JP3149821B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP3149821B2
JP3149821B2 JP17248497A JP17248497A JP3149821B2 JP 3149821 B2 JP3149821 B2 JP 3149821B2 JP 17248497 A JP17248497 A JP 17248497A JP 17248497 A JP17248497 A JP 17248497A JP 3149821 B2 JP3149821 B2 JP 3149821B2
Authority
JP
Japan
Prior art keywords
magnetic field
mold
molten metal
stage
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17248497A
Other languages
Japanese (ja)
Other versions
JPH1110296A (en
Inventor
祐久 菊地
欽吾 笹目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17248497A priority Critical patent/JP3149821B2/en
Publication of JPH1110296A publication Critical patent/JPH1110296A/en
Application granted granted Critical
Publication of JP3149821B2 publication Critical patent/JP3149821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鋳込み初期また
は終期などの鋳造速度が遅く、溶融金属の温度が低下し
たとき、鋳型内の溶融金属の温度低下を抑制し、品質の
良好な鋳片を得る連続鋳造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a casting slab having a high quality when the casting speed is low at the beginning or end of casting and the temperature of the molten metal is reduced. It relates to a continuous casting method to be obtained.

【0002】[0002]

【従来の技術】金属の連続鋳造方法は、浸漬ノズルを用
いて溶融金属(以下、これを「溶鋼」ということもあ
る)を鋳型内に注入し、連続的に凝固させて鋳片を得る
方法である。浸漬ノズルは鋳型の中心位置に設けられ、
金属板を得る水平断面が長方形の鋳片(スラブ)では、
鋳型長手方向に均一に溶融金属を注入するため、浸漬ノ
ズルの吐出孔は鋳型断面の長辺に平行な方向に向けて左
右に設けられている。
2. Description of the Related Art A continuous casting method of metal is a method of injecting molten metal (hereinafter sometimes referred to as "molten steel") into a mold using an immersion nozzle and continuously solidifying to obtain a cast piece. It is. The immersion nozzle is provided at the center of the mold,
In a slab with a rectangular horizontal section to obtain a metal plate,
In order to uniformly inject the molten metal in the longitudinal direction of the mold, the discharge holes of the immersion nozzle are provided on the left and right in a direction parallel to the long side of the cross section of the mold.

【0003】連続鋳造の鋳造初期または終期などのよう
に鋳造速度を低下させなければならない場合には、単位
時間当たりの溶融金属の注入量(これは、「スループッ
ト」と呼ばれ、(鋳型の水平断面積)×(鋳片の引き抜
き速度)×(比重)によって計算される)が減少するの
で、鋳型内への熱供給量が減少し、温度が低下する。そ
のため、非金属介在物、またはノズル詰まり防止用に吹
き込まれる不活性ガスの気泡が浮上しにくくなり、溶融
金属内部に閉じこめられ、鋳片の内部欠陥の原因とな
る。また、鋳型内の温度が低下すると、メニスカスでの
凝固シェルの倒れ込みが多くなったり、パウダーの介在
物捕捉能力が低下するとともに、パウダーが凝固シェル
に捕捉され易くなり、鋳片の表皮下欠陥の発生原因とな
る。
When the casting speed has to be reduced, such as at the beginning or end of continuous casting, the amount of molten metal injected per unit time (this is called "throughput", Since (cross-sectional area) × (drawing speed of slab) × (specific gravity) decreases, the amount of heat supplied into the mold decreases, and the temperature decreases. Therefore, non-metallic inclusions or bubbles of the inert gas blown to prevent nozzle clogging are less likely to float, are trapped inside the molten metal, and cause internal defects of the slab. In addition, when the temperature in the mold decreases, the solidified shell falls down more frequently at the meniscus, and the ability to capture inclusions of the powder decreases, and the powder is more likely to be trapped by the solidified shell, and the subcutaneous surface defects of the slab are reduced. It causes the occurrence.

【0004】鋳片に内部欠陥が存在すると、たとえば建
築用のH形鋼の場合では二枚割れを発生させ、また、表
皮下欠陥が存在すると、冷延鋼板となったときスリバー
疵、ヘゲ疵、ピンホールなどの表皮欠陥の発生原因とな
る。これらの欠点は、いずれも製品から除外しなければ
ならないので製品歩留りが低下する。
[0004] When an internal defect exists in a cast slab, for example, in the case of an H-section steel for building, a double crack occurs, and when a subcutaneous subsurface defect exists, a sliver flaw or a stubble when a cold-rolled steel sheet is formed. It causes skin defects such as flaws and pinholes. All of these drawbacks must be excluded from the product, thus reducing product yield.

【0005】これを解消するために、『日本鉄鋼協会講
演論文集「材料とプロセス」第132回秋季講演大会、高
温プロセス、社会鉄鋼工学、「極低炭ボトム品質改善」
1996年、第9巻、第4号、841ページ』には、パウダー
中に発熱材を添加する方法、または鋳造スタート時に鋳
型内電磁撹拌装置を使用し、鋳型内の溶鋼を活性化させ
る方法が提案されている。
[0005] To solve this problem, "The Iron and Steel Institute of Japan Lecture Papers" Materials and Processes "132nd Autumn Lecture Meeting, High Temperature Processes, Social Steel Engineering," Improvement of Ultra-low Coal Bottom Quality "
1996, Vol. 9, No. 4, pp. 841 ”describes a method of adding exothermic material to powder or activating molten steel in a mold by using an electromagnetic stirring device in the mold at the start of casting. Proposed.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、金属
の連続鋳造に際し、鋳造の初期や終期に、スループット
を減少させても、内部欠陥や表面欠陥を発生させない良
好な鋳片を得ることができる連続鋳造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a good slab which does not cause internal defects or surface defects even in a case where the throughput is reduced in the initial and final stages of casting in continuous casting of metal. It is an object of the present invention to provide a continuous casting method.

【0007】[0007]

【課題を解決するための手段】本発明者は、磁場による
鋳型内の溶鋼流動制御について研究を行い、鋳型長辺の
両側壁外面の上段、中段および下段に、各段で異極が対
向する磁石(電磁石または永久磁石)を設けた鋳造装置
を用い、各段の静磁場を適正に設定することにより、ス
ループットが少なくとも鋳型内の溶融金属の温度低下を
きたさないことを見いだし、本発明を完成した。本発明
の要旨は、下記の連続鋳造方法にある。
Means for Solving the Problems The present inventor has studied the flow control of molten steel in a mold by a magnetic field, and different poles are opposed to the upper, middle and lower outer surfaces of both side walls on the long side of the mold. By using a casting device equipped with magnets (electromagnets or permanent magnets) and setting the static magnetic field of each stage appropriately, it was found that the throughput did not cause a decrease in the temperature of the molten metal in the mold at least, and completed the present invention. did. The gist of the present invention resides in the following continuous casting method.

【0008】鋳型1の長辺1A外側において下記に示す上
段U、中段Mおよび下段Lに静磁場を印加し、溶融金属を
注入しながら凝固させる連続鋳造方法であって、鋳込み
初期または終期において、中段および下段には上段と磁
場印加方向が反対で、磁場強度が上段の1.0倍から2.0倍
までの範囲の磁場を印加する連続鋳造方法(図1参
照)。
A continuous casting method in which a static magnetic field is applied to an upper stage U, a middle stage M and a lower stage L shown below on the outer side of the long side 1A of the mold 1 to solidify while injecting a molten metal. In the middle and lower stages, the direction of applying the magnetic field is opposite to that of the upper stage, and a continuous casting method in which the magnetic field intensity is applied in a range of 1.0 to 2.0 times the upper stage (see FIG. 1).

【0009】上段:メニスカス7を含み、浸漬ノズル2か
らの吐出流路15Bを含まない上方部分、 中段:浸漬ノズルからの吐出流路を含む中間部分、 下段:浸漬ノズルからの吐出流路を含まない下方部分。
Upper part: upper part including meniscus 7 and not including discharge flow path 15B from immersion nozzle 2, middle part: intermediate part including discharge flow path from immersion nozzle, lower part: discharge flow path from immersion nozzle Not the lower part.

【0010】ここで、「吐出流路」とは、静磁場を印加
しないときの浸漬ノズルから吐出された溶融金属が鋳型
短辺の側壁に衝突するまでの流路である(図5参照)。
Here, the “discharge flow path” is a flow path until the molten metal discharged from the immersion nozzle collides with the side wall of the short side of the mold when no static magnetic field is applied (see FIG. 5).

【0011】また、「鋳込み初期または終期」とは、鋳
造速度を低く(スループットが3.0トン/分以下)しな
ければならない状態を意味する。
[0011] The term "early casting stage or final casting stage" means a state in which the casting speed must be reduced (the throughput is 3.0 ton / min or less).

【0012】[0012]

【発明の実施の形態】図1は、本発明の連続鋳造方法に
用いた装置の斜視図である。また、図2は、図1のX-X
で示す断面を鋳型の短辺側から見た縦断面図である。
FIG. 1 is a perspective view of an apparatus used in a continuous casting method according to the present invention. FIG. 2 is a cross-sectional view of FIG.
FIG. 2 is a longitudinal sectional view of the cross section indicated by the mark as viewed from the short side of the mold.

【0013】両図において、鋳型1の長辺1Aの両側壁外
面の上段U、中段Mおよび下段Lの3段に鋳込み方向から
見てコの字形の鉄心3Bを配置し、鉄心の平行部3Cにコイ
ル3Aを巻回し、図2に示すように可変抵抗器4を介して
直流電源5を接続する。鋳片1の短辺を挟んで相対する磁
極3Dの極性を反対にして、鋳型の短辺1B方向に磁場を形
成させる。それぞれのコイル3Aに供給する電流の大き
さ、または方向を変えることによって、磁場強度または
磁場分布を変えることができる。
In both figures, a U-shaped iron core 3B as viewed from the casting direction is disposed in an upper stage U, a middle stage M and a lower stage L on the outer surfaces of both side walls of the long side 1A of the mold 1, and a parallel portion 3C of the iron core is formed. , And a DC power supply 5 is connected via a variable resistor 4 as shown in FIG. A magnetic field is formed in the direction of the short side 1B of the casting mold by reversing the polarity of the magnetic poles 3D facing each other with the short side of the slab 1 interposed therebetween. By changing the magnitude or direction of the current supplied to each coil 3A, the magnetic field strength or magnetic field distribution can be changed.

【0014】上記の3段の領域は、静磁場を印加しない
通常の鋳造状態に基づいて定められる。
The above-described three-step region is determined based on a normal casting state in which no static magnetic field is applied.

【0015】図5は、通常の連続鋳造鋳型内の溶融金属
の流動を模式的に示した鋳型短辺中心での縦断面図であ
る。同図に破線で示すように、吐出流15が斜め下方に進
行し、鋳型短辺側の側壁に衝突するまでの流路を「吐出
流路15B」と定義し、中段Mは、この吐出流路の少なくと
も一部を含む位置に設定する。上段Uは、吐出流路を含
まず、それよりも上方にあり、かつ鋳型内溶融金属6の
メニスカス7を含む領域、すなわちメニスカス流17を含
む領域である。下段Lは、吐出流路を含まず、上記中段M
より下方の領域である。
FIG. 5 is a vertical sectional view at the center of the short side of the mold, schematically showing the flow of the molten metal in the ordinary continuous casting mold. As shown by the dashed line in the figure, the flow path until the discharge flow 15 proceeds obliquely downward and collides with the side wall on the short side of the mold is defined as a “discharge flow path 15B”. Set at a position that includes at least a part of the road. The upper stage U is a region that does not include the discharge flow path, is above the discharge flow path, and includes the meniscus 7 of the molten metal 6 in the mold, that is, a region that includes the meniscus flow 17. The lower stage L does not include the discharge flow path,
It is a lower region.

【0016】図3は、各段に静磁場を印加して、鋳造速
度を低下させたときの鋳型内の溶融金属の流れの一例を
示す鋳型短辺中心縦断面図である。図において、左側
は、鋳造速度を低下させたとき通常の方法で鋳造を行っ
ている状況、右側は、本発明の方法で鋳造を行っている
状況を示している。
FIG. 3 is a longitudinal sectional view of the center of the short side of the mold showing an example of the flow of the molten metal in the mold when the casting speed is reduced by applying a static magnetic field to each stage. In the figure, the left side shows a situation where casting is performed by a normal method when the casting speed is reduced, and the right side shows a situation where casting is performed by the method of the present invention.

【0017】本発明の連続鋳造方法は、鋳造の初期また
は終期において、鋳造速度を低下させたとき図3に示す
ように、二次下降抑制流を二次上昇抑制流と同等または
大きくすることによって鋳型内の溶融金属の温度低下を
防ぎ、鋳片の内部欠陥と表面欠陥を低減するものであ
る。
In the continuous casting method of the present invention, when the casting speed is decreased at the beginning or end of casting, as shown in FIG. 3, the secondary descent suppression flow is made equal to or larger than the secondary descent suppression flow. It is intended to prevent the temperature of the molten metal in the mold from lowering and to reduce internal defects and surface defects of the slab.

【0018】(1)中段および下段に印加する磁場:中段
および下段への磁場印加を上段と反対方向とすることに
よって、上段と中段との間で磁束密度がゼロとなる領域
が存在するので抑制効果が低下し、二次上昇流が増加す
る。これによって、全ての段の磁場強度が等しい場合で
あっても、二次下降流よりも二次上昇流の方が強くな
り、高温の溶融金属が鋳片下部に進入しにくくなるの
で、鋳型内溶融金属の温度低下が防止できる。また、中
段と下段の磁場印加方向を同方向とすることによって、
二次下降流の抑制効果を高め、スループットが低下した
ときでも鋳型内溶融金属の温度低下を低減することがで
きる。しかし、中段と下段の磁場印加方向が反対である
と、中段と下段との間で磁束密度がゼロとなる領域が存
在し、二次下降流を抑制することができない。
(1) Magnetic field applied to the middle and lower stages: By applying the magnetic field to the middle and lower stages in a direction opposite to that of the upper stage, there is a region where the magnetic flux density becomes zero between the upper and middle stages. The effect decreases and the secondary updraft increases. As a result, even when the magnetic field strengths of all stages are equal, the secondary ascending flow is stronger than the secondary descending flow, and it becomes difficult for the high-temperature molten metal to enter the lower portion of the slab, so that the The temperature of the molten metal can be prevented from lowering. In addition, by making the middle and lower magnetic field application directions the same direction,
The effect of suppressing the secondary descending flow can be enhanced, and the decrease in the temperature of the molten metal in the mold can be reduced even when the throughput decreases. However, if the magnetic field application directions of the middle stage and the lower stage are opposite, there is a region where the magnetic flux density becomes zero between the middle stage and the lower stage, and the secondary downflow cannot be suppressed.

【0019】中段および下段に印加する磁場強度を上段
と同等、またはそれ以上(ただし、2倍まで)とするの
は、二次下降流の抑制を二次上昇流のそれよりも大きく
し、鋳型内で溶融金属を撹拌して、鋳型内の溶融金属の
温度低下を防止するためである。なお、中段と下段の磁
場強度は、同じでもよいし、異なっていてもよい。中段
および下段に印加する磁場強度が、上段の1倍未満では
上段に対する中段、下段の磁場強度が小さいため、二次
下降流が抑制されず、二次上昇流が小さくなり、メニス
カスへの溶融金属の供給が停滞し、メニスカス部の温度
が低下して鋳片内介在物量が増加する。また、中段およ
び下段に印加する磁場強度が、上段の2倍を超えると、
二次下降流が抑制され、二次上昇流が大きくなり、湯面
変動による鋳片表皮下介在物が増加する。なお、中段と
下段との磁場強度は、等しくなくともよい。
The reason why the magnetic field intensity applied to the middle and lower stages is equal to or higher than that of the upper stage (but up to twice) is that the suppression of the secondary downflow is made larger than that of the secondary upflow, This is because the molten metal is stirred inside to prevent a decrease in the temperature of the molten metal in the mold. The middle and lower magnetic field strengths may be the same or different. If the magnetic field strength applied to the middle and lower stages is less than 1 times that of the upper stage, the magnetic strength of the middle and lower stages is lower than that of the upper stage, so that the secondary descending flow is not suppressed, the secondary rising flow becomes smaller, and the molten metal to the meniscus Supply stagnates, the temperature of the meniscus decreases, and the amount of inclusions in the slab increases. When the magnetic field strength applied to the middle and lower stages exceeds twice that of the upper stage,
The secondary downward flow is suppressed, the secondary upward flow becomes large, and the slab surface subcutaneous inclusions due to the fluctuation of the molten metal level increase. Note that the magnetic field strengths of the middle and lower stages do not have to be equal.

【0020】(2)上段に印加する磁場:上段への磁場印
加強度を中段および下段への磁場強度と同等またはそれ
よりも小さくするのは、二次上昇流の抑制力よりも二次
下降流の抑制力を大きくし、高温の溶融金属を鋳片下部
に進入させないようにし、鋳型内の溶融金属の温度低下
を防止するためである。二次下降流の抑制力が大きくな
るため二次上昇流が大きくなり、メニスカス湯面を変動
させる。このため、磁場強度の大きさは、鋳片の大きさ
を考慮して設定する必要がある。たとえば、内壁寸法が
長辺1600mm、短辺270mm、高さ900mmである鋳型を用い、
1.3m/分の鋳造速度で低炭素鋼を鋳造した場合、磁場
強度が1000ガウス未満ではメニスカス湯面の変動を低減
することができず、2000ガウスを超えると二次上昇流が
過剰に抑制されるため、メニスカスへの熱の供給が不足
し、温度低下によるパウダーの介在物捕捉能力が低下し
た。
(2) Magnetic field applied to the upper stage: The strength of the magnetic field applied to the upper stage is made equal to or smaller than the magnetic field intensity to the middle and lower stages because the secondary descending flow is less than the suppressing force of the secondary upward flow. This is to prevent the molten metal of high temperature from entering the lower part of the slab and to prevent the temperature of the molten metal in the mold from dropping. Since the suppressing force of the secondary descending flow is increased, the secondary ascending flow is increased, and the meniscus level is fluctuated. Therefore, the magnitude of the magnetic field strength needs to be set in consideration of the size of the slab. For example, using a mold whose inner wall dimensions are 1600 mm long, 270 mm short, and 900 mm high,
When casting low carbon steel at a casting speed of 1.3 m / min, fluctuations in the meniscus level cannot be reduced if the magnetic field strength is less than 1000 gauss, and if it exceeds 2,000 gauss, the secondary upward flow is excessively suppressed. Therefore, the supply of heat to the meniscus was insufficient, and the ability of the powder to trap inclusions due to a decrease in temperature was reduced.

【0021】これにより、従来鋳造速度の低いとき、鋳
型内の溶融金属の温度およびメニスカス部の温度低下が
抑制され、介在物や気泡の浮上を促進させ、溶融パウダ
ーの安定した非金属介在物吸収能の確保ができる。
As a result, when the casting speed is low, the temperature of the molten metal in the mold and the temperature of the meniscus are suppressed from lowering, the floating of inclusions and bubbles is promoted, and the stable absorption of nonmetallic inclusions by the molten powder is achieved. Noh can be secured.

【0022】[0022]

【実施例】内壁寸法が長辺幅1600mm、短辺幅 270mm、高
さ 900 mm の水冷銅鋳型を備えた図1に示すスラブ連続
鋳造機を用い、鋳込み初期と終期のスループットを3.4
トン/分、安定時を6.7トン/分として低炭素アルミキ
ルド鋼を対象に鋳造試験を行った。そして、鋳込み初期
と終期には表1に示すとおり静磁場を上段、中段および
下段に印加し、安定時には全て上段と下段に2200ガウ
ス、中段に3000ガウスの磁場を印加した。
EXAMPLE A continuous slab casting machine as shown in Fig. 1 equipped with a water-cooled copper mold having inner wall dimensions of a long side width of 1600 mm, a short side width of 270 mm and a height of 900 mm was used.
A casting test was performed on low-carbon aluminum killed steel at a ton / minute and a stable time of 6.7 ton / minute. As shown in Table 1, a static magnetic field was applied to the upper, middle, and lower stages as shown in Table 1 during the initial stage and the final stage of casting, and a magnetic field of 2,200 gauss was applied to the upper and lower stages, and 3,000 gauss was applied to the middle stage, when stable.

【0023】[0023]

【表1】 [Table 1]

【0024】図4は、上段、中段および下段に静磁場を
印加したときの磁力線分布と磁場強度分布を示す図であ
り、(a)は本発明の方法で定める範囲の磁場を印加した
場合、(b)は鋳造速度安定時に印加する磁場の場合を示
す図である。
FIGS. 4A and 4B are diagrams showing a magnetic field line distribution and a magnetic field intensity distribution when a static magnetic field is applied to the upper, middle, and lower stages. FIG. 4A shows a case where a magnetic field in a range defined by the method of the present invention is applied. (b) is a diagram showing the case of a magnetic field applied when the casting speed is stable.

【0025】発明例のチャージNo.1〜8では、中段およ
び下段には上段と磁場印加方向を反対とし、上段への磁
場強度を1000〜2000ガウスの範囲内に変えて印加した。
中段および下段への磁場印加強度は、上段の1.0倍から
2.0倍までの範囲の磁場を印加した。
In Charge Nos. 1 to 8 of the invention examples, the magnetic field application direction was changed in the upper and lower stages in the middle and lower stages, and the magnetic field intensity in the upper stage was changed within the range of 1000 to 2000 Gauss.
The strength of the applied magnetic field to the middle and lower stages is 1.0 times higher than the upper stage.
A magnetic field in a range up to 2.0 times was applied.

【0026】比較例1のチャージNo.9では、中段および
下段への印加磁場強度を上段の0.67倍、チャージNo.10
では2.3倍とした。比較例2のチャージNo.11およびNo.1
2は、上段に500ガウスまたは2500ガウス(本発明で定め
る範囲外の磁場強度)を印加した。比較例3のチャージ
No.13は、全ての段の磁場印加方向を等しくした。チャ
ージNo.14は、鋳造の初期および終期に各段の磁場印加
を調整せずに鋳造を行った。
In Charge No. 9 of Comparative Example 1, the applied magnetic field strength to the middle and lower stages was 0.67 times that of the upper stage, and that of Charge No. 10
Then it was 2.3 times. Charge No. 11 and No. 1 of Comparative Example 2
In No. 2, 500 Gauss or 2500 Gauss (magnetic field strength outside the range defined in the present invention) was applied to the upper stage. Charge of Comparative Example 3
In No. 13, the magnetic field application directions of all stages were equal. In the case of Charge No. 14, casting was performed without adjusting the magnetic field application in each stage at the beginning and end of casting.

【0027】メニスカスの温度上昇指数は、鋳型に埋め
込んだ熱電対で溶融金属の温度を測定し、チャージNo.1
4を基準値1とし、その相対値で示した。
The temperature rise index of the meniscus was determined by measuring the temperature of the molten metal with a thermocouple embedded in a mold,
4 was set as a reference value 1 and shown as a relative value.

【0028】湯面安定指数は、渦流式湯面レベル計によ
って測定し、チャージNo.14を基準値1とし、その相対
値で示した。
The level stability index was measured by an eddy current level meter, and the relative value was shown with charge No. 14 as the reference value 1.

【0029】鋳片内介在物指数は、顕微鏡により大きさ
20μm以上の介在物個数を計量し、チャージNo.14を基
準値1とし、その相対値で示した。
The inclusion index in the slab is measured by a microscope.
The number of inclusions having a size of 20 μm or more was measured, and charge No. 14 was set as a reference value 1 and indicated as a relative value.

【0030】表皮下介在物指数は、鋳片の表面から3mm
までの介在物数を計量し、チャージNo.14を基準値1と
し、その相対値で示した。
The subcutaneous inclusion index is 3 mm from the surface of the slab.
The number of inclusions up to this point was measured, and charge No. 14 was set as a reference value 1 and indicated as a relative value.

【0031】コイル製品品質指数は、鋼板表面のスリバ
ー疵、ヘゲ疵、ピンホールなどの欠陥を目視観察し、不
良品の重量を全重量で除し、チャージNo.14を基準値1
とし、その相対値で示した。この値が大きいほど、不良
品の発生率が高いことになる。
The coil product quality index is determined by visually observing defects such as sliver flaws, scab flaws, and pinholes on the surface of the steel sheet, dividing the weight of defective products by the total weight, and setting the charge No. 14 to a reference value of 1.
And the relative values are shown. The larger the value, the higher the incidence of defective products.

【0032】これらの結果を表1に併せて示した。The results are shown in Table 1.

【0033】発明例のチャージNo.1〜8では、メニスカ
ス温度上昇指数が1.05〜1.11と1.00よりも高く、温度の
低下が小さく、鋳片内介在物指数が0.77〜0.90と介在物
が減少した。また、湯面安定指数が0.63〜0.94と1.00よ
りも低く、湯面変動が抑制されて表皮下介在物指数が0.
63〜0.92に低下しており、表皮下介在物が減少してい
る。その結果、製品の不良率が減少した。
In Charge Nos. 1 to 8 of the invention examples, the meniscus temperature rise index was 1.05 to 1.11, which was higher than 1.00, the temperature drop was small, and the inclusion index in the slab was 0.77 to 0.90, and the number of inclusions decreased. . In addition, the level stability index is 0.63 to 0.94, which is lower than 1.00, and the level fluctuation is suppressed, and the subcutaneous inclusion index is 0.
It has fallen to 63-0.92, and subepidermal inclusions have decreased. As a result, the product defect rate has been reduced.

【0034】これに対し、比較例1のチャージNo.9は、
上段の磁場印加強度が中段および下段よりも大きいた
め、二次上昇流を過剰に抑制する結果、メニスカス温度
上昇指数が0.90と1.00よりも小さくなり、鋳片内介在物
指数が1.43と悪化した。その結果、製品の不良率が1.20
と増加した。チャージNo.10は、上段の磁場印加強度が
中段および下段よりも小さいため、二次上昇流が過大と
なり、メニスカス温度上昇指数が1.13と1.00よりも大き
くなり、鋳片内介在物指数が0.86となるが、湯面安定指
数が1.60と1.00よりも大きくなり、表皮下介在物指数が
1.40と悪化した。その結果、製品の不良率が1.17と増加
した。
On the other hand, Charge No. 9 of Comparative Example 1
Since the applied magnetic field intensity in the upper stage was higher than that in the middle and lower stages, the secondary ascending flow was excessively suppressed. As a result, the meniscus temperature rise index became 0.90 or less than 1.00, and the inclusion index in the slab deteriorated to 1.43. As a result, the product defect rate was 1.20
And increased. Charge No. 10, since the upper magnetic field application strength is lower than the middle and lower stages, the secondary ascending flow is excessive, the meniscus temperature rise index is larger than 1.13 and 1.00, and the inclusion index in the slab is 0.86. However, the surface stability index becomes larger than 1.60 and 1.00, and the subcutaneous inclusion index becomes
1.40 and worse. As a result, the product defect rate increased to 1.17.

【0035】チャージNo.11は、上段の磁場印加強度が5
00ガウスと本発明で定める範囲を小さく外れるため、二
次上昇流が大きくなり、湯面安定指数が1.40と1.00より
も大きくなり、表皮下介在物指数が1.30と悪化した。そ
の結果、製品の不良量率1.06と増加した。
The charge No. 11 has an upper magnetic field applied strength of 5
Since the value was 00 gauss, which is smaller than the range defined by the present invention, the secondary ascending flow became large, the molten metal surface stability index became larger than 1.40 and 1.00, and the subcutaneous inclusion index worsened to 1.30. As a result, the defect rate of products increased to 1.06.

【0036】チャージNo.12は、上段の磁場印加強度が2
500ガウスと本発明で定める範囲を大きく外れるため、
二次上昇流を過剰に抑制する結果、メニスカス温度上昇
指数が0.98と1.00よりも小さくなり、鋳片内介在物指数
が1.08と悪化した。その結果、製品の不良率が1.05と増
加した。
The charge No. 12 has an upper magnetic field applied strength of 2
500 gauss, which greatly deviates from the range defined by the present invention,
As a result of excessively suppressing the secondary upward flow, the meniscus temperature increase index was 0.98, which was smaller than 1.00, and the inclusion index in the slab was deteriorated to 1.08. As a result, the product defect rate increased to 1.05.

【0037】チャージNo.13は、全ての段の磁場印加方
向を等しくしたので、メニスカス温度上昇指数が0.90と
1.00よりも小さくなり、鋳片内介在物指数が1.36と悪化
した。その結果、製品の不良量が1.20と増加した。これ
は、上段と中段との間で磁束密度がゼロとなる領域が存
在しなくなるため、二次上昇流が抑制され、メニスカス
部の温度が低下するためである。
In charge No. 13, the meniscus temperature rise index was 0.90 because the magnetic field application directions of all stages were equal.
It became smaller than 1.00, and the inclusion index in the slab deteriorated to 1.36. As a result, the number of defective products increased to 1.20. This is because there is no region where the magnetic flux density becomes zero between the upper stage and the middle stage, so that the secondary ascending flow is suppressed, and the temperature of the meniscus portion decreases.

【0038】[0038]

【発明の効果】本発明の方法によれば、連続鋳造の鋳込
み初期または終期などの鋳造速度を低くしたとき、上
段、中段および下段に配置した磁場印加装置によって、
それぞれの磁場印加強度を調整することにより、鋳型内
溶融金属の温度低下を防止し、かつメニスカス湯面を沈
静化させ、鋳片の表面欠陥や内部欠陥の発生を低減する
ことができる。本発明は、普通鋼の鋳造のみならず、ス
テンレス鋼や銅のような非鉄金属の連続鋳造にも適用す
ることができる。
According to the method of the present invention, when the casting speed in the initial stage or the final stage of continuous casting is lowered, the magnetic field applying devices arranged in the upper, middle and lower stages are used.
By adjusting the respective magnetic field application intensities, it is possible to prevent the temperature of the molten metal in the mold from lowering, to calm down the meniscus surface, and to reduce the occurrence of surface defects and internal defects in the slab. The present invention can be applied not only to casting of ordinary steel, but also to continuous casting of non-ferrous metals such as stainless steel and copper.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続鋳造方法に用いた装置の斜視図で
ある。
FIG. 1 is a perspective view of an apparatus used for a continuous casting method of the present invention.

【図2】図1のX-Xで示す断面を鋳型の短辺側から見た
縦断面図である。
FIG. 2 is a longitudinal sectional view of the section indicated by XX in FIG. 1 as viewed from the short side of the mold.

【図3】各段に静磁場を印加して、鋳造速度を低下させ
たときの鋳型内の溶融金属の流れの一例を示す鋳型短辺
中心縦断面図である。
FIG. 3 is a vertical cross-sectional view of a center of a short side of a mold showing an example of a flow of a molten metal in the mold when a static magnetic field is applied to each stage to reduce a casting speed.

【図4】上段、中段および下段に静磁場を印加したとき
の磁力線分布と磁場強度分布を示す図であり、(a)は本
発明の方法で定める範囲の磁場を印加した場合、(b)は
鋳造速度安定時に印加する磁場の場合を示す図である。
FIG. 4 is a diagram showing a magnetic field line distribution and a magnetic field intensity distribution when a static magnetic field is applied to an upper stage, a middle stage, and a lower stage, wherein (a) shows a case where a magnetic field in a range defined by the method of the present invention is applied, FIG. 4 is a diagram showing a case of a magnetic field applied when the casting speed is stable.

【図5】通常の連続鋳造鋳型内の溶融金属の流動を模式
的に示した鋳型短辺中心での縦断面図である。
FIG. 5 is a longitudinal sectional view schematically showing the flow of a molten metal in a normal continuous casting mold at the center of the short side of the mold.

【符号の説明】[Explanation of symbols]

1:鋳型 1A:鋳型長辺側壁 1B:鋳型短辺側壁 2:浸漬ノズル 3:電磁石 3A:コイル 3B:鉄心 4:可変抵抗器 5:直流電源 6:溶融金属 7:メニスカス 8:凝固シェル 9:鋳片 10:固体パウダー 11:溶融パウダー 12:上段磁極中心線 13:中段磁極中心線 14:下段磁極中心線 15:吐出流 15A:吐出抑制流 16:二次上昇流 16A:二次上昇抑制流 17:メニスカス流 18:二次下降流 18A:二次下降抑制流 1: Mold 1A: Mold long side wall 1B: Mold short side wall 2: Immersion nozzle 3: Electromagnet 3A: Coil 3B: Iron core 4: Variable resistor 5: DC power supply 6: Molten metal 7: Meniscus 8: Solidified shell 9: Slab 10: Solid powder 11: Melting powder 12: Upper magnetic pole center line 13: Middle magnetic pole center line 14: Lower magnetic pole center line 15: Discharge flow 15A: Discharge suppression flow 16: Secondary rising flow 16A: Secondary rising suppression flow 17: Meniscus flow 18: Secondary descending flow 18A: Secondary descending suppressing flow

フロントページの続き (56)参考文献 特開 平8−10917(JP,A) 特開 平1−289550(JP,A) 特開 平2−117756(JP,A) 特開 平11−10295(JP,A) 特開 平9−174216(JP,A) 特開 平11−10290(JP,A) 特開 平6−344080(JP,A) 特開 平5−154621(JP,A) 特開 平3−275256(JP,A) 特開 平4−84650(JP,A) 特表 平11−502466(JP,A) 特表 平10−505792(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/115 B22D 11/04 311 B22D 11/10 Continuation of the front page (56) References JP-A-8-10917 (JP, A) JP-A-1-289550 (JP, A) JP-A-2-117756 (JP, A) JP-A-11-10295 (JP) JP-A-9-174216 (JP, A) JP-A-11-10290 (JP, A) JP-A-6-344080 (JP, A) JP-A-5-154621 (JP, A) 3-275256 (JP, A) JP-A-4-84650 (JP, A) JP 11-502466 (JP, A) JP 10-505792 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/115 B22D 11/04 311 B22D 11/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋳型長辺外側において下記に示す上段、中
段および下段に静磁場を印加し、溶融金属を注入しなが
ら凝固させる連続鋳造方法であって、鋳込み初期または
終期において、中段および下段には上段と磁場印加方向
が反対で、磁場強度が上段の1.0倍から2.0倍までの範囲
の磁場を印加することを特徴とする連続鋳造方法。 上段:メニスカスを含み、浸漬ノズルからの吐出流路を
含まない上方部分、 中段:浸漬ノズルからの吐出流路を含む中間部分、 下段:浸漬ノズルからの吐出流路を含まない下方部分、 ここで、吐出流路とは、静磁場を印加しないときの浸漬
ノズルから吐出された溶融金属が鋳型短辺の側壁に衝突
するまでの流路である。
1. A continuous casting method in which a static magnetic field is applied to the upper, middle, and lower stages shown below on the outside of the long side of a mold to solidify while injecting molten metal. Is a continuous casting method characterized by applying a magnetic field in the direction opposite to that of the upper stage and applying a magnetic field intensity in a range of 1.0 to 2.0 times the upper stage. Upper part: upper part including meniscus and not including discharge flow path from immersion nozzle, middle part: middle part including discharge flow path from immersion nozzle, lower part: lower part not including discharge flow path from immersion nozzle, where The discharge flow path is a flow path until the molten metal discharged from the immersion nozzle when no static magnetic field is applied hits the side wall of the short side of the mold.
JP17248497A 1997-06-27 1997-06-27 Continuous casting method Expired - Fee Related JP3149821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17248497A JP3149821B2 (en) 1997-06-27 1997-06-27 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17248497A JP3149821B2 (en) 1997-06-27 1997-06-27 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH1110296A JPH1110296A (en) 1999-01-19
JP3149821B2 true JP3149821B2 (en) 2001-03-26

Family

ID=15942852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17248497A Expired - Fee Related JP3149821B2 (en) 1997-06-27 1997-06-27 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3149821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249026B1 (en) 1999-06-01 2001-06-19 Mitsubishi Denki Kabushiki Kaisha MOS Transistor with a buried oxide film containing fluorine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249026B1 (en) 1999-06-01 2001-06-19 Mitsubishi Denki Kabushiki Kaisha MOS Transistor with a buried oxide film containing fluorine

Also Published As

Publication number Publication date
JPH1110296A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP3316108B2 (en) Steel continuous casting method
EP0445328B1 (en) Method for continuous casting of steel
JP3149821B2 (en) Continuous casting method
JP4519600B2 (en) Electromagnetic stirring coil
JP5413277B2 (en) Continuous casting method for steel slabs
JP4407260B2 (en) Steel continuous casting method
JP4553639B2 (en) Continuous casting method
JP5125663B2 (en) Continuous casting method of slab slab
JP2001232450A (en) Method for manufacturing continuous cast slab
JP3186649B2 (en) Continuous casting method of molten metal
JP3039346B2 (en) Continuous casting machine for molten metal
JP3147824B2 (en) Continuous casting method
JPH0810917A (en) Method for continuously casting molten metal and apparatus thereof
JPH11188464A (en) Method of and equipment for continuously casting molten metal
JP2733991B2 (en) Steel continuous casting method
JP3116742B2 (en) Continuous casting apparatus and continuous casting method
JP4910357B2 (en) Steel continuous casting method
JP2014046323A (en) Continuous casting method of steel
JPS63140745A (en) Tundish for continuous casting
JPH01289543A (en) Continuous casting method for steel
JP2000351048A (en) Method and apparatus for continuously casting metal
JP5791234B2 (en) Continuous casting method for steel slabs
JP2006255759A (en) Method for continuously casting steel
JP2004042068A (en) Continuous casting method of molten metal and continuous casting apparatus
KR950012480B1 (en) Method for continuous casting of steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees