に亘って複数の測温素子を配置し、この測温素子によって測定される鋳型温度に基づいて溶鋼流速を測定する技術が行われており(例えば、特開2000−246413号公報などを参照)、この技術を利用することで鋳型内の偏流現象を把握することが可能である。   In continuous casting of steel, a technique is employed in which a plurality of temperature measuring elements are arranged across the width direction of the back side of the long side of the mold and the molten steel flow velocity is measured based on the mold temperature measured by the temperature measuring elements. (See, for example, Japanese Patent Application Laid-Open No. 2000-246413), it is possible to grasp the drift phenomenon in the mold by using this technique.

以上説明したように、本発明によれば、下部磁極9から印加する直流静磁場で浸漬ノズル4の吐出孔5から吐出される溶鋼吐出流及びこの溶鋼吐出流が鋳型短辺側の凝固シェルに衝突して分岐する下降反転流を制動し、且つ、上部磁極6の4つに分割した直流電磁石7a、7b、7c、7dからそれぞれ磁束密度を調整して印加する直流静磁場で溶鋼吐出流が鋳型短辺側の凝固シェルに衝突して分岐する上昇反転流及びメニスカスの溶鋼流速を制動し、更に、上部磁極6の交流移動磁場発生コイル8から印加する交流移動磁場によってメニスカスに適度の溶鋼流を付与することができるので、鋳片表層部への脱酸生成物、Arガス気泡、モールドパウダーの捕捉を抑止することができ、清浄な高品質のスラブ鋳片を安定して製造することが実現される。また、鋳型内で偏流現象が起こった場合でも、4つに分割した直流電磁石7a、7b、7c、7dからそれぞれ磁束密度の異なる直流静磁場を印加することで、鋳型内での偏流現象を解消させて鋳型内の溶鋼流動を均一化することが可能となる。   As described above, according to the present invention, the molten steel discharge flow discharged from the discharge hole 5 of the immersion nozzle 4 by the DC static magnetic field applied from the lower magnetic pole 9 and the molten steel discharge flow are applied to the solidified shell on the short side of the mold. The molten steel discharge flow is generated by a DC static magnetic field applied by adjusting the magnetic flux density from the DC electromagnets 7a, 7b, 7c, and 7d divided into four parts of the upper magnetic pole 6 while braking the descending reverse flow that collides and branches. The upward reversal flow that branches off by colliding with the solidified shell on the short side of the mold and the molten steel flow velocity of the meniscus are braked. Further, an appropriate molten steel flow is applied to the meniscus by the AC moving magnetic field applied from the AC moving magnetic field generating coil 8 of the top pole 6 Therefore, it is possible to inhibit the deoxidation product, Ar gas bubbles, and mold powder from being trapped on the surface of the slab, and to stably produce a clean, high-quality slab slab. Fruit It is. Also, even when a drift phenomenon occurs in the mold, the drift phenomenon in the mold is eliminated by applying a DC static magnetic field having a different magnetic flux density from each of the four divided DC electromagnets 7a, 7b, 7c, and 7d. It is possible to make the molten steel flow in the mold uniform.

尚、上記説明は、4つに分割した直流電磁石7a、7b、7c、7dの鋳型幅方向長さが均等の場合を例として説明したが、4つに分割した直流電磁石7a、7b、7c、7dの鋳型幅方向長さを均等にする必要はない。スラブ連続鋳造機では、前述したように、鋳型短辺3が鋳型長辺2の内面を移動することで、鋳造されるスラブ鋳片の幅が決定される。上記説明の例では、鋳造されるスラブ鋳片が最大幅の場合に、直流電磁石7a、7b、7c、7dによって印加されるそれぞれの鋳型幅方向長さがおおむね同等になるが、この鋳型を使用して最大幅よりも幅の狭いスラブ鋳片を鋳造する場合には、直流電磁石7b、7cで印加する範囲は変わらないものの、直流電磁石7a、7dによって印加する範囲が狭くなる。これを解消するために、直流電磁石7b、7cの鋳型幅方向長さを直流電磁石7a、7dの1/2程度に狭くしても構わない。この場合には、直流電磁石7b、7cの鋳型幅方向長さは鋳型全幅の1/6程度になる。尚、直流電磁石7bと直流電磁石7cとの境界は、鋳型1の中心位置とすることが必要である。   In the above description, the case where the DC electromagnets 7a, 7b, 7c, 7d divided into four parts have the same length in the mold width direction is described as an example, but the DC electromagnets 7a, 7b, 7c, divided into four parts are described as examples. It is not necessary to equalize the length in the mold width direction of 7d. In the slab continuous casting machine, as described above, the width of the cast slab slab is determined by moving the mold short side 3 on the inner surface of the mold long side 2. In the example described above, when the cast slab slab has the maximum width, the lengths in the mold width direction applied by the DC electromagnets 7a, 7b, 7c, and 7d are approximately equal. When casting a slab slab narrower than the maximum width, the range applied by the DC electromagnets 7b and 7c is not changed, but the range applied by the DC electromagnets 7a and 7d is narrowed. In order to solve this problem, the length of the DC electromagnets 7b and 7c in the mold width direction may be narrowed to about ½ of the DC electromagnets 7a and 7d. In this case, the length of the DC electromagnets 7b and 7c in the mold width direction is about 1/6 of the entire mold width. The boundary between the DC electromagnet 7b and the DC electromagnet 7c needs to be the center position of the mold 1.

幅1200〜1800mm、厚み250mmのスラブ鋳片を鋳造することのできるスラブ連続鋳造機において、炭素濃度が0.003質量%以下の極低炭素鋼を製造した。溶鋼の鋳造量は4〜6トン/minとし、使用した浸漬ノズルは、その下端近傍に鋳型短辺を向いた1対の吐出孔を有する浸漬ノズルを使用した。   In a slab continuous casting machine capable of casting a slab slab having a width of 1200 to 1800 mm and a thickness of 250 mm, an ultra-low carbon steel having a carbon concentration of 0.003 mass% or less was manufactured. The casting amount of the molten steel was 4 to 6 ton / min, and the immersion nozzle used was an immersion nozzle having a pair of discharge holes facing the short side of the mold in the vicinity of the lower end thereof.

上部磁極の交流移動磁場発生コイルは、最大磁束密度が0.08テスラのものを用い、上部磁極の4つに分割した直流電磁石は、それぞれ最大磁束密度が0.25テスラのものを用い、下部磁極は最大磁束密度が0.35テスラの直流電磁石を用いた。また、比較のために行った、上部磁極の直流電磁石を分割しない試験では、最大磁束密度が0.35テスラの直流電磁石を用いた。   The AC magnetic field generating coil for the upper magnetic pole has a maximum magnetic flux density of 0.08 Tesla, and the DC magnet divided into four upper magnetic poles has a maximum magnetic flux density of 0.25 Tesla. A DC electromagnet having a maximum magnetic flux density of 0.35 Tesla was used as the magnetic pole. Further, in a test conducted for comparison in which the DC magnet of the upper magnetic pole was not divided, a DC electromagnet having a maximum magnetic flux density of 0.35 Tesla was used.

鋳造した鋳片を薄鋼板製品に圧延し、薄鋼板製品で表面欠陥検査を実施した。表1に鋳造条件、磁場印加条件とともに薄鋼板製品での表面欠陥検査結果を示す。表面欠陥検査の結果は、比較例3での表面欠陥発生率を基準として指数化して表示しており、数値が大きくなるほど欠陥発生率が高くなることを示している。   The cast slab was rolled into a thin steel plate product, and surface defect inspection was performed on the thin steel plate product. Table 1 shows the results of the surface defect inspection in the thin steel sheet product together with the casting condition and the magnetic field application condition. The result of the surface defect inspection is displayed as an index based on the surface defect occurrence rate in Comparative Example 3, and indicates that the larger the numerical value, the higher the defect occurrence rate.

Figure 0006036144
Figure 0006036144

表1に示すように、本発明例1〜18は、比較例1〜6に比べて表面欠陥発生率が低いことが確認できた。本発明例1〜18のなかでも、磁束密度C/磁束密度A及び磁束密度B/磁束密度Cが、同時に(1)式及び(2)式を満足する本発明例1〜12は、本発明例12〜18に比較して表面欠陥発生率が更に低位であることが確認できた。   As shown in Table 1, it was confirmed that Examples 1 to 18 of the present invention had a lower surface defect occurrence rate than Comparative Examples 1 to 6. Among Invention Examples 1 to 18, Invention Examples 1 to 12 in which the magnetic flux density C / the magnetic flux density A and the magnetic flux density B / the magnetic flux density C satisfy the expressions (1) and (2) at the same time are the invention examples. It was confirmed that the surface defect occurrence rate was lower than in Examples 12-18.

このように、本発明を適用することで、鋳片表層部への脱酸生成物、Arガス気泡、モールドパウダーの捕捉を抑止することができ、清浄な高品質のスラブ鋳片を安定して製造することが確認できた。   In this way, by applying the present invention, it is possible to suppress the capture of deoxidation products, Ar gas bubbles, and mold powder to the slab surface layer portion, and a clean, high-quality slab slab can be stably produced. It was confirmed that it was manufactured.

1 鋳型
2 鋳型長辺
3 鋳型短辺
4 浸漬ノズル
5 吐出孔
6 上部磁極6
7 直流電磁石
8 交流移動磁場発生コイル
9 下部磁極
DESCRIPTION OF SYMBOLS 1 Mold 2 Mold long side 3 Mold short side 4 Immersion nozzle 5 Discharge hole 6 Upper magnetic pole 6
7 DC electromagnet 8 AC moving magnetic field generating coil 9 Lower magnetic pole

Claims (2)

磁極の中心が浸漬ノズルの吐出孔よりも上方側に位置する、鋳型長辺を挟んで対向する1対の上部磁極と、磁極の中心が浸漬ノズルの吐出孔よりも下方側に位置する、鋳型長辺を挟んで対向する1対の下部磁極とを鋳型長辺の背面に備え、前記下部磁極からスラブ鋳片全幅に亘る直流静磁場を印加し、且つ、前記上部磁極からスラブ鋳片全幅に亘る直流静磁場と、スラブ鋳片全幅に亘る交流移動磁場とを、重畳して印加する連続鋳造設備であって、
前記上部磁極の直流静磁場を印加するための直流電磁石が鋳型の幅方向で4つに分割されており、分割されたそれぞれの直流電磁石で、該直流電磁石から印加する磁束密度が独立して変更可能なように構成されている連続鋳造設備を用いて溶鋼を連続鋳造する際に、前記下部磁極から印加する直流静磁場の磁束密度を磁束密度A(テスラ)、前記上部磁極の4つに分割した直流電磁石のうちの両端部側の2個の直流電磁石から印加する直流静磁場の磁束密度を磁束密度B(テスラ)、前記上部磁極の4つに分割した直流電磁石のうちの中央部側の2個の直流電磁石から印加する直流静磁場の磁束密度を磁束密度C(テスラ)としたとき、磁束密度A、磁束密度B、磁束密度Cが下記の(1)式及び(2)式を同時に満足するように、それぞれの磁束密度を調整して印加することを特徴とする連続鋳造方法。
0.4≦磁束密度C/磁束密度A≦0.9・・・(1)
0.3≦磁束密度B/磁束密度C≦0.8・・・(2)
A mold in which the center of the magnetic pole is positioned above the discharge hole of the immersion nozzle, a pair of upper magnetic poles facing each other across the long side of the mold, and the center of the magnetic pole is positioned below the discharge hole of the immersion nozzle A pair of lower magnetic poles facing each other across the long side are provided on the back of the long side of the mold, a DC static magnetic field is applied from the lower magnetic pole to the full width of the slab cast, and the full width of the slab cast from the upper magnetic pole. A continuous casting facility that applies a DC static magnetic field across and an AC moving magnetic field over the entire width of the slab cast,
The DC electromagnet for applying the DC static magnetic field of the upper magnetic pole is divided into four in the width direction of the mold, and the magnetic flux density applied from the DC electromagnet is independently changed in each divided DC electromagnet. When continuously casting molten steel using the continuous casting equipment configured as possible, the magnetic flux density of the DC static magnetic field applied from the lower magnetic pole is divided into the magnetic flux density A (Tesla) and the upper magnetic pole. The magnetic flux density of the DC static magnetic field applied from the two DC electromagnets on both ends of the DC electromagnets is set to the magnetic flux density B (Tesla), and the DC magnet on the center side of the DC electromagnet divided into four upper magnetic poles. When the magnetic flux density of the DC static magnetic field applied from the two DC electromagnets is defined as the magnetic flux density C (Tesla), the magnetic flux density A, the magnetic flux density B, and the magnetic flux density C simultaneously satisfy the following formulas (1) and (2). Each to be satisfied Continuous casting method characterized by applying to adjust the magnetic flux density.
0.4 0 ≦ magnetic flux density C / magnetic flux density A ≦ 0.9 0 (1)
0.3 0 ≦ magnetic flux density B / magnetic flux density C ≦ 0.8 0 (2)
前記上部磁極の配置位置での鋳型内溶鋼の鋳型幅方向の溶鋼流速を測定し、測定される溶鋼流速から鋳型内での偏流現象が確認された場合には、前記4つに分割した直流電磁石に供給する電流値を制御し、鋳型内での偏流現象を解消することを特徴とする、請求項1に記載の連続鋳造方法。   When the molten steel flow velocity in the mold width direction of the molten steel in the mold at the position of the upper magnetic pole is measured, and a drift phenomenon in the mold is confirmed from the measured molten steel flow velocity, the DC electromagnet divided into the four parts The continuous casting method according to claim 1, wherein a current value supplied to the mold is controlled to eliminate a drift phenomenon in the mold.
JP2012226732A 2012-10-12 2012-10-12 Continuous casting method Expired - Fee Related JP6036144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012226732A JP6036144B2 (en) 2012-10-12 2012-10-12 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012226732A JP6036144B2 (en) 2012-10-12 2012-10-12 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2014076481A JP2014076481A (en) 2014-05-01
JP6036144B2 true JP6036144B2 (en) 2016-11-30

Family

ID=50782256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012226732A Expired - Fee Related JP6036144B2 (en) 2012-10-12 2012-10-12 Continuous casting method

Country Status (1)

Country Link
JP (1) JP6036144B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500228B (en) * 2017-02-27 2020-09-25 宝山钢铁股份有限公司 Flow field control method for slab continuous casting crystallizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626861B2 (en) * 1992-08-28 1997-07-02 新日本製鐵株式会社 Flow control device for molten steel in continuous casting mold
JPH10263763A (en) * 1997-03-21 1998-10-06 Nippon Steel Corp Method for controlling fluidity in continuously casting strand and device for controlling fluidity
JPH11123514A (en) * 1997-10-16 1999-05-11 Sumitomo Metal Ind Ltd Method for continuous casting steel
JP5369808B2 (en) * 2009-03-24 2013-12-18 Jfeスチール株式会社 Continuous casting apparatus and continuous casting method
JP4807462B2 (en) * 2009-11-10 2011-11-02 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2014076481A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
KR101176816B1 (en) Method of continuous casting of steel
KR101168195B1 (en) Method of continuous casting of steel
JP6115690B1 (en) Continuous casting method of slab slab
JP5929872B2 (en) Steel continuous casting method
JP4591156B2 (en) Steel continuous casting method
JP6036144B2 (en) Continuous casting method
TWI693978B (en) Molding equipment
WO2018198181A1 (en) Continuous casting method for steel
JP5369808B2 (en) Continuous casting apparatus and continuous casting method
JP2008055431A (en) Method of continuous casting for steel
JP5375242B2 (en) Continuous casting apparatus and continuous casting method
JP7143731B2 (en) Continuous casting method
JP4407260B2 (en) Steel continuous casting method
JP5413277B2 (en) Continuous casting method for steel slabs
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP4910357B2 (en) Steel continuous casting method
JP5359653B2 (en) Steel continuous casting method
JPH07136747A (en) Continuous casting method for bloom and its device
JPH09150243A (en) Continuous casting method
JP2010000518A (en) Method and apparatus for controlling flow of molten steel in continuous casting mold
JP2021000652A (en) Continuous casting method
JP3147824B2 (en) Continuous casting method
JPH05154620A (en) Continuous casting method
JP5018144B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees