JPH10263763A - Method for controlling fluidity in continuously casting strand and device for controlling fluidity - Google Patents

Method for controlling fluidity in continuously casting strand and device for controlling fluidity

Info

Publication number
JPH10263763A
JPH10263763A JP8553497A JP8553497A JPH10263763A JP H10263763 A JPH10263763 A JP H10263763A JP 8553497 A JP8553497 A JP 8553497A JP 8553497 A JP8553497 A JP 8553497A JP H10263763 A JPH10263763 A JP H10263763A
Authority
JP
Japan
Prior art keywords
mold
magnetic flux
flux density
molten metal
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8553497A
Other languages
Japanese (ja)
Inventor
Takehiko Fuji
健彦 藤
Tsuyoshi Yamazaki
強 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8553497A priority Critical patent/JPH10263763A/en
Publication of JPH10263763A publication Critical patent/JPH10263763A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To shift fine inclusion upward to the upper part of a braking zone, to reduce the development of product defect caused by the fine inclusion and to improve the quality degradation by making small of magnetic flux density near the short sides of a mold in comparison with that near the center in the width direction and giving the braking force to molten metal flowed down from a nozzle. SOLUTION: A pouring nozzle 2 is arranged at the upper part of the mold 1 having the rectangular cross section. The lower end part of the pouring nozzle 2 is arranged in the condition of dipping into the molten metal 3 in the mold 1. An electromagnetic coil 4 constituting a main part of the electromagnetic brake is arranged to the outer periphery of the mold 1 approaching the lower end part of the pouring nozzle 2. The DC magnetic field is generated in the thickness direction of the mold 1 by impressing DC power to the electromagnetic coil 4 and the upward brake force is generated to the poured stream 8 from the pouring nozzle 2 to foam the stream as the straightening. The magnetic flux density near the short sides of the mold 1 is made to lower that near the center in the width direction to form the rising streams 9a, 9b near the short sides to float up again the fine inclusion flowed in a strand through this passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造装置にお
けるストランド内の溶鋼流を電磁コイルを用いて制御す
るための連続鋳造ストランド内の流動制御方法及び装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a flow in a continuous casting strand for controlling a molten steel flow in the strand in a continuous casting apparatus by using an electromagnetic coil.

【0002】[0002]

【従来の技術】連続鋳造工程においてタンディッシュ内
の溶融金属を鋳型内に注入する際、浸漬ノズルとタンデ
ィッシュの間に設置されるスライディングノズルの絞り
開度や鋳造速度により、溶融金属流動に揺らぎが生じた
場合、或いは浸漬ノズル内壁における酸化物系介在物の
付着が生じた場合、浸漬ノズル内部を流動する溶融金属
の速度分布の対称性が悪化し、浸漬ノズルから吐出する
溶融金属の速度分布も対称性が悪化する。この結果、鋳
型内において溶融金属の鋳型長辺及び短辺方向に対する
対称性の損なわれた偏流現象が生じる。
2. Description of the Related Art In a continuous casting process, when a molten metal in a tundish is poured into a mold, the flow of the molten metal fluctuates due to the opening degree and the casting speed of a sliding nozzle installed between the immersion nozzle and the tundish. In the case of occurrence of oxidized inclusions on the inner wall of the immersion nozzle, the symmetry of the velocity distribution of the molten metal flowing inside the immersion nozzle deteriorates, and the velocity distribution of the molten metal discharged from the immersion nozzle Even worse symmetry. As a result, a drift phenomenon in which symmetry of the molten metal in the long and short sides of the mold is lost in the mold occurs.

【0003】偏流が生じた場合、偏流が無い場合に比
べ、浸漬ノズルから吐出する溶融金属が鋳型内の深部ま
で達するのに伴って、溶融金属中の非金属介在物も鋳型
内の深部まで到達する。非金属介在物の大部分は湯面に
浮上するが、一部は浮上せずに鋳片内部に捕捉され、こ
れが製品欠陥を誘発させる。
When the drift occurs, the non-metallic inclusions in the molten metal also reach deep inside the mold as the molten metal discharged from the immersion nozzle reaches deep inside the mold as compared with the case where there is no drift. I do. Most of the nonmetallic inclusions float on the surface of the molten metal, but some do not float and are trapped inside the slab, which induces product defects.

【0004】鋳型内溶融金属の偏流を制御する手段とし
て、鋳型に電磁ブレーキを配設して制御する方法が提案
されている。つまり、電磁コイルに通電してノズルから
吐出される溶融金属に磁場を付与し、吐出流を減速させ
て侵入深さを浅くしようとするものである。この具体例
に、PCT国際公開番号WO95/26243、特願平
6−50873号公報等がある。
As a means for controlling the drift of molten metal in a mold, a method has been proposed in which an electromagnetic brake is provided in the mold to control the molten metal. That is, a magnetic field is applied to the molten metal discharged from the nozzle by energizing the electromagnetic coil, and the discharge flow is decelerated to reduce the penetration depth. Specific examples thereof include PCT International Publication No. WO95 / 26243 and Japanese Patent Application No. 6-50873.

【0005】PCT国際公開番号WO95/26243
における方法は、鋳型に電磁コイルを設置し、溶鋼表面
のメニスカスの流速が0.20〜0.40m/秒の範囲
になるように、電磁コイルにより電界(又は磁束)を付
与し、メニスカスの流速を制御している。これにより、
幅方向に均一な注入量制御が可能になる。
[0005] PCT International Publication No. WO 95/26243
In the method described in the above, an electromagnetic coil is placed in a mold, and an electric field (or magnetic flux) is applied by the electromagnetic coil so that the meniscus flow rate on the surface of the molten steel is in the range of 0.20 to 0.40 m / sec. Is controlling. This allows
Uniform injection amount control in the width direction becomes possible.

【0006】また、特願平6−50873号公報におけ
る方法は、矩形断面鋳型の幅方向に均一な磁束密度を有
する直流磁場を鋳型厚み方向に印加し、注入流に制動力
を付与して連続鋳造を行うに際し、注入ノズルからの溶
融金属注入流をフラットかつ下向きに吐出させ、注入ノ
ズルの吐出口から下方に設置されたコイルの下方の流れ
を整流化している。この整流化により、介在物の内部へ
の侵入を少なくすることができ、介在物に起因する欠陥
の発生を防止することができる。
In the method disclosed in Japanese Patent Application No. 6-50873, a DC magnetic field having a uniform magnetic flux density in the width direction of a rectangular cross-section mold is applied in the thickness direction of the mold, and a braking force is applied to the injection flow to continuously apply the braking force. In performing casting, the molten metal injection flow from the injection nozzle is discharged flat and downward, and the flow below the coil installed below the discharge port of the injection nozzle is rectified. By this rectification, intrusion of inclusions into the interior can be reduced, and generation of defects due to inclusions can be prevented.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
たPCT国際公開番号WO95/26243では、矩形
断面鋳型の短辺の近くで電磁ブレーキによる速い流れが
生じ、制動漏れが生じる。すなわち、図4の(a)の鋳
型平面図、(b)の正面断面図に示すように、スラブを
連続鋳造する矩形鋳型10においては、丸断面ノズル1
1の吐出口からの短辺側へ角度をもって吐出された注入
流と電磁コイル12からの直流磁場の関係から、鋳型短
辺付近では誘導電流の回り込みがあり、一部加速力13
が下向きに作用するため、(c)のように、ブレーキ効
果が低下する。この結果、短辺寄りのノズル注入流に乗
った非金属介在物(アルミナ系介在物)がストランドプ
ールの奥まで侵入し、製品欠陥の原因になる。
However, in the above-mentioned PCT International Publication No. WO95 / 26243, a rapid flow occurs due to the electromagnetic brake near the short side of the rectangular cross-section mold, and a braking leak occurs. That is, as shown in the mold plan view of FIG. 4A and the front sectional view of FIG.
From the relationship between the injection flow discharged at an angle to the short side from the discharge port of No. 1 and the DC magnetic field from the electromagnetic coil 12, the induced current wraps around the short side of the mold, and the acceleration force 13
Acts downward, so that the braking effect is reduced as shown in FIG. As a result, non-metallic inclusions (alumina-based inclusions) riding on the nozzle injection flow near the short side penetrate deep into the strand pool, causing product defects.

【0008】また、特願平6−50873号公報では、
流れが均一化されるので制動不良の問題は解消される
が、ストランド内に流入した微小介在物の再浮上する場
所(経路)がなく、電磁コイルの下方で捕捉されたまま
になるため、同様に製品欠陥の原因になる。
In Japanese Patent Application No. 6-50873,
Although the problem of poor braking is eliminated because the flow is made uniform, there is no place (path) for re-emerging micro-inclusions that have flowed into the strand, and they remain trapped below the electromagnetic coil. Cause product defects.

【0009】本発明は上述の問題点に鑑みなされたもの
で、電磁ブレーキ部より下方に存在する介在物の量を少
なくできるようにした連続鋳造ストランド内の流動制御
方法を提供することを目的としている。
The present invention has been made in view of the above problems, and has as its object to provide a flow control method in a continuous casting strand that can reduce the amount of inclusions below an electromagnetic brake portion. I have.

【0010】[0010]

【課題を解決するための手段】本出願に係る発明の目的
を実現する方法は、請求項1及び2に記載のように、注
入ノズルから下向きに溶融金属を矩形断面を有する鋳型
へ注入し、前記鋳型の外周または鋳型壁内に配設された
電磁コイルの磁力により前記注入ノズルからの溶融金属
の注入流に対して所定の制動力を付与する溶融金属の流
動制御方法及び装置において、前記鋳型の短辺付近の磁
束密度が幅方向の中心付近に比べて小さくなるようにし
た方法及び装置にある。
According to a first aspect of the present invention, there is provided a method for injecting molten metal downward from an injection nozzle into a mold having a rectangular cross section. The molten metal flow control method and apparatus for applying a predetermined braking force to an injection flow of molten metal from the injection nozzle by a magnetic force of an electromagnetic coil disposed on the outer periphery of the mold or in a mold wall, And the magnetic flux density in the vicinity of the short side is smaller than that in the vicinity of the center in the width direction.

【0011】この方法及び装置によれば、電磁コイル
は、電磁ブレーキとして動作するときの制動効果を示す
ほか、ストランド内に流入した微小介在物を再浮上させ
る通路を鋳型の短辺付近に形成し、溶融金属の上昇流と
共に微小介在物が上昇し、制動領域の上部へ移動させ
る。この結果、ストランド内に捕捉された微小介在物に
起因する製品欠陥が低減され、製品の品質向上が可能に
なる。
According to the method and the apparatus, the electromagnetic coil exhibits a braking effect when operating as an electromagnetic brake, and also forms a passage near the short side of the mold to re-emerge minute inclusions flowing into the strand. The fine inclusions rise with the rising flow of the molten metal and move to the upper part of the braking region. As a result, product defects caused by minute inclusions trapped in the strand are reduced, and the quality of the product can be improved.

【0012】本出願に係る発明の目的を実現する具体的
な方法及び装置は、請求項3及び4に記載のように、ス
トランド幅をW1、前記磁束密度の形成幅をW2とすると
き、0.05(m)≦W2≦0.25W1(m)の関係が
満たされ、かつ前記短辺付近以外の磁束密度をB1、前
記短辺付近の磁束密度をB2とするとき、0.3≦(B2
/B1)≦0.7の関係が満たされるように設定した方
法及び装置にある。
A specific method and apparatus for realizing the object of the present invention according to the present invention is such that when the strand width is W 1 and the formation width of the magnetic flux density is W 2. , 0.05 (m) ≦ W 2 ≦ 0.25W 1 (m) is satisfied and the magnetic flux density other than near the short side is B 1 , and the magnetic flux density near the short side is B 2 , 0.3 ≦ (B 2
/ B 1 ) ≦ 0.7.

【0013】この方法によれば、電磁ブレーキが効果的
に機能するほか、ストランド内に流入した微小介在物を
再浮上させるための通路が確実に形成されるので、製品
の品質向上が可能になる。
According to this method, in addition to the electromagnetic brake functioning effectively, a passage for re-emerging minute inclusions flowing into the strand is reliably formed, so that the quality of the product can be improved. .

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明による流動制御方法の原理を
示す説明図である。また、図2は本発明の流動制御方法
が適用される連続鋳造設備の概略構成図である。
FIG. 1 is an explanatory diagram showing the principle of the flow control method according to the present invention. FIG. 2 is a schematic configuration diagram of a continuous casting facility to which the flow control method of the present invention is applied.

【0016】図2に示すように、矩形断面の鋳型1の上
部には、不図示のタンディッシュに連結された注入ノズ
ル2が配設されている。注入ノズル2の下端部は、鋳型
1内の溶融金属3に浸漬する状態に配設される。注入ノ
ズル2の下端部に近接した鋳型1の外周(或いは鋳型内
壁内)には、電磁ブレーキの主要部を構成する電磁コイ
ル4が設置されている。
As shown in FIG. 2, an injection nozzle 2 connected to a tundish (not shown) is provided above a mold 1 having a rectangular cross section. The lower end of the injection nozzle 2 is disposed so as to be immersed in the molten metal 3 in the mold 1. On the outer periphery of the mold 1 (or in the inner wall of the mold) close to the lower end of the injection nozzle 2, an electromagnetic coil 4 constituting a main part of the electromagnetic brake is installed.

【0017】電磁コイル4に直流電流を印加すると、図
1の(a)に示すように、鋳型幅方向の全体にわたって
直流磁場5を鋳型厚み方向に生じさせた場合、フレミン
グの左手の法則により、鋳型幅方向に誘導電流6が生成
される。ついで、フレミングの右手の法則により上向き
のブレーキ力7が発生し、制動作用により注入ノズル2
からの注入流8が整流化される。
When a DC current is applied to the electromagnetic coil 4, as shown in FIG. 1A, when a DC magnetic field 5 is generated in the mold thickness direction over the entire mold width direction, Fleming's left-hand rule is used. An induced current 6 is generated in the width direction of the mold. Then, an upward braking force 7 is generated by Fleming's right hand rule, and the injection nozzle 2 is generated by the braking action.
Is rectified.

【0018】上記したように、このままでは特願平6−
50873号公報で説明したように、ストランド内に流
入した微小介在物の再浮上する場所(経路)がなく、電
磁コイルの下方で捕捉されたままになる。そこで、本発
明においては、短辺付近に上昇流を形成すべく、図1の
(b)に示すように、短辺付近の磁束密度を幅方向の中
心付近より低くしている。その具体的な値を示せば、以
下の如くである。
As described above, in this state, Japanese Patent Application No.
As described in Japanese Patent No. 50873, there is no place (path) for re-emerging minute inclusions flowing into the strand, and the fine inclusions remain captured below the electromagnetic coil. Therefore, in the present invention, as shown in FIG. 1B, the magnetic flux density in the vicinity of the short side is lower than that in the vicinity of the center in the width direction in order to form an upward flow near the short side. The specific values are as follows.

【0019】ストランド幅をW1(m)、低磁束密度部
の幅をW2(m)、短辺以外の磁束密度をB1、短辺の磁
束密度をB2とするとき、 0.3≦(B2/B1)≦0.7 0.05≦W2≦0.25W1 に設定する。ここで、B2/B1を0.3以下にした場
合、注入流8(吐出流)が磁場帯を迂回し、ブレーキ効
果が形成されなくなる。また、0.7以上にすると、本
発明の作用効果を得にくくなる。更に、W2を0.05
mより短くすると、凝固シェルを除いた非金属介在物の
長さが短くなる。また、W2を0.25×W1(m)より
長くすると、本発明の作用効果が得られ難くなる。
When the strand width is W 1 (m), the width of the low magnetic flux density portion is W 2 (m), the magnetic flux density other than the short side is B 1 , and the magnetic flux density of the short side is B 2 , 0.3 ≦ (B 2 / B 1 ) ≦ 0.7 0.05 ≦ W 2 ≦ 0.25W 1 Here, when B 2 / B 1 is 0.3 or less, the injection flow 8 (discharge flow) bypasses the magnetic field zone, and the braking effect is not formed. If the ratio is 0.7 or more, it is difficult to obtain the effects of the present invention. Further, W 2 is set to 0.05
If it is shorter than m, the length of the nonmetallic inclusions excluding the solidified shell becomes shorter. If W 2 is longer than 0.25 × W 1 (m), it is difficult to obtain the effects of the present invention.

【0020】このように、鋳型1の短辺に付与する磁束
密度を小さくすることにより、図2のように、上昇流9
a,9bが形成され、この経路を通してストランド内に
流入した微小介在物は再浮上する。したがって、微小介
在物が捕捉されることに起因する製品欠陥を低減するこ
とができる。
As described above, by reducing the magnetic flux density applied to the short side of the mold 1, as shown in FIG.
a, 9b are formed, and the fine inclusions flowing into the strand through this path re-emerge. Therefore, it is possible to reduce product defects caused by the capture of the minute inclusions.

【0021】本発明者らは、下記の条件により溶融金属
の流動制御を試みた。
The present inventors have tried to control the flow of molten metal under the following conditions.

【0022】 〔対象金属〕 低炭アルミキルド鋼 〔鋳造設備の仕様〕 鋳造ストランド幅(W1) :1,500mm 鋳片の厚み :250mm 鋳造速度 :2m/min 注入ノズル :下向きストレートノズル 磁場(電磁ブレーキ中心位置):メニスカスから500mm そして、比較例として、電磁ブレーキを設けない場合
(試験I)、電磁ブレーキを設けたが磁束密度が全域で
均一な場合(試験J)、図2の(b)のように短辺付近
の磁束密度を小さくした場合(試験K)の3つのケース
について、内部非金属介在物指数(電磁ブレーキ領域よ
り下位で凝固した部分が対象)を計測したところ、図3
の結果を得た。
[Target metal] Low-carbon aluminum killed steel [Specifications of casting equipment] Casting strand width (W 1 ): 1,500 mm Cast slab thickness: 250 mm Casting speed: 2 m / min Injection nozzle: Downward straight nozzle Magnetic field (electromagnetic brake) (Center position): 500 mm from the meniscus. As a comparative example, when the electromagnetic brake was not provided (test I), the electromagnetic brake was provided, but the magnetic flux density was uniform over the entire area (test J), and FIG. In the three cases where the magnetic flux density near the short side was reduced as described above (test K), the internal non-metallic inclusion index (the part solidified below the electromagnetic brake area) was measured.
Was obtained.

【0023】図3から明らかなように、従来技術による
試験Jは、電磁ブレーキを設けない試験Iの約1/2に
内部非金属介在物指数が低減されている。しかし、本発
明による試験Kは、試験Jよりも更に内部非金属介在物
指数が低減している。
As is apparent from FIG. 3, in the test J according to the prior art, the internal nonmetallic inclusion index is reduced to about 1 / of the test I without the electromagnetic brake. However, Test K according to the present invention has a further lower internal non-metallic inclusion index than Test J.

【0024】このように、本発明によれば、ストランド
内に流入した微小介在物は電磁コイルの下方で捕捉され
たままにならないため、再浮上が容易になる。したがっ
て、微小介在物の捕捉に起因した製品欠陥を低減するこ
とが可能になる。
As described above, according to the present invention, the minute inclusions that have flowed into the strand do not remain trapped below the electromagnetic coil, so that re-emerging is facilitated. Therefore, it is possible to reduce product defects caused by capturing minute inclusions.

【0025】[0025]

【発明の効果】以上説明したように、請求項1及び2に
示した本発明は、電磁コイルを用いて注入ノズルからの
溶融金属に磁力による制動力を付与するに際し、鋳型の
短辺付近の磁束密度が幅方向の中心付近に比べて小さく
なるようにしたので、ストランド内に捕捉された微小介
在物に起因する製品欠陥が低減され、製品の品質向上が
可能になる。
As described above, according to the present invention as set forth in claims 1 and 2, when a magnetic braking force is applied to the molten metal from the injection nozzle using an electromagnetic coil, the vicinity of the short side of the mold is reduced. Since the magnetic flux density is made smaller than near the center in the width direction, product defects due to minute inclusions trapped in the strand are reduced, and the quality of the product can be improved.

【0026】また、請求項3及び4に示した本発明は、
電磁コイルによって付与する磁束密度を、ストランド幅
1と短辺付近の磁束密度の形成幅W2の関係、及び短辺
付近以外の磁束密度B1と短辺付近の磁束密度B2の関係
を所定の値に設定するようにしたので、ストランド内に
流入した微小介在物を再浮上させるための通路が確実に
形成され、製品の品質向上が可能になる。
The present invention described in claims 3 and 4 provides:
The magnetic flux density given by the electromagnetic coil is expressed by the relationship between the strand width W 1 and the formation width W 2 of the magnetic flux density near the short side, and the relationship between the magnetic flux density B 1 other than near the short side and the magnetic flux density B 2 near the short side. Since the predetermined value is set, a passage for re-emerging the minute inclusion flowing into the strand is reliably formed, and the quality of the product can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による流動制御方法の原理を示す説明図
である。
FIG. 1 is an explanatory diagram showing the principle of a flow control method according to the present invention.

【図2】本発明の流動制御方法が適用される連続鋳造設
備の概略構成図である。
FIG. 2 is a schematic configuration diagram of a continuous casting facility to which the flow control method of the present invention is applied.

【図3】本発明と従来の効果を比較するための比較説明
図である。
FIG. 3 is a comparative explanatory diagram for comparing the effects of the present invention with those of the conventional art.

【図4】矩形断面型の鋳型の短辺付近で電磁ブレーキ効
果が低下する理由を示す説明図である。
FIG. 4 is an explanatory view showing the reason why the electromagnetic braking effect is reduced near the short side of the rectangular cross-section mold.

【符号の説明】[Explanation of symbols]

1 鋳型 2 注入ノズル 3 溶融金属 4 電磁コイル 5 直流磁場 6 誘導電流 7 ブレーキ力 8 注入流 9a,9b 上昇流 DESCRIPTION OF SYMBOLS 1 Mold 2 Injection nozzle 3 Molten metal 4 Electromagnetic coil 5 DC magnetic field 6 Induction current 7 Braking force 8 Injection flow 9a, 9b Ascending flow

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 注入ノズルから下向きに溶融金属を矩形
断面を有する鋳型へ注入し、前記鋳型の外周または鋳型
壁内に配設された電磁コイルの磁力により前記注入ノズ
ルからの溶融金属の注入流に対して所定の制動力を付与
する溶融金属の流動制御方法において、 前記鋳型の短辺付近の磁束密度が幅方向の中心付近に比
べて小さくなるようにしたことを特徴とする連続鋳造ス
トランド内の流動制御方法。
1. A molten metal is injected downward from an injection nozzle into a mold having a rectangular cross section, and the molten metal is injected from the injection nozzle by the magnetic force of an electromagnetic coil disposed on the outer periphery of the mold or in the mold wall. In the method for controlling the flow of molten metal for applying a predetermined braking force to the continuous casting strand, wherein the magnetic flux density near the short side of the mold is made smaller than near the center in the width direction. Flow control method.
【請求項2】 溶融金属を矩形断面を有する鋳型へ下向
きに注入する注入ノズルと、前記鋳型の外周または鋳型
壁内に配設された電磁コイルと、この電磁コイルの磁力
により前記注入ノズルからの溶融金属の注入流に対して
所定の制動力を付与する溶融金属の流動制御装置におい
て、 前記鋳型の短辺付近の磁束密度が幅方向の中心付近に比
べて小さくなるように制御することを特徴とする連続鋳
造ストランド内の流動制御装置。
2. An injection nozzle for injecting molten metal downward into a mold having a rectangular cross section, an electromagnetic coil disposed on the outer periphery of the mold or in the mold wall, and In a molten metal flow control device that applies a predetermined braking force to an injection flow of molten metal, the magnetic flux density near a short side of the mold is controlled to be smaller than that near a center in a width direction. Flow control device in the continuous casting strand.
【請求項3】 ストランド幅をW1、前記磁束密度の形
成幅をW2とするとき、0.05(m)≦W2≦0.25
1(m)の関係が満たされ、かつ前記短辺付近以外の
磁束密度をB1、前記短辺付近の磁束密度をB2とすると
き、0.3≦(B2/B1)≦0.7の関係が満たされる
ように設定することを特徴とする請求項1記載の連続鋳
造ストランド内の流動制御方法。
3. When the strand width is W 1 and the width of the magnetic flux density is W 2 , 0.05 (m) ≦ W 2 ≦ 0.25
When the relationship of W 1 (m) is satisfied and the magnetic flux density near the short side is B 1 and the magnetic flux density near the short side is B 2 , 0.3 ≦ (B 2 / B 1 ) ≦ 2. The method according to claim 1, wherein the relationship of 0.7 is satisfied.
【請求項4】 ストランド幅をW1、前記磁束密度の形
成幅をW2とするとき、0.05(m)≦W2≦0.25
1(m)の関係が満たされ、かつ前記短辺付近以外の
磁束密度をB1、前記短辺付近の磁束密度をB2とすると
き、0.3≦(B2/B1)≦0.7の関係が満たされる
ように設定することを特徴とする請求項2記載の連続鋳
造ストランド内の流動制御装置。
4. When the strand width is W 1 and the width of the magnetic flux density is W 2 , 0.05 (m) ≦ W 2 ≦ 0.25
When the relationship of W 1 (m) is satisfied and the magnetic flux density near the short side is B 1 and the magnetic flux density near the short side is B 2 , 0.3 ≦ (B 2 / B 1 ) ≦ 3. The flow control device in a continuous casting strand according to claim 2, wherein the relationship is set so as to satisfy a relationship of 0.7.
JP8553497A 1997-03-21 1997-03-21 Method for controlling fluidity in continuously casting strand and device for controlling fluidity Withdrawn JPH10263763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8553497A JPH10263763A (en) 1997-03-21 1997-03-21 Method for controlling fluidity in continuously casting strand and device for controlling fluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8553497A JPH10263763A (en) 1997-03-21 1997-03-21 Method for controlling fluidity in continuously casting strand and device for controlling fluidity

Publications (1)

Publication Number Publication Date
JPH10263763A true JPH10263763A (en) 1998-10-06

Family

ID=13861557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8553497A Withdrawn JPH10263763A (en) 1997-03-21 1997-03-21 Method for controlling fluidity in continuously casting strand and device for controlling fluidity

Country Status (1)

Country Link
JP (1) JPH10263763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954789B1 (en) * 2002-12-23 2010-04-28 주식회사 포스코 Apparatus for continuously casting slab by electro -magnetic one-hole submerged entry nozzle, and continuous casting method thereof
JP2010221275A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Apparatus and method of continuous casting
JP2010221276A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Continuous casting apparatus and continuous casting method
JP2014076481A (en) * 2012-10-12 2014-05-01 Jfe Steel Corp Continuous casting facility, and continuous casting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954789B1 (en) * 2002-12-23 2010-04-28 주식회사 포스코 Apparatus for continuously casting slab by electro -magnetic one-hole submerged entry nozzle, and continuous casting method thereof
JP2010221275A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Apparatus and method of continuous casting
JP2010221276A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Continuous casting apparatus and continuous casting method
JP2014076481A (en) * 2012-10-12 2014-05-01 Jfe Steel Corp Continuous casting facility, and continuous casting method

Similar Documents

Publication Publication Date Title
US5381857A (en) Apparatus and method for continuous casting
JPH02284750A (en) Method for continuously casting steel using static magnetic field
JP3692253B2 (en) Continuous casting method of steel
JPH10263763A (en) Method for controlling fluidity in continuously casting strand and device for controlling fluidity
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP3018960B2 (en) Continuous casting method and its straight immersion nozzle
JP3096879B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JP3408374B2 (en) Continuous casting method
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
JPS6272458A (en) Electromagnetic stirring method
JPH0673722B2 (en) Continuous casting method
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JPH0579430B2 (en)
JP2990555B2 (en) Continuous casting method
JP3300619B2 (en) Continuous casting method of slab with few inclusions
JP2010240686A (en) Method of controlling flow of molten steel in casting mold
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JP2005021941A (en) Continuous casting device for molten metal and continuous casting method
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JPH07256407A (en) Method for continuous casting of molten metal
KR100244660B1 (en) Control device for molten metal of continuous casting mould
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPH09277006A (en) Method for continuously casting molten metal
JPH01127157A (en) Continuous casting method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601