JP2011212716A - Continuous casting method of steel cast slab - Google Patents

Continuous casting method of steel cast slab Download PDF

Info

Publication number
JP2011212716A
JP2011212716A JP2010083592A JP2010083592A JP2011212716A JP 2011212716 A JP2011212716 A JP 2011212716A JP 2010083592 A JP2010083592 A JP 2010083592A JP 2010083592 A JP2010083592 A JP 2010083592A JP 2011212716 A JP2011212716 A JP 2011212716A
Authority
JP
Japan
Prior art keywords
magnetic field
mold
flow
molten steel
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010083592A
Other languages
Japanese (ja)
Other versions
JP5413277B2 (en
Inventor
Hiroyuki Ono
浩之 大野
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010083592A priority Critical patent/JP5413277B2/en
Publication of JP2011212716A publication Critical patent/JP2011212716A/en
Application granted granted Critical
Publication of JP5413277B2 publication Critical patent/JP5413277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method of a steel cast slab, by which a high quality cast slab with very little internal inclusions such as alumina and slag can be stably manufactured without requiring complicated molten steel flow control.SOLUTION: A DC magnetic field application apparatus is arranged on both short side ends of a long arm of a casting mold to apply static magnetic field. Meantime, in the center of the long arm of the casting mold, there is installed a non-magnetic field application region which is at least 200 mm wide, with no static magnetic field applied thereon. Also, in a region from the lower end of the casting mold to 500 mm in the casting direction, an AC moving magnetic field apparatus is arranged to apply an AC moving magnetic field to the molten steel, thereby producing a swirl flow with a flow speed of 10-40 cm/s in the horizontal direction of the molten steel.

Description

本発明は、鋼鋳片の連続鋳造方法に関し、2孔ノズルを用いた垂直曲げ型連続鋳造に際し、鋼鋳片の中心部における内部介在物の有利な低減を図ろうとするものである。   The present invention relates to a continuous casting method for steel slabs, and intends to advantageously reduce internal inclusions at the center of the steel slab during vertical bending die continuous casting using a two-hole nozzle.

2孔ノズルを用いた垂直曲げ型連続鋳造において、タンディッシュから鋳型内に溶鋼を供給する際に、溶鋼と共にアルミナやスラグといった非金属介在物が流入する。通常、これら非金属介在物は鋳型内で浮上させて分離する。しかし、非金属介在物が2孔ノズルからの吐出流に帯同してストランド部の深くまで潜り込んだ場合、非金属介在物を鋳型内で浮上させて分離することは、極めて困難となる。
このように、ストランド部の深くまで潜り込んだ非金属介在物は、内部介在物となって鋳片に残留し、鋳片をブリキや自動車材等に加工する際には、プレス割れの起源となる。そのため、鋳片中の内部介在物は極力低減する必要がある。
In vertical bending die continuous casting using a two-hole nozzle, when molten steel is supplied from a tundish into a mold, non-metallic inclusions such as alumina and slag flow together with the molten steel. Usually, these non-metallic inclusions are floated and separated in a mold. However, when the non-metallic inclusions are submerged in the strand portion along with the discharge flow from the two-hole nozzle, it is extremely difficult to lift the non-metallic inclusions in the mold and separate them.
In this way, the non-metallic inclusions that have penetrated deep into the strand part become internal inclusions and remain on the slab, and when the slab is processed into tinplate or automobile materials, it becomes the origin of press cracks. . Therefore, it is necessary to reduce the internal inclusions in the slab as much as possible.

従来、2孔ノズルを用いた垂直曲げ型連続鋳造機には、上記したような非金属介在物の浮上分離を促進するために、垂直部が設置されている。この垂直部の浮上分離作用は、粗大な非金属介在物の浮上分離に対しては、一定の効果があるものの、微小な非金属介在物(約300μm以下)を浮上分離させることは難しかった。しかしながら、この程度の微小な内部介在物であっても、プレス割れの起源となるおそれがあるために、低減することが望まれていた。   Conventionally, a vertical bending type continuous casting machine using a two-hole nozzle is provided with a vertical portion in order to promote the floating separation of the non-metallic inclusions as described above. Although the vertical separation and floating action has a certain effect on the floating separation of coarse nonmetallic inclusions, it has been difficult to float and separate minute nonmetallic inclusions (about 300 μm or less). However, even such a small internal inclusion may be a source of press cracks, and therefore it has been desired to reduce it.

上記した問題に対し、鋳型下のストランド部に静磁場等を印加することで、浸漬ノズルからの吐出溶鋼流の速度を意図的に低下させて、介在物のストランド部への潜り込み量を低減させる方法が多数提案されている(例えば、特許文献1参照)。
しかしながら、静磁場の電磁装置によって吐出流の速度を低下させることは、吐出流により生じる反転流の速度も併せて低下させてしまう。そのため、反転流による非金属介在物の浮上効果が減少してしまい、内部介在物の低減効果が相殺されてしまうため、効果的な解決策とは言えなかった。
In response to the above problems, by applying a static magnetic field or the like to the strand part under the mold, the speed of the molten steel flow discharged from the immersion nozzle is intentionally reduced, and the amount of inclusions entering the strand part is reduced. Many methods have been proposed (see, for example, Patent Document 1).
However, reducing the speed of the discharge flow with a static magnetic field electromagnetic device also reduces the speed of the reverse flow generated by the discharge flow. Therefore, the floating effect of the non-metallic inclusions due to the reverse flow is reduced, and the reduction effect of the internal inclusions is offset. Therefore, this is not an effective solution.

また、鋳型下のストランド部に電磁撹拌装置を設置し、水平方向への撹拌や鋳造方向上向きに撹拌することで、下方流速を低減し、浸漬ノズルからの噴流の最大浸漬深さを低減させ、内部介在物の潜り込みを防止する方法が提案されている(例えば、特許文献2参照)。   In addition, by installing an electromagnetic stirrer in the strand part under the mold and stirring in the horizontal direction and in the casting direction upward, the downward flow velocity is reduced, and the maximum immersion depth of the jet from the immersion nozzle is reduced, There has been proposed a method for preventing the inclusion of internal inclusions (see, for example, Patent Document 2).

しかしながら、上記した方法は、一定以上の大きさの内部介在物に低減効果はあったものの、上記した微小な内部介在物の低減を考えると、未だ問題が残っていた。   However, although the above-described method has a reduction effect on the internal inclusions of a certain size or more, the problem still remains in view of the above-described reduction of the fine internal inclusions.

特開平1−150450号公報JP-A-1-150450 特開昭57−97849号公報JP-A-57-97849

鉄と鋼(61(1975)p.69)Iron and steel (61 (1975) p.69)

ブリキや自動車用鋼板などを製造するための鋳片において、内部介在物の低減が切望されているにも関わらず、前述したとおり、従来の技術では微小な内部介在物を低減することは困難であり、製品となった薄板の内部には、微小な不純物の介在物が残留することを防ぐことができなかった。
そのために、鋳片の製品検査工程で、超音波探傷装置等の内部介在物センサにより相当量の不純物が検出された場合、当該鋳片は廃棄処分にせざるを得なかった。
In slabs for manufacturing tinplate, automotive steel plates, etc., it is difficult to reduce the fine internal inclusions with the conventional technology, as mentioned above, despite the need for reduction of the internal inclusions. In addition, it was not possible to prevent the inclusion of minute impurity inclusions in the thin plate as a product.
For this reason, when a considerable amount of impurities is detected by an internal inclusion sensor such as an ultrasonic flaw detector in the product inspection process of the slab, the slab must be disposed of.

本発明は、上記事情に鑑みてなされたもので、アルミナやスラグなどの非金属介在物について、粗大な内部介在物はいうまでもなく、微小な内部介在物も極めて少ない高品質な鋳片を、安定して得ることのできる鋼鋳片の連続鋳造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. For non-metallic inclusions such as alumina and slag, not only coarse internal inclusions, but also high-quality cast slabs with extremely few fine internal inclusions are obtained. An object of the present invention is to provide a continuous casting method of a steel slab that can be obtained stably.

発明者らは、上記した問題を解決すべく、鋭意、研究および検討を行った。その結果、微小な内部介在物も少ない高品質な鋳片を鋳造するには、鋳型内での静磁場による電磁ブレーキと溶鋼流動とを併用することが有効であることが分かった。すなわち、電磁ブレーキにより2孔ノズルから吐出した溶鋼流が鋳型短辺に衝突して形成される下降流を減速させつつも、鋳型直下の溶鋼を流動させることによって、吐出流により形成された反転流の流速を確保する方法である。   The inventors diligently studied and studied to solve the above-described problems. As a result, in order to cast a high-quality slab with few minute internal inclusions, it has been found that it is effective to use an electromagnetic brake by a static magnetic field and molten steel flow in the mold. That is, the reverse flow formed by the discharge flow is caused by flowing the molten steel directly under the mold while decelerating the downward flow formed by the molten steel flow discharged from the two-hole nozzle by the electromagnetic brake colliding with the short side of the mold. This is a method of ensuring the flow rate of

本発明は、上記知見に基づいてなされたものであり、本発明の要旨構成は次のとおりである。
1.垂直曲げ型連続鋳造機において2孔ノズルを用いて連続鋳造を行うに当たり、鋳型の長辺の両短辺側に直流磁場印加装置を配置して静磁場を印加する一方、該鋳型の長辺中央部については、少なくとも200mmの幅で静磁場を印加しない非磁場印加領域を設け、かつ該鋳型の下端から鋳造方向500mmまでの間に交流移動磁場装置を配置して溶鋼に対し交流移動磁場を印加して、該溶鋼の水平方向に流動速度が10〜40cm/sの旋回流を生じさせることを特徴とする、鋼鋳片の連続鋳造方法。
This invention is made | formed based on the said knowledge, and the summary structure of this invention is as follows.
1. When performing continuous casting using a two-hole nozzle in a vertical bending type continuous casting machine, a DC magnetic field applying device is placed on both short sides of the long side of the mold to apply a static magnetic field, while the center of the long side of the mold is The part is provided with a non-magnetic field application region that does not apply a static magnetic field with a width of at least 200 mm, and an AC moving magnetic field device is disposed between the lower end of the mold and the casting direction of 500 mm to apply an AC moving magnetic field to the molten steel. And the continuous casting method of the steel slab characterized by producing the swirling flow whose flow speed is 10-40 cm / s in the horizontal direction of this molten steel.

2.前記鋳型の幅:W(mm)と、前記非磁場印加領域の幅:L(mm)とが、次式(1)の関係を満足することを特徴とする、前記1に記載の鋼鋳片の連続鋳造方法。

W/5≦L≦W/2・・・(1)
2. 2. The steel casting according to 1, wherein a width of the mold: W (mm) and a width of the non-magnetic field application region: L 1 (mm) satisfy the relationship of the following formula (1): Method for continuous casting of pieces.

W / 5 ≦ L 1 ≦ W / 2 (1)

3.前記2孔ノズルの外径をN(mm)、前記直流磁場印加装置の幅をL(mm)、前記2孔ノズルの孔中央から前記直流磁場印加装置の上端までの距離をL(mm)、および、2孔ノズルの吐出孔角度をα(°)とするとき、これらについて次式(2)の関係を満足することを特徴とする、前記1または2に記載の鋼鋳片の連続鋳造方法。

(W−N)/2−L/tanα≦L/2・・・(2)
3. The outer diameter of the two-hole nozzle is N (mm), the width of the DC magnetic field application device is L 2 (mm), and the distance from the hole center of the two-hole nozzle to the upper end of the DC magnetic field application device is L 3 (mm ), And when the discharge hole angle of the two-hole nozzle is α (°), the relationship of the following expression (2) is satisfied for these, and the continuous steel slab according to 1 or 2 above Casting method.

(W-N) / 2- L 3 / tanα ≦ L 2/2 ··· (2)

本発明に従い、鋳型の長辺の両短辺側に静磁場を印加する一方、鋳型の長辺中央部に静磁場を印加しない領域を設け、さらに、電磁撹拌により鋳型内やストランドの垂直部における溶鋼の流動を行うことによって、溶鋼中の微小な内部介在物を効果的に低減して、内部介在物の極めて少ない高品質な鋳片を安定して鋳造することができる。   According to the present invention, a static magnetic field is applied to both short sides of the long side of the mold, while a region where no static magnetic field is applied is provided at the center of the long side of the mold, and further, in the mold and in the vertical part of the strand by electromagnetic stirring. By flowing the molten steel, it is possible to effectively reduce minute internal inclusions in the molten steel and stably cast a high quality slab having very few internal inclusions.

本発明に用いる垂直曲げ型連続鋳造機の鋳型部分を示した図である。It is the figure which showed the casting_mold | template part of the vertical bending type | mold continuous casting machine used for this invention. 従来の一般的な鋳型内とストランド垂直部における溶鋼の流動状態を模式的に示した図である。It is the figure which showed typically the flow state of the molten steel in the conventional general casting_mold | template and a strand perpendicular | vertical part. 鋳型内で静磁場を吐出溶鋼に対して印加した場合の、鋳型内とストランド垂直部における溶鋼の流動状態を模式的に示した図である。It is the figure which showed typically the flow state of the molten steel in a casting_mold | template and a strand perpendicular | vertical part at the time of applying a static magnetic field with respect to discharge molten steel within a casting_mold | template. 鋳型内で静磁場を吐出溶鋼に対して印加し、鋳型直下で水平方向の旋回流を印加した場合の、鋳型内とストランド垂直部における溶鋼の流動状態を模式的に示した図である。It is the figure which showed typically the flow state of the molten steel in a casting_mold | template and a strand perpendicular | vertical part at the time of applying a static magnetic field with respect to discharge molten steel within a casting_mold | template, and applying a horizontal swirl flow just under a casting_mold | template. 鋳型内で長辺の短辺側のみに静磁場を吐出溶鋼に対して印加し、さらに、鋳型直下で水平方向の旋回流を付与した場合の、鋳型内とストランド垂直部における溶鋼の流動状態を模式的に示した図である。When a static magnetic field is applied to the discharge molten steel only on the short side of the long side in the mold, and the horizontal swirl flow is applied directly under the mold, the flow state of the molten steel in the mold and in the vertical part of the strand It is the figure shown typically.

以下、本発明について具体的に説明する。
一般に、鋳型内に注入される溶鋼中には、脱酸時の生成物であるアルミナやスラグ、さらにはタンディッシュの耐火物が溶損して生成した非金属介在物などが混入している。
これら非金属介在物が混入した溶鋼が鋳型内に注入されると、ストランド内部に潜り込んで凝固シェルに捕捉された場合は、鋼鋳片の内部介在物となり、前記したとおり、ブリキや自動車材等の薄板製品として使用できなくなる。
Hereinafter, the present invention will be specifically described.
In general, molten steel injected into a mold is mixed with alumina and slag, which are products during deoxidation, and non-metallic inclusions generated by melting a tundish refractory.
When molten steel mixed with these non-metallic inclusions is injected into the mold, if it gets inside the strand and is captured by the solidified shell, it becomes an internal inclusion in the steel slab. Cannot be used as a thin plate product.

そこで、発明者らは、非金属介在物のストランド内部への潜り込み現象を詳細に調査し、溶鋼の流動状態と非金属介在物のストランド内部への潜り込み現象との関係について研究を重ねた。
その結果、以下に述べる方法によって、非金属介在物のストランド内部への潜り込み、特に、50〜200μm程度の微小な非金属介在物の潜り込みを大幅に減少させることに成功し、本発明を完成させるに到った。
Therefore, the inventors investigated in detail the phenomenon of non-metallic inclusions entering the strands, and conducted research on the relationship between the flow state of molten steel and the phenomenon of non-metallic inclusions entering the strands.
As a result, the method described below succeeded in greatly reducing the intrusion of nonmetallic inclusions into the strand, in particular, the infiltration of minute nonmetallic inclusions of about 50 to 200 μm, thereby completing the present invention. It reached.

すなわち、本発明は、垂直曲げ型連続鋳造機を用いて鋼鋳片の連続鋳造を行うに当たり、鋳型の長辺の両短辺側に、直流磁場印加装置を用いて静磁場を印加する一方、鋳型の長辺中央部については、少なくとも200mm幅の静磁場を印加しない非磁場印加領域を設ける。
さらに、交流移動磁場装置を、その中心が鋳型下端から鋳造方向500mmまでの間に位置するように配置して、溶鋼に対し交流移動磁場を印加することで、溶鋼に水平方向(鋳造方向に垂直)の旋回流を生じさせ、その際の旋回流の流動速度を10〜40cm/sとする方法である。
That is, the present invention applies a static magnetic field using a DC magnetic field application device on both short sides of the long side of the mold when performing continuous casting of a steel slab using a vertical bending die continuous casting machine, About the center part of the long side of a casting_mold | template, the nonmagnetic field application area | region which does not apply the static magnetic field of a width of at least 200 mm is provided.
Furthermore, the AC moving magnetic field device is arranged so that its center is located between the lower end of the mold and the casting direction of 500 mm, and an AC moving magnetic field is applied to the molten steel, so that the molten steel is horizontal (perpendicular to the casting direction). ), And the flow velocity of the swirling flow is 10 to 40 cm / s.

図1に、本発明に用いる垂直曲げ型連続鋳造機の鋳型部分を概念的に示す。図中、1は鋳型、2は2孔ノズル、3は鋳型下端であり、鋳型の幅をWで、2孔ノズルの外径をNで、非磁場印加領域の幅をLで、直流磁場印加装置の幅をLで、2孔ノズルの孔中央から直流磁場印加装置の上側までの距離をLで示す。また、2孔ノズルの吐出孔角度はαで示す。
なお、図中の矢印は、鋳造方向を示している。
FIG. 1 conceptually shows a mold part of a vertical bending type continuous casting machine used in the present invention. In the figure, 1 is a mold, 2 two-hole nozzle, 3 is the mold bottom, the width of the mold at is W, the outer diameter of the two-hole nozzle N, the width of the non-magnetic field application region L 1, DC magnetic field the width of the application device L 2, showing the distance from the hole center of the two-hole nozzle to the upper side of the DC magnetic field application device L 3. The discharge hole angle of the two-hole nozzle is indicated by α.
In addition, the arrow in a figure has shown the casting direction.

図2に、従来の一般的な、鋳型内とストランド垂直部における溶鋼の流動状態を模式的に示す。同図に示したように、電磁撹拌による溶鋼流動を伴わない場合でも、鋳型内に注がれた溶鋼中の非金属介在物はすべて内部介在物になるわけではない。粗大な非金属介在物であれば、自身の浮力で浮上し、微小な介在物でも、その一部は、図2に示したような、2孔ノズルの吐出孔からの反転流に帯同されて上昇し、浮上分離することができる。
これは、吐出孔からの反転流の速度を増加させることによって、鋳型内に注がれた非金属介在物の浮上は促進することができるということを意味している。
FIG. 2 schematically shows a flow state of molten steel in a conventional general mold and in a strand vertical part. As shown in the figure, even when there is no molten steel flow due to electromagnetic stirring, not all non-metallic inclusions in the molten steel poured into the mold become internal inclusions. If it is a coarse non-metallic inclusion, it floats with its own buoyancy, and even a small inclusion is partly associated with the reverse flow from the discharge hole of the two-hole nozzle as shown in FIG. It can rise and separate.
This means that the floating of the non-metallic inclusions poured into the mold can be promoted by increasing the speed of the reverse flow from the discharge hole.

また、図2に示した2孔ノズルからの吐出流が、鋳型の短辺に衝突した後に形成する下降流に、直流磁場印加装置を用いた静磁場(電磁ブレーキ)を印加すると、溶鋼の下降流速が減速して、溶鋼への内部介在物の潜り込み量が低減する。一方で、図3に示すように、電磁ブレーキにより下降流を減速させると、反転流の流速も減速し、反転流が電磁ブレーキの下から上へと通過する際、さらに反転流の流速は減速してしまい、反転流による内部介在物の低減効果が失われる。   Moreover, when a static magnetic field (electromagnetic brake) using a DC magnetic field application device is applied to the downward flow formed after the discharge flow from the two-hole nozzle shown in FIG. 2 collides with the short side of the mold, the molten steel is lowered. The flow velocity is reduced, and the amount of inclusions inside the molten steel is reduced. On the other hand, as shown in FIG. 3, when the downward flow is decelerated by the electromagnetic brake, the flow velocity of the reverse flow is also reduced, and when the reverse flow passes from the bottom to the top of the electromagnetic brake, the flow velocity of the reverse flow is further reduced. Therefore, the effect of reducing internal inclusions due to the reverse flow is lost.

そこで、発明者らは水モデル実験装置を使用した実験を行った。その結果、上記した反転流の速度を増加させるためには、鋳型下端3から鋳造方向に500mmまでの間の位置で、水平方向に水を流動させれば良いことが明らかとなった。
さらに、発明者らは、内部介在物を模擬したトレーサーを使用して水モデル実験を行った。しかしながら、電磁ブレーキと、鋳型直下での流動とを併用して印加しても、図4に示すように反転流は電磁ブレーキにより相殺され、流動がない電磁ブレーキのみの場合と比べても内部介在物の量が減ることはなく、図4の場合では流動による内部介在物の低減効果が認められないことが明らかになった。
すなわち、内部介在物のさらなる低減には、電磁ブレーキと電磁撹拌による溶鋼流動のそれぞれの効果が両立する条件を見出す必要があるということである。
Therefore, the inventors conducted an experiment using a water model experimental apparatus. As a result, it has become clear that in order to increase the speed of the reverse flow described above, water should flow in the horizontal direction at a position between the mold lower end 3 and 500 mm in the casting direction.
Furthermore, the inventors conducted a water model experiment using a tracer simulating internal inclusions. However, even if the electromagnetic brake and the flow immediately below the mold are applied in combination, the reverse flow is canceled out by the electromagnetic brake as shown in FIG. The amount of the object did not decrease, and in the case of FIG. 4, it became clear that the effect of reducing the internal inclusions due to the flow was not observed.
That is, in order to further reduce the internal inclusions, it is necessary to find a condition where the effects of both the electromagnetic brake and the molten steel flow by electromagnetic stirring are compatible.

そこで、発明者らは、さらに様々な条件で水モデル実験を行い、鋳型内の電磁ブレーキと鋳型直下の電磁撹拌による溶鋼流動の効果が両立できる条件を調査した。
その結果、鋳型の長辺中央部に、少なくとも200mmの幅のブレーキングが存在しない領域を設け、さらに、鋳型下端から鋳造方向500mmまでの間で、水平方向に10〜40cm/sの流速の旋回流を生じさせることによって、水の反転流の速度を効率的に増加することができ、もって、非金属介在物の潜り込みを大幅に低減できる可能性が明らかとなった。なお、本発明で、水の流動速度は流速計を用いて測定した。
Therefore, the inventors conducted water model experiments under various conditions, and investigated conditions under which both the electromagnetic brake in the mold and the effect of molten steel flow by electromagnetic stirring directly under the mold could be achieved.
As a result, at the center of the long side of the mold, a region having at least 200 mm of width without braking is provided, and further, swirling at a flow rate of 10 to 40 cm / s in the horizontal direction from the lower end of the mold to the casting direction of 500 mm. It has become clear that by generating the flow, the speed of the water reversal flow can be efficiently increased, and the penetration of non-metallic inclusions can be greatly reduced. In the present invention, the flow rate of water was measured using an anemometer.

すなわち、図5に示すように、鋳型の長辺中央部では、電磁ブレーキを印加しないことにより、電磁撹拌により流動した反転流が減速することなく、2孔ノズルおよびメニスカス部まで達し、その結果、内部介在物が大幅に低減できる効果が達成されるのである。   That is, as shown in FIG. 5, in the central part of the long side of the mold, by applying no electromagnetic brake, the reverse flow that has flowed by electromagnetic stirring reaches the two-hole nozzle and the meniscus part without decelerating. The effect that internal inclusions can be greatly reduced is achieved.

上記した構成をさらに具体的に説明する。
水平方向に10〜40cm/sの流速で旋回流を生じさせる
様々な旋回流で実験を行った結果、10cm/s以上の流動速度で内部介在物が大幅に低減した。一方、流動速度が40cm/s超になると、溶鋼の湯面変動が顕著となり、パウダーの巻き込み現象が生じ、鋼鋳片の表面品質に影響を及ぼした。そこで、本発明における旋回流の流動速度は10〜40cm/sとした。
The above configuration will be described more specifically.
As a result of conducting experiments with various swirl flows that generate a swirl flow at a flow rate of 10 to 40 cm / s in the horizontal direction, internal inclusions were greatly reduced at a flow rate of 10 cm / s or more. On the other hand, when the flow rate exceeded 40 cm / s, the molten steel surface level fluctuated significantly, causing the phenomenon of powder entrainment and affecting the surface quality of the steel slab. Therefore, the flow velocity of the swirling flow in the present invention is set to 10 to 40 cm / s.

交流移動磁場装置の設置位置は、鋳型下端から鋳造方向に500mmまでの間
交流移動磁場装置を鋳型内に設置して溶鋼を水平に流動させると、この流動の領域をそのまま通過してしまう吐出流の割合が多くなってしまい、内部介在物の低減効果が小さくなってしまう。
一方、交流移動磁場装置を鋳型下端の500mmの位置より下方に設置した場合、流動速度の増加するのが反転流の下部の一部のみになってしまうため、内部介在物の低減効果が限定的となってしまう。
これらの理由により、交流移動磁場装置の設置位置は、鋳型下端から鋳造方向に500mmまでの間とした。
なお、交流移動磁場装置の設置の基準は、交流移動磁場装置の中心とする。すなわち、本発明において、交流移動磁場装置の設置位置は、交流移動磁場装置の中心が鋳型下端から鋳造方向に500mmまでの間である。
The installation position of the AC moving magnetic field device is from the lower end of the mold to 500 mm in the casting direction. When the AC moving magnetic field device is installed in the mold and the molten steel flows horizontally, the discharge flow that passes through this flow region as it is. The ratio of the amount increases, and the effect of reducing internal inclusions becomes small.
On the other hand, when the AC moving magnetic field device is installed below the position of 500 mm at the lower end of the mold, the flow velocity increases only in a part of the lower part of the reverse flow, so the effect of reducing internal inclusions is limited. End up.
For these reasons, the installation position of the AC moving magnetic field device is between 500 mm in the casting direction from the lower end of the mold.
In addition, the reference | standard of installation of an alternating current magnetic field apparatus shall be the center of an alternating current magnetic field apparatus. That is, in the present invention, the installation position of the AC moving magnetic field device is between the center of the AC moving magnetic field device and the casting direction from the lower end of the mold to 500 mm.

少なくとも200mmの幅の静磁場を印加しない非磁場印加領域
本発明における非磁場印加領域の幅:Lは、少なくとも200mmとする。というのは、静磁場を印加しない非磁場印加領域の幅が200mmに満たないと、交流移動磁場の旋回流によって増速された反転流の上昇する経路の幅が小さくなるため、反転流の上昇が阻害され、その結果、内部介在物の低減効果が十分ではなくなってしまうからである。
一方、Lの上限は、1000mm程度とすることが好ましい。というのは、非磁場印加領域による効果は、Lが1000mmを超えると飽和するからである。また、Lが広すぎると、浸漬ノズルからの吐出流が静磁場の領域を避けて、非磁場印加領域(L)を通過してしまうからである。
Non-magnetic field application region to which a static magnetic field having a width of at least 200 mm is not applied The width: L 1 of the non-magnetic field application region in the present invention is at least 200 mm. This is because if the width of the non-magnetic field application region where no static magnetic field is applied is less than 200 mm, the width of the reverse flow increased by the swirling flow of the AC moving magnetic field is reduced, so that the reverse flow rises. This is because, as a result, the effect of reducing internal inclusions is not sufficient.
On the other hand, the upper limit of L 1 is preferably set to about 1000 mm. This is because the effect of the non-magnetic field application region is saturated when L 1 exceeds 1000 mm. Further, if L 1 is too wide, the discharge flow from the immersion nozzle avoids the static magnetic field region and passes through the non-magnetic field application region (L 1 ).

次に、本発明における式(1)と式(2)について説明する。
図1に示したように、鋳型の幅をW(mm)、2孔ノズルの外径をN(mm)、長辺中央部において静磁場を印加しない領域の幅をL(mm)、両短辺側に設置した直流磁場装置の幅をL(mm)、2孔ノズルの中央から直流磁場装置の上側までの距離をL(mm)、2孔ノズルの吐出孔角度をα(°)とした場合、以下に述べる関係式を満足させることが有利である。
Next, expressions (1) and (2) in the present invention will be described.
As shown in FIG. 1, the width of the mold is W (mm), the outer diameter of the two-hole nozzle is N (mm), the width of the region where no static magnetic field is applied at the center of the long side is L 1 (mm), The width of the DC magnetic field device installed on the short side is L 2 (mm), the distance from the center of the 2-hole nozzle to the upper side of the DC magnetic field device is L 3 (mm), and the discharge hole angle of the 2-hole nozzle is α (° ), It is advantageous to satisfy the following relational expression.

すなわち、垂直曲げ型連続鋳造において、効率的に介在物の浮上分離を図るためには、非磁場印加領域の幅Lを200mm以上にすると共に、Lを鋳型の幅Wに対して、一定の割合以上とし、反転流の経路を確保することが好ましい。
その条件を式(3)に示す。
≧W/5・・・(3)
また、水モデル実験の結果、直流磁場装置の幅Lが狭すぎると、吐出流がブレーキを避けるように流れ、ブレーキが無い長辺側中央から下降してしまうため、LをWに対してある割合以上にすることが望ましい。その条件を式(4)に示す。
≧W/4・・・(4)
ここに、W=L+2Lであることから、式(3)と式(4)と組み合わせると、以下の式(1)を得ることができる。
W/5≦L≦W/2・・・(1)
That is, in the vertical bending die continuous casting, in order to efficiently lift and separate inclusions, the width L 1 of the non-magnetic field application region is set to 200 mm or more, and L 1 is constant with respect to the width W of the mold. It is preferable that the reversal flow path be secured.
The condition is shown in Formula (3).
L 1 ≧ W / 5 (3)
As a result of the water model experiment, when the width L 2 of the DC magnetic field device is too narrow, flows as discharge stream avoid brake, for thereby lowered from the brake no longer side center, the L 2 to W It is desirable to make it more than a certain ratio. The condition is shown in Formula (4).
L 2 ≧ W / 4 (4)
Here, since W = L 1 + 2L 2 , the following formula (1) can be obtained by combining the formula (3) and the formula (4).
W / 5 ≦ L 1 ≦ W / 2 (1)

また、2孔ノズルからの吐出流に対し適正な電磁ブレーキを印加すると共に、この電磁ブレーキ付与位置の下方で、溶鋼中心部に、反転流を効果的に生じさせるためには、ノズル吐出孔角度αとLおよびLの関係が重要である。
すなわち、2孔ノズルの孔の中央からノズル吐出孔角度αに沿って引いた線が、図1に示しているとおりに、電磁ブレーキの長さの半分であるL/2よりも、鋳型長辺の短辺側で交差することが望ましく、これを示しているのが以下の式(2)である。
(W−N)/2−L/tanα≦L/2・・・(2)
従って、式(1)と式(2)の条件を併せて満たすことにより、鋳型長辺の短辺側に位置している直流磁場印加装置によって、より効果的に吐出流に対して電磁ブレーキの印加および良好な反転流の形成が達成される。
In addition, an appropriate electromagnetic brake is applied to the discharge flow from the two-hole nozzle, and in order to effectively generate a reverse flow in the molten steel center below the electromagnetic brake application position, the nozzle discharge hole angle The relationship between α and L 2 and L 3 is important.
In other words, two-hole nozzle of a line drawn along the nozzle discharge hole angle α from the center of the hole, as it is shown in Figure 1, than L 2/2 is half the length of the electromagnetic brake, mold length It is desirable to intersect on the short side of the side, and this is shown by the following formula (2).
(W-N) / 2- L 3 / tanα ≦ L 2/2 ··· (2)
Therefore, by satisfying the conditions of Formula (1) and Formula (2) together, the DC magnetic field application device located on the short side of the long side of the mold can more effectively prevent the electromagnetic brake against the discharge flow. Application and good reversal flow formation is achieved.

以上述べたとおり、本発明に従い溶鋼の流動を制御することで、アルミナやスラグなどの非金属介在物による内部介在物、特に微小な内部介在物が非常に少ない高品質な鋳片を製造することが可能となる。
同時に表面品質が要求される場合には、さらに、鋳型内で2孔ノズルの吐出孔近傍に旋回流を印加できる交流移動磁場装置を設置しても、本発明の効果は維持され、高い表面品質と共に、内部品質も良い鋼鋳片を製造することができる。
というのは、鋳型内の静磁場とストランド旋回磁場に加えて鋳型内に旋回磁場をさらに印加すると、溶鋼の凝固界面における洗浄効果が生じるからである。
As described above, by controlling the flow of molten steel according to the present invention, it is possible to produce a high-quality slab with very few internal inclusions, particularly minute internal inclusions due to non-metallic inclusions such as alumina and slag. Is possible.
If surface quality is required at the same time, the effect of the present invention can be maintained even if an AC moving magnetic field device capable of applying a swirling flow in the mold near the discharge hole of the two-hole nozzle is maintained. At the same time, a steel slab having good internal quality can be produced.
This is because when a swirl magnetic field is further applied in the mold in addition to the static magnetic field and the strand swirl magnetic field in the mold, a cleaning effect occurs at the solidification interface of the molten steel.

ここに、本発明に用いる直流磁場印加装置は、従来公知の装置のいずれもが使用できる。また、その使用条件は、磁束密度が0.1〜0.5テスラである。
なお、2孔ノズルの中央(吐出孔の中心)から、直流磁場印加装置の上側までの距離Lは200〜500mm程度の範囲とすることが望ましい。
Here, any conventionally known apparatus can be used as the DC magnetic field applying apparatus used in the present invention. Moreover, the use conditions are a magnetic flux density of 0.1-0.5 Tesla.
Incidentally, from the two-hole nozzle center (the center of the discharge hole), the distance L 3 to the upper DC magnetic field application apparatus is preferably in the range of about 200 to 500 mm.

さらに、本発明に用いる交流移動磁場装置は、従来公知の装置のいずれもが使用できるが、特に、両長辺側に交流移動磁場印加装置を設置し、それぞれの装置で幅方向に同一の向きの移動磁場を印加することができ、かつ相対する装置とは、反対向きの移動磁場を印加することで旋回流を発生させることができる磁場装置(いわゆる、旋回磁場装置)が好適に使用できる。
なお、上記した磁場装置としては、リニア型コイル式で最大電流:1000A、周波数:2〜3Hzの交流を印加し、その設置位置として、磁場装置の中心がメニスカスから1.0〜1.5mにあるなどが例示できる。
また、その使用条件は、特に磁束密度が0.01〜0.15テスラである。
Furthermore, as the AC moving magnetic field device used in the present invention, any of the conventionally known devices can be used. In particular, an AC moving magnetic field applying device is installed on both long sides, and the same direction in the width direction in each device. A magnetic field device that can generate a swirling flow by applying a moving magnetic field in the opposite direction (so-called swirl magnetic field device) can be preferably used.
The magnetic field device described above is a linear coil type that applies an alternating current with a maximum current of 1000 A and a frequency of 2 to 3 Hz, and the center of the magnetic field device is 1.0 to 1.5 m from the meniscus as the installation position. There are some examples.
Moreover, the use conditions are especially a magnetic flux density of 0.01-0.15 Tesla.

ここに、本発明に用いる鋳型の幅や厚み、2孔ノズルの外径や吐出孔角度、および鋳造速度は、垂直曲げ型連続鋳造機を使用する際の従来公知のものを用いることができるが、以下に示す範囲、すなわち、
鋳型の幅:Wは、1000〜1800mm、鋳型の厚みは、200〜300mm、2孔ノズルの外径:Nは、100〜200mm、吐出孔角度:αは、0〜50°、および鋳造速度は、1.0〜3.0m/min程度とすることが好適である。
Here, the width and thickness of the mold used in the present invention, the outer diameter of the two-hole nozzle, the discharge hole angle, and the casting speed can be those conventionally known when using a vertical bending type continuous casting machine. , The range shown below, ie
Mold width: W is 1000-1800 mm, mold thickness is 200-300 mm, outer diameter of 2-hole nozzle: N is 100-200 mm, discharge hole angle: α is 0-50 °, and casting speed is , About 1.0 to 3.0 m / min is preferable.

以下、スラブ連続鋳造機で実施した14チャージの試験鋳造結果を説明する。
1チャージ約200トンの低炭ブリキの溶鋼を、14チャージ(試験No.1〜14)鋳造した。発明例(試験No.1〜6,8,9,13,14)では、これらの溶鋼を、鋳型長辺の両短辺側の近傍のみに静磁場を印加するように直流磁場印加装置を設置し、鋳型の長辺中央部について、少なくとも200mmの静磁場を印加しない非磁場印加領域を設け、かつ鋳型下端から鋳造方向200mmの位置に交流移動磁場装置を設置し、水平方向に10〜40cm/sの流速の旋回流を付与する条件で、垂直曲げ連続鋳造機を用いて連続鋳造を行った。主な鋳造条件を表1に示す。
Hereinafter, the test casting result of 14 charges performed by the slab continuous casting machine will be described.
Low charge tin molten steel of about 200 tons per charge was cast into 14 charges (test Nos. 1 to 14). In the inventive examples (Test Nos. 1 to 6, 8, 9, 13, and 14), a DC magnetic field applying device is installed so that a static magnetic field is applied only to the vicinity of both short sides of the mold long side of these molten steels. Then, at the center of the long side of the mold, a non-magnetic field application region that does not apply a static magnetic field of at least 200 mm is provided, and an AC moving magnetic field device is installed at a position of 200 mm in the casting direction from the lower end of the mold. Continuous casting was performed using a vertical bending continuous casting machine under the condition of applying a swirling flow having a flow rate of s. Table 1 shows the main casting conditions.

また、発明例(試験No.1〜6)では、式(1)と式(2)とを併せて満たす鋳型幅:W、直流磁場印加装置の幅:L、直流磁場印加装置の位置:L、2孔ノズルの外径N、吐出孔角度αで鋳造を行った。 Further, in the inventive examples (Test Nos. 1 to 6), the mold width: W, the width of the DC magnetic field application device: L 2 that satisfies both the expressions (1) and (2), and the position of the DC magnetic field application device: Casting was performed at L 3 , the outer diameter N of the two-hole nozzle, and the discharge hole angle α.

さらに、比較例として、連続鋳造を垂直曲げ連続鋳造機で行った。主な鋳造条件を表1に併記する。
なお、比較例(試験No.7)は、式(1)を満たさないにように非磁場印加領域Lを調節した。比較例(試験No.10〜11)は、交流移動磁場装置による流速が40cm/s超の条件で鋳造を行った。比較例(試験No.12)は、溶鋼流の速度が10cm/s未満の条件で鋳造を行った。
Furthermore, as a comparative example, continuous casting was performed with a vertical bending continuous casting machine. Table 1 shows the main casting conditions.
In Comparative Example (Test No.7) were adjusted to non magnetic field application region L 1 so as to not satisfy the equation (1). In the comparative examples (test Nos. 10 to 11), casting was performed under the condition that the flow velocity by the AC moving magnetic field apparatus exceeded 40 cm / s. In the comparative example (Test No. 12), casting was performed under the condition that the speed of the molten steel flow was less than 10 cm / s.

Figure 2011212716
Figure 2011212716

溶鋼に、交流移動磁場で30cm/sの旋回流を付与する場合は、磁束密度が0.09テスラの旋回磁場を印加した。また、溶鋼に、40cm/s超で旋回流を付与する場合は磁束密度が0.15テスラの旋回磁場を印加した。
さらに、電磁ブレーキは、一律に、磁束密度が0.3テスラの静磁場を印加した。
When a swirling flow of 30 cm / s was applied to the molten steel with an AC moving magnetic field, a swirling magnetic field having a magnetic flux density of 0.09 Tesla was applied. Further, when a swirl flow was applied to the molten steel at a rate exceeding 40 cm / s, a swirl magnetic field having a magnetic flux density of 0.15 Tesla was applied.
Furthermore, the electromagnetic brake uniformly applied a static magnetic field with a magnetic flux density of 0.3 Tesla.

溶鋼流速は、鋳造後の鋳片から試料を採取し、その試料の凝固組織で確認した。すなわち、鋳造後の鋳片から検鏡用試料を切り出し、鏡面仕上げした後に酸で腐食し、凝固組織を現出させ、凝固組織のデンドライド樹枝状晶の傾き角度から、岡野らの式(非特許文献1参照)を用いて溶鋼流速を求めた。
交流移動磁場で0.15テスラの移動磁場を印加した場合の流動速度は50cm/sであった。また、0.05テスラの移動磁場を印加した場合の流動速度は3cm/sであった。
The molten steel flow velocity was confirmed by collecting a sample from the cast slab and solidifying the sample. That is, a specimen for speculum is cut out from a cast slab, mirror-finished and then corroded with acid to reveal a solidified structure. From the inclination angle of dendritic dendrites in the solidified structure, Okano et al. The molten steel flow velocity was obtained using Reference 1).
The flow velocity when a moving magnetic field of 0.15 Tesla was applied with an AC moving magnetic field was 50 cm / s. The flow rate when a moving magnetic field of 0.05 Tesla was applied was 3 cm / s.

また、鋳造後の鋳片の鋳造方向に垂直な面を鋳造方向に30mm切り出し、全幅・全厚で介在物の個数を超音波探傷装置により測定した。調査結果を表2に示す。さらに、これらの鋳片の圧延後の鋼板において、介在物センサによる内部介在物の個数も調査した。結果を表2に併記する。
なお、上記の圧延は、冷間圧延であり、連続鋳造されたスラブを熱間圧延および冷間圧延して鋼板とし、この鋼板に錫めっき処理を施した。
In addition, a surface perpendicular to the casting direction of the cast slab after casting was cut out by 30 mm in the casting direction, and the number of inclusions in the full width and thickness was measured with an ultrasonic flaw detector. The survey results are shown in Table 2. Furthermore, the number of internal inclusions by inclusion sensors in the steel plates after rolling of these slabs was also investigated. The results are also shown in Table 2.
The above rolling was cold rolling, and a continuously cast slab was hot-rolled and cold-rolled into a steel plate, and this steel plate was subjected to tin plating.

Figure 2011212716
Figure 2011212716

表2に示したように、発明例(試験No.1〜6,8,9,13,14)はいずれも、比較例と比べると、鋳片段階での内部介在物の個数が少なく、かつ圧延後の鋼板における内部介在物の個数も大幅に少ない結果となった。特に、式(1)と式(2)とを併せて満たす発明例(試験No.1〜6)は、鋳片段階での内部介在物の個数が少なく、かつ鋼板の内部介在物個数も少ない結果となった。   As shown in Table 2, all of the inventive examples (Test Nos. 1 to 6, 8, 9, 13, 14) have fewer internal inclusions at the slab stage than the comparative examples, and The number of internal inclusions in the rolled steel sheet was also significantly reduced. In particular, the invention examples (Test Nos. 1 to 6) satisfying both the formula (1) and the formula (2) have a small number of internal inclusions at the slab stage and a small number of internal inclusions in the steel sheet. As a result.

さらに、上記した鋼板の内部介在物の粒径について調査したところ、本発明に従う鋼板の不純物の粒径分布は、より微小側にシフトし、かつ内部介在物自体の個数も大幅に減少していることが分かった。
さらに、パウダーによる表面欠陥も非常に少ない結果となっていることも併せて確認した。
Further, when the particle size of the internal inclusions in the steel plate was investigated, the particle size distribution of impurities in the steel plate according to the present invention was shifted to a smaller side, and the number of internal inclusions themselves was greatly reduced. I understood that.
It was also confirmed that the surface defects due to the powder were very few.

本発明によれば、垂直曲げ連続鋳造に際し、アルミナやスラグなどの内部介在物が極めて少ない高品質な鋼鋳片を得ることができる。   According to the present invention, it is possible to obtain a high-quality steel slab having very few internal inclusions such as alumina and slag in the vertical bending continuous casting.

1 鋳型
2 2孔ノズル
3 鋳型下端
静磁場を印加しない領域の幅
両短辺側に設置した直流磁場装置の幅
2孔ノズルの中央から直流磁場装置の上側までの距離
W 鋳型の幅
N 2孔ノズルの外径
α 2孔ノズルの吐出孔角度
DESCRIPTION OF SYMBOLS 1 Mold 2 2-hole nozzle 3 Mold lower end L 1 Width of area where static magnetic field is not applied L 2 Width of DC magnetic field device installed on both short sides L 3 Distance from center of 2-hole nozzle to upper side of DC magnetic field device W Mold width N Outer diameter of 2 hole nozzle α Discharge hole angle of 2 hole nozzle

Claims (3)

垂直曲げ型連続鋳造機において2孔ノズルを用いて連続鋳造を行うに当たり、鋳型の長辺の両短辺側に直流磁場印加装置を配置して静磁場を印加する一方、該鋳型の長辺中央部については、少なくとも200mmの幅で静磁場を印加しない非磁場印加領域を設け、かつ該鋳型の下端から鋳造方向500mmまでの間に交流移動磁場装置を配置して溶鋼に対し交流移動磁場を印加して、該溶鋼の水平方向に流動速度が10〜40cm/sの旋回流を生じさせることを特徴とする、鋼鋳片の連続鋳造方法。   When performing continuous casting using a two-hole nozzle in a vertical bending type continuous casting machine, a DC magnetic field applying device is placed on both short sides of the long side of the mold to apply a static magnetic field, while the center of the long side of the mold is The part is provided with a non-magnetic field application region that does not apply a static magnetic field with a width of at least 200 mm, and an AC moving magnetic field device is disposed between the lower end of the mold and the casting direction of 500 mm to apply an AC moving magnetic field to the molten steel. And the continuous casting method of the steel slab characterized by producing the swirling flow whose flow speed is 10-40 cm / s in the horizontal direction of this molten steel. 前記鋳型の幅:W(mm)と、前記非磁場印加領域の幅:L(mm)とが、次式(1)の関係を満足することを特徴とする、請求項1に記載の鋼鋳片の連続鋳造方法。

W/5≦L≦W/2・・・(1)
2. The steel according to claim 1, wherein the width of the mold: W (mm) and the width of the non-magnetic field application region: L 1 (mm) satisfy the relationship of the following formula (1): A continuous casting method for slabs.

W / 5 ≦ L 1 ≦ W / 2 (1)
前記2孔ノズルの外径をN(mm)、前記直流磁場印加装置の幅をL(mm)、前記2孔ノズルの孔中央から前記直流磁場印加装置の上端までの距離をL(mm)、および、2孔ノズルの吐出孔角度をα(°)とするとき、これらについて次式(2)の関係を満足することを特徴とする、請求項1または2に記載の鋼鋳片の連続鋳造方法。

(W−N)/2−L/tanα≦L/2・・・(2)
The outer diameter of the two-hole nozzle is N (mm), the width of the DC magnetic field application device is L 2 (mm), and the distance from the hole center of the two-hole nozzle to the upper end of the DC magnetic field application device is L 3 (mm ), And when the discharge hole angle of the two-hole nozzle is α (°), the relationship of the following expression (2) is satisfied for these, and the steel slab according to claim 1 or 2 Continuous casting method.

(W-N) / 2- L 3 / tanα ≦ L 2/2 ··· (2)
JP2010083592A 2010-03-31 2010-03-31 Continuous casting method for steel slabs Active JP5413277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083592A JP5413277B2 (en) 2010-03-31 2010-03-31 Continuous casting method for steel slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083592A JP5413277B2 (en) 2010-03-31 2010-03-31 Continuous casting method for steel slabs

Publications (2)

Publication Number Publication Date
JP2011212716A true JP2011212716A (en) 2011-10-27
JP5413277B2 JP5413277B2 (en) 2014-02-12

Family

ID=44943015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083592A Active JP5413277B2 (en) 2010-03-31 2010-03-31 Continuous casting method for steel slabs

Country Status (1)

Country Link
JP (1) JP5413277B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144107A (en) * 2017-03-03 2018-09-20 新日鐵住金株式会社 Continuous casting machine
CN114286728A (en) * 2019-12-27 2022-04-05 株式会社Posco Casting apparatus and casting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272458A (en) * 1985-09-26 1987-04-03 Toshiba Corp Electromagnetic stirring method
JPS63119962A (en) * 1986-11-08 1988-05-24 Kobe Steel Ltd Rolling device for electromagnetic agitation
JPH1128556A (en) * 1997-07-04 1999-02-02 Nippon Steel Corp Method for continuously casting steel
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272458A (en) * 1985-09-26 1987-04-03 Toshiba Corp Electromagnetic stirring method
JPS63119962A (en) * 1986-11-08 1988-05-24 Kobe Steel Ltd Rolling device for electromagnetic agitation
JPH1128556A (en) * 1997-07-04 1999-02-02 Nippon Steel Corp Method for continuously casting steel
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144107A (en) * 2017-03-03 2018-09-20 新日鐵住金株式会社 Continuous casting machine
CN114286728A (en) * 2019-12-27 2022-04-05 株式会社Posco Casting apparatus and casting method

Also Published As

Publication number Publication date
JP5413277B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
US8397793B2 (en) Steel continuous casting method
EP2500121A1 (en) Method of continuous casting of steel
JP5014934B2 (en) Steel continuous casting method
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
JP4585504B2 (en) Method for continuous casting of molten metal
JP5217785B2 (en) Steel continuous casting method
JP5929872B2 (en) Steel continuous casting method
JP5413277B2 (en) Continuous casting method for steel slabs
JP4411945B2 (en) Slab continuous casting method for ultra-low carbon steel
JP6278168B1 (en) Steel continuous casting method
JP2011212723A (en) Continuous casting method of steel cast slab
JP5354179B2 (en) Continuous casting method for steel slabs
JP5791234B2 (en) Continuous casting method for steel slabs
JP5125663B2 (en) Continuous casting method of slab slab
JP5044981B2 (en) Steel continuous casting method
JP7200722B2 (en) In-mold flow control method in curved continuous casting equipment
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP2010099704A (en) Continuous casting method for steel cast slab
JP2010110766A (en) Continuous casting apparatus for steel and continuous casting method for steel
JP5359653B2 (en) Steel continuous casting method
JP2006255759A (en) Method for continuously casting steel
JP5454664B2 (en) Steel continuous casting method
JP3149821B2 (en) Continuous casting method
JP5304297B2 (en) Continuous casting method for steel slabs
JP5217784B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5413277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250