JP2010240686A - Method of controlling flow of molten steel in casting mold - Google Patents

Method of controlling flow of molten steel in casting mold Download PDF

Info

Publication number
JP2010240686A
JP2010240686A JP2009091813A JP2009091813A JP2010240686A JP 2010240686 A JP2010240686 A JP 2010240686A JP 2009091813 A JP2009091813 A JP 2009091813A JP 2009091813 A JP2009091813 A JP 2009091813A JP 2010240686 A JP2010240686 A JP 2010240686A
Authority
JP
Japan
Prior art keywords
molten steel
discharge port
flow
mold
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009091813A
Other languages
Japanese (ja)
Other versions
JP5310204B2 (en
Inventor
Shigekazu Matsuba
繁和 松葉
Masanobu Hayakawa
昌伸 早川
Yoshiaki Suematsu
芳章 末松
Toshiaki Mizoguchi
利明 溝口
Akira Mikasa
彰 三笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009091813A priority Critical patent/JP5310204B2/en
Publication of JP2010240686A publication Critical patent/JP2010240686A/en
Application granted granted Critical
Publication of JP5310204B2 publication Critical patent/JP5310204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling flow of molten steel in a casting mold, a method by which continuous casting is achieved without causing internal defect or surface grade deterioration of a cast slab, even in casting under high throughput conditions. <P>SOLUTION: In the method of controlling flow of molten steel in a casting mold, molten steel is poured in a casting mold 1 from a discharge port 3 of an immersion nozzle 2, with the molten steel turned by an electromagnetic stirring device 5 installed above the discharge port 3, and with the molten steel braked by an electromagnetic braking device 4 in the casting mold under the discharge port. The molten steel is controlled in a manner satisfying a relational expression of U-&alpha;VB<SP>2</SP>¾sin&theta;¾&ge;0.2 (provided &alpha; is a coefficient of 2.1 to 4.3), where V (m/s) is a discharge flow rate of molten steel from the discharge port 3, U (m/s) is a shell front surface flow rate by electromagnetic stirring, B (T) is a magnetic flux density at the discharge port position, and &theta; (&deg;) is a discharge port angle to a horizontal surface. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電磁攪拌装置と電磁ブレーキ装置とを備えた鋼の連続鋳造設備における、溶鋼の鋳型内流動制御方法に関するものである。   The present invention relates to a method for controlling the flow of molten steel in a mold in a steel continuous casting facility equipped with an electromagnetic stirring device and an electromagnetic brake device.

鋼の連続鋳造は、溶鋼をタンディッシュから浸漬ノズルを経由して連続鋳造用の鋳型内に注入しながら、鋳型壁との接触により冷却させて凝固シェルを形成し、形成された凝固シェルを低速度で連続的に下方に引抜く方法で行われている。浸漬ノズルには下端部付近に水平面よりも下向きの吐出口が形成されており、溶鋼はこの吐出口から鋳型内に吐出される。   In continuous casting of steel, molten steel is poured into a continuous casting mold from a tundish via an immersion nozzle and cooled by contact with the mold wall to form a solidified shell. It is performed by a method of continuously pulling downward at a speed. In the immersion nozzle, a discharge port is formed in the vicinity of the lower end portion and is directed downward from the horizontal plane. Molten steel is discharged from the discharge port into the mold.

特許文献1に示されるように、浸漬ノズルは鋳型の中央部に設置され、その吐出口は鋳型の長手方向に向けて左右一対に形成されることが一般的である。これらの吐出口から斜め下向きに吐出された溶鋼は凝固シェルの内面に衝突し、反転流と呼ばれる上向き流れと、浸透流と呼ばれる下向き流れとに分岐される。   As shown in Patent Document 1, the immersion nozzle is generally installed at the center of the mold, and the discharge ports are generally formed in a pair on the left and right sides in the longitudinal direction of the mold. The molten steel discharged obliquely downward from these discharge ports collides with the inner surface of the solidified shell and is branched into an upward flow called reverse flow and a downward flow called osmotic flow.

ところが、0.5m/minを超える高スループット条件で鋳造を行う場合には、浸漬ノズルの吐出口からの溶鋼の吐出流速が大きくなるため上向きの反転流も強くなり、溶湯表面のモールドパウダーや気泡を溶鋼中に巻き込み易くなる。もし巻4き込まれたモールドパウダーや気泡が鋳片表面に捕捉された場合には表層欠陥となり、巻き込まれたモールドパウダーが鋳型の内部に持ち込まれた場合には内部欠陥の発生を招くことは、特許文献1に示される通りである。 However, when casting is performed under a high throughput condition exceeding 0.5 m 3 / min, the upward reversal flow becomes strong because the discharge speed of the molten steel from the discharge port of the immersion nozzle increases, and the mold powder on the surface of the melt It becomes easy to entrain air bubbles in molten steel. If the encased mold powder or air bubbles are trapped on the surface of the slab, it will cause a surface layer defect, and if the encapsulated mold powder is brought into the mold, it will cause internal defects. As shown in Patent Document 1.

そこで上記した表層欠陥の発生を防止するために、鋳型上部に電磁攪拌装置を設けて鋳型内部で溶鋼を旋回させ、また内部欠陥の発生を防止するために、鋳型下部に電磁ブレーキ装置を設けて静磁場を印加し、溶鋼を制動することが行われている(特許文献2)。その様子を図1に示す。図1において、1は鋳型、2は浸漬ノズル、3は吐出口、4は電磁ブレーキ装置である。   Therefore, in order to prevent the occurrence of surface layer defects, an electromagnetic stirring device is provided at the upper part of the mold to rotate the molten steel inside the mold, and an electromagnetic brake device is provided at the lower part of the mold to prevent the occurrence of internal defects. Applying a static magnetic field to brake molten steel is performed (Patent Document 2). This is shown in FIG. In FIG. 1, 1 is a mold, 2 is an immersion nozzle, 3 is a discharge port, and 4 is an electromagnetic brake device.

しかし電磁ブレーキ装置4により溶鋼の浸透流を強力に制動すると下方への流動が制限されるため、図1中に示すように吐出流11の周囲に主流とは逆方向の対向流12が発生する。そしてこの対向流12及び反転流13が電磁攪拌による旋回流15と干渉することにより旋回流に局所的な流速低下が生じ、その部位における鋳片の表面品位が悪化することが判明した。また逆に電磁ブレーキ装置4による溶鋼の制動を弱めると、上記した表層欠陥が発生し易くなる。   However, when the osmotic flow of molten steel is strongly braked by the electromagnetic brake device 4, the downward flow is restricted, so that a counter flow 12 opposite to the main flow is generated around the discharge flow 11 as shown in FIG. 1. . And it became clear that when this counter flow 12 and the reversal flow 13 interfere with the swirl flow 15 by electromagnetic stirring, the swirl flow is locally reduced in flow velocity, and the surface quality of the slab at that portion deteriorates. Conversely, if the braking of the molten steel by the electromagnetic brake device 4 is weakened, the surface layer defects described above are likely to occur.

特開2003−33847号公報JP 2003-33847 A 特開2003−117636号公報JP 2003-117636 A

本発明は上記した従来の問題点を解決し、0.5m/minを超える高スループット条件で鋳造を行う場合にも、鋳片の内部欠陥や表面品位を招くことなく連続鋳造が可能な、溶鋼の鋳型内流動制御方法を提供することを目的とするものである。 The present invention solves the above-mentioned conventional problems, and continuous casting is possible without causing internal defects or surface quality of the slab even when casting is performed under high throughput conditions exceeding 0.5 m 3 / min. An object of the present invention is to provide a method for controlling the flow of molten steel in a mold.

上記の課題を解決するためになされた本発明は、浸漬ノズルの吐出口から溶鋼を鋳型内へ注入するとともに、吐出口より上部に設置した電磁攪拌装置により溶鋼を旋回させ、また吐出口より下部の鋳型内の電磁ブレーキ装置により溶鋼を制動する溶鋼の鋳型内流動制御方法において、吐出口からの溶鋼の吐出流速V(m/s)と、電磁攪拌によるシェル前面流速U(m/s)と、吐出口位置における磁束密度B(T)と、水平面に対する吐出口角度θ(°)とが、U−αVB|sinθ|≧0.2(ただしαは2.1〜4.3の係数)の関係式を満足するように制御することを特徴とするものである。 The present invention made to solve the above problems is to inject molten steel into the mold from the discharge port of the immersion nozzle, swirl the molten steel by an electromagnetic stirrer installed above the discharge port, and below the discharge port. In the molten steel flow control method in which molten steel is braked by an electromagnetic brake device in the mold of the molten steel, the discharge velocity V (m / s) of the molten steel from the discharge port and the flow velocity U (m / s) of the shell front by electromagnetic stirring The magnetic flux density B (T) at the discharge port position and the discharge port angle θ (°) with respect to the horizontal plane are U−αVB 2 | sin θ | ≧ 0.2 (where α is a coefficient of 2.1 to 4.3). Control is performed so as to satisfy the following relational expression.

なお請求項2のように、浸漬ノズルの吐出口角度θを調整することによって、前記の関係式を満足させることが好ましい。また請求項3のように、吐出口位置における磁束密度Bを0.1〜0.5Tとすることが好ましい。   As in claim 2, it is preferable that the relational expression is satisfied by adjusting the discharge port angle θ of the immersion nozzle. As in claim 3, it is preferable that the magnetic flux density B at the discharge port position is 0.1 to 0.5T.

本発明によれば、吐出口からの溶鋼の吐出流速V(m/s)と、電磁攪拌によるシェル前面流速U(m/s)と、吐出口位置における磁束密度B(T)と、水平面に対する吐出口角度θ(°)とを適正な範囲に制御することにより、0.5m/minを超える高スループット条件で鋳造を行う場合にも、前記した対向流12を起因とする上昇流が抑制され、その結果、鋳片の表面欠陥を大きく減少させることができる。また電磁ブレーキ装置による溶鋼の制動も適切に行われるので、鋳片の内部欠陥をも併せて抑制することができる。 According to the present invention, the discharge flow velocity V (m / s) of the molten steel from the discharge port, the shell front surface flow rate U (m / s) by electromagnetic stirring, the magnetic flux density B (T) at the discharge port position, and the horizontal plane By controlling the discharge port angle θ (°) within an appropriate range, the upward flow caused by the counterflow 12 is suppressed even when casting is performed under high throughput conditions exceeding 0.5 m 3 / min. As a result, the surface defects of the slab can be greatly reduced. Moreover, since the molten steel is braked appropriately by the electromagnetic brake device, internal defects of the slab can also be suppressed.

従来技術の問題点を説明する断面図である。It is sectional drawing explaining the problem of a prior art. 一般的な鋼の連続鋳造設備における鋳型内の溶鋼流動のイメージ図である。It is an image figure of the molten steel flow in the casting_mold | template in a general continuous casting equipment of steel. 吐出口角度θが大きい従来の場合における鋳型内の溶鋼流動のイメージ図である。It is an image figure of the molten steel flow in the casting_mold | template in the conventional case with large discharge port angle (theta). 吐出口角度θを小さくした場合における鋳型内の溶鋼流動のイメージ図である。It is an image figure of the molten steel flow in a casting_mold | template when discharge port angle (theta) is made small. 流動指数と表面疵個数との関係を示すグラフである。It is a graph which shows the relationship between a flow index and the number of surface defects. 吐出口角度θと流動指数との関係を示すグラフである。It is a graph which shows the relationship between discharge port angle (theta) and a flow index.

以下に本発明の好ましい実施形態を示す。
図2は一般的な鋼の連続鋳造設備を示す平面図、及び断面図であり、図1に示したと同じく、1は連続鋳造用の鋳型、2は鋳型1の中央に配置された浸漬ノズル、3は浸漬ノズル2の下部に形成された左右一対の吐出口、4は電磁ブレーキ装置である。電磁ブレーキ装置4は浸漬ノズル2の吐出口3よりも下部に設置されており、静磁場を印加して溶鋼を制動するものである。また浸漬ノズル2の吐出口3よりも上部には電磁攪拌装置5が設置されており、移動磁場を形成して鋳型1の内部で図2に示すように溶鋼を旋回させるものである。なおこれらの電磁ブレーキ装置4及び電磁攪拌装置5は何れも、従来から広く用いられており、自由に制御可能である。
Preferred embodiments of the present invention are shown below.
FIG. 2 is a plan view and a cross-sectional view showing a general steel continuous casting equipment. As shown in FIG. 1, 1 is a mold for continuous casting, 2 is an immersion nozzle disposed in the center of the mold 1, 3 is a pair of left and right discharge ports formed in the lower part of the immersion nozzle 2, and 4 is an electromagnetic brake device. The electromagnetic brake device 4 is installed below the discharge port 3 of the immersion nozzle 2 and applies a static magnetic field to brake the molten steel. Further, an electromagnetic stirring device 5 is installed above the discharge port 3 of the immersion nozzle 2 to form a moving magnetic field and swirl the molten steel inside the mold 1 as shown in FIG. Note that both the electromagnetic brake device 4 and the electromagnetic stirring device 5 have been widely used in the past and can be controlled freely.

図2に示すように、浸漬ノズル2の吐出口3から鋳型1内に吐出された溶鋼の吐出流11は凝固シェル6の内面に衝突し、反転流13と呼ばれる上向き流れと、浸透流14と呼ばれる下向き流れとに分岐される。この浸透流14は電磁ブレーキ装置4による制動を受けて減衰される。また吐出流11の主流とは逆方向の対向流12が発生するが、スループットが小さい場合には対向流12も弱く、電磁攪拌装置5による旋回流15を妨げることもなく、大きな問題はない。   As shown in FIG. 2, the molten steel discharge flow 11 discharged into the mold 1 from the discharge port 3 of the immersion nozzle 2 collides with the inner surface of the solidified shell 6, an upward flow called a reverse flow 13, an osmotic flow 14, It is branched into a downward flow called. The osmotic flow 14 is attenuated by being braked by the electromagnetic brake device 4. Further, the counter flow 12 in the opposite direction to the main flow of the discharge flow 11 is generated, but when the throughput is small, the counter flow 12 is also weak and does not hinder the swirling flow 15 by the electromagnetic stirring device 5, and there is no big problem.

しかし、0.5m/minを超える高スループット条件で鋳造を行うような場合には、内部欠陥発生防止のために電磁ブレーキ装置4による浸透流14の制動を強めると対向流12が強くなり、電磁攪拌装置5による旋回流15と干渉して局所的な流速低下が生じ、その部位における鋳片の表面品位が悪化することは前述の通りである。 However, when casting is performed under a high throughput condition exceeding 0.5 m 3 / min, if the braking of the osmotic flow 14 by the electromagnetic brake device 4 is strengthened to prevent the occurrence of internal defects, the counter flow 12 becomes strong, As described above, the local flow velocity lowers due to interference with the swirling flow 15 by the electromagnetic stirring device 5 and the surface quality of the slab deteriorates at that portion.

そこで本発明では、吐出口からの溶鋼の吐出流速V(m/s)と、電磁攪拌によるシェル前面流速U(m/s)と、吐出口位置における磁束密度B(T)と、水平面に対する吐出口角度θ(°)とを適正な範囲に制御する。具体的には、これらの変数がU−αVB|sinθ|≧0.2の関係を満足するように制御する。この関係式は、シェル前面流速Uから対向流12等による流速低下を差し引いた値(流動指数と呼ぶ)が0.2m/secより大きいことを意味している。ここで吐出口位置における磁束密度(T:テスラ)は、適切な電磁ブレーキ効果を得るために0.1〜0.5Tに設定するのが普通である。またαは2.1〜4.3の係数であり、その値は主として鋳造断面サイズに応じて設定される。sinθの絶対値を採用したのは、θが上向き、即ちマイナスの値を取る場合を考慮したためである。 Therefore, in the present invention, the discharge velocity V (m / s) of molten steel from the discharge port, the shell front surface flow rate U (m / s) by electromagnetic stirring, the magnetic flux density B (T) at the discharge port position, and the discharge to the horizontal plane. The exit angle θ (°) is controlled within an appropriate range. Specifically, control is performed so that these variables satisfy the relationship of U−αVB 2 | sinθ | ≧ 0.2. This relational expression means that a value (referred to as a flow index) obtained by subtracting the flow velocity decrease due to the counterflow 12 or the like from the shell front surface flow velocity U is larger than 0.2 m / sec. Here, the magnetic flux density (T: Tesla) at the discharge port position is usually set to 0.1 to 0.5 T in order to obtain an appropriate electromagnetic brake effect. Moreover, (alpha) is a coefficient of 2.1-4.3, and the value is mainly set according to casting cross-sectional size. The reason why the absolute value of sin θ is adopted is that the case where θ is upward, that is, takes a negative value, is taken into consideration.

上記の関係を満足させるためにはどの変数を変化させてもよいが、実際には浸漬ノズル2の水平面に対する吐出口角度θを変化させ、水平に近づけることが効果的である。実際には、吐出口角度θに応じて浸漬ノズル2を交換することによって、吐出口角度θを調整する。なお図3に吐出口角度θが大きい従来の場合における鋳型内の溶鋼流動のイメージを示し、図4に吐出口角度θを小さくした場合の鋳型内の溶鋼流動のイメージを示した。図3の場合には強い対向流12が生じて旋回流15と干渉するが、図4の場合には対向流12は弱くなる。   In order to satisfy the above relationship, any variable may be changed, but in practice, it is effective to change the discharge port angle θ with respect to the horizontal plane of the immersion nozzle 2 so as to be close to the horizontal. Actually, the discharge port angle θ is adjusted by replacing the immersion nozzle 2 in accordance with the discharge port angle θ. FIG. 3 shows an image of molten steel flow in the mold in the conventional case where the discharge port angle θ is large, and FIG. 4 shows an image of molten steel flow in the mold when the discharge port angle θ is reduced. In the case of FIG. 3, a strong counterflow 12 is generated and interferes with the swirl flow 15, but in the case of FIG. 4, the counterflow 12 is weak.

本発明の効果を確認するために、吐出流速V、磁束密度B、吐出口角度θを様々に変化させて連続鋳造を行い、鋳造されたスラブの表面介在物個数をカウントして評価を行った。その結果を表1にまとめた。なお、Vcは鋳造速度である。この実験では、スラブの幅は1.6m、厚みは0.20〜0.30mとし、電磁攪拌によるシェル前面流速Uは0.4m/secの一定値とした。   In order to confirm the effect of the present invention, continuous casting was performed by varying the discharge flow velocity V, the magnetic flux density B, and the discharge port angle θ, and the evaluation was performed by counting the number of surface inclusions in the cast slab. . The results are summarized in Table 1. Vc is a casting speed. In this experiment, the width of the slab was 1.6 m, the thickness was 0.20 to 0.30 m, and the shell front surface flow velocity U by electromagnetic stirring was a constant value of 0.4 m / sec.

Figure 2010240686
Figure 2010240686

表1に示されるように、U−αVB|sinθ|≧0.2を満足する場合には、鋳造されたスラブの表面介在物指数はゼロとなった。ここで表面介在物指数とは、表面疵(ケ/cm)スラブ換算の値である。この様子をグラフ化したものを図5に示す。また吐出口角度θと流動指数との関係を図6に示す。図6によれば、吐出口角度θが30°よりも小さいときに好ましい結果が得られている。 As shown in Table 1, when U-αVB 2 | sinθ | ≧ 0.2 was satisfied, the surface inclusion index of the cast slab was zero. Here, the surface inclusion index is a value in terms of surface wrinkles (ke / cm 2 ) slab. FIG. 5 shows a graph of this situation. FIG. 6 shows the relationship between the discharge port angle θ and the flow index. According to FIG. 6, a preferable result is obtained when the discharge port angle θ is smaller than 30 °.

以上に説明したように、本発明の溶鋼の鋳型内流動制御方法によれば、高スループット条件で鋳造を行う場合にも、鋳片の内部欠陥や表面品位を招くことなく連続鋳造が可能となる。   As described above, according to the method for controlling the flow of molten steel in the mold according to the present invention, continuous casting is possible without incurring internal defects or surface quality of the slab even when casting is performed under high throughput conditions. .

1 鋳型
2 浸漬ノズル
3 吐出口
4 電磁ブレーキ装置
5 電磁攪拌装置
6 凝固シェル
11 吐出流
12 対向流
13 反転流
14 浸透流
15 旋回流
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Discharge port 4 Electromagnetic brake device 5 Electromagnetic stirrer 6 Solidified shell 11 Discharge flow 12 Counterflow 13 Reverse flow 14 Osmotic flow 15 Swirling flow

Claims (3)

浸漬ノズルの吐出口から溶鋼を鋳型内へ注入するとともに、吐出口より上部に設置した電磁攪拌装置により溶鋼を旋回させ、また吐出口より下部の鋳型内の電磁ブレーキ装置により溶鋼を制動する溶鋼の鋳型内流動制御方法において、吐出口からの溶鋼の吐出流速V(m/s)と、電磁攪拌によるシェル前面流速U(m/s)と、吐出口位置における磁束密度B(T)と、水平面に対する吐出口角度θ(°)とが、下記の関係式を満足するように制御することを特徴とする溶鋼の鋳型内流動制御方法。
U−αVB|sinθ|≧0.2(ただしαは2.1〜4.3の係数である)
The molten steel is injected into the mold from the discharge port of the immersion nozzle, and the molten steel is swirled by the electromagnetic stirring device installed above the discharge port, and the molten steel is braked by the electromagnetic brake device in the mold below the discharge port. In the mold flow control method, the molten steel discharge flow velocity V (m / s) from the discharge port, the shell front flow velocity U (m / s) by electromagnetic stirring, the magnetic flux density B (T) at the discharge port position, and the horizontal plane The method of controlling the flow of molten steel in a mold is controlled so that the discharge port angle θ (°) with respect to the above satisfies the following relational expression:
U−αVB 2 | sin θ | ≧ 0.2 (where α is a coefficient of 2.1 to 4.3)
浸漬ノズルの吐出口角度θを調整することによって、前記の関係式を満足させることを特徴とする請求項1記載の溶鋼の鋳型内流動制御方法。   2. The molten steel in-mold flow control method according to claim 1, wherein the relational expression is satisfied by adjusting a discharge port angle θ of the immersion nozzle. 吐出口位置における磁束密度Bが0.1〜0.5Tであることを特徴とする請求項1記載の溶鋼の鋳型内流動制御方法。   The method for controlling the flow of molten steel in a mold according to claim 1, wherein the magnetic flux density B at the discharge port position is 0.1 to 0.5T.
JP2009091813A 2009-04-06 2009-04-06 Method for controlling flow of molten steel in mold Active JP5310204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091813A JP5310204B2 (en) 2009-04-06 2009-04-06 Method for controlling flow of molten steel in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091813A JP5310204B2 (en) 2009-04-06 2009-04-06 Method for controlling flow of molten steel in mold

Publications (2)

Publication Number Publication Date
JP2010240686A true JP2010240686A (en) 2010-10-28
JP5310204B2 JP5310204B2 (en) 2013-10-09

Family

ID=43094345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091813A Active JP5310204B2 (en) 2009-04-06 2009-04-06 Method for controlling flow of molten steel in mold

Country Status (1)

Country Link
JP (1) JP5310204B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108284208A (en) * 2017-01-09 2018-07-17 宝山钢铁股份有限公司 A kind of electromagnetic stirring system and stirring means of adaptive pulling rate variation
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066618A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Continuous casting method of steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066618A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Continuous casting method of steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108284208A (en) * 2017-01-09 2018-07-17 宝山钢铁股份有限公司 A kind of electromagnetic stirring system and stirring means of adaptive pulling rate variation
CN108284208B (en) * 2017-01-09 2020-01-31 宝山钢铁股份有限公司 self-adaptive pulling speed change electromagnetic stirring system and stirring method
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method

Also Published As

Publication number Publication date
JP5310204B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
EP0401504B2 (en) Apparatus and method for continuous casting
BRPI0921471B1 (en) continuous casting machine for steel
JP5014934B2 (en) Steel continuous casting method
CA2971130C (en) Method for continuously casting steel
JPH02284750A (en) Method for continuously casting steel using static magnetic field
JP5310204B2 (en) Method for controlling flow of molten steel in mold
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP5867531B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JPH0390257A (en) Electromagnetic stirring method in mold in continuous casting for slab
JP3583955B2 (en) Continuous casting method
JP4553639B2 (en) Continuous casting method
JP5772767B2 (en) Steel continuous casting method
JP6036144B2 (en) Continuous casting method
JP4807115B2 (en) Steel continuous casting method
JP2002028761A (en) Electromagnetic stirring method in mold for continuous casting
JPH10263763A (en) Method for controlling fluidity in continuously casting strand and device for controlling fluidity
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP2005021941A (en) Continuous casting device for molten metal and continuous casting method
JP5359653B2 (en) Steel continuous casting method
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP2011212716A (en) Continuous casting method of steel cast slab
JP4492333B2 (en) Steel continuous casting method
JP3147824B2 (en) Continuous casting method
JPH07136747A (en) Continuous casting method for bloom and its device
JPH05318070A (en) Continuous casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350