JPH01289543A - Continuous casting method for steel - Google Patents

Continuous casting method for steel

Info

Publication number
JPH01289543A
JPH01289543A JP33687487A JP33687487A JPH01289543A JP H01289543 A JPH01289543 A JP H01289543A JP 33687487 A JP33687487 A JP 33687487A JP 33687487 A JP33687487 A JP 33687487A JP H01289543 A JPH01289543 A JP H01289543A
Authority
JP
Japan
Prior art keywords
mold
slab
short side
flow
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33687487A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹雄 鈴木
Toru Kitagawa
北川 融
Toshio Tejima
手嶋 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33687487A priority Critical patent/JPH01289543A/en
Publication of JPH01289543A publication Critical patent/JPH01289543A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce the surface flaw generation rate of a slab by arranging in opposition a permanent magnet or electromagnet by making the magnetic flux direction in the thickness direction of a slab at two places in specified range from the upper end of a short side face mold. CONSTITUTION:A permanent magnet or an electromagnetic 23 is arranged at the positions of two places in the range of 50-300mm and that of 500-650mm from the upper end of relatively opposing short side molds 1. In this case, the magnetic flux direction of the magnet 23 is made to direct the thickness direction of a slab. The magnetic flux direction of the magnet 23 is thus faced in the slab thickness direction respectively at the upper side and lower side of the collision point of the discharging flow of a continuous casting and the short side mold 1, the movement energy of a upward reverse flow 11 is attenuated and the wave motion of a molten metal level is restrained. A downward invasion flow 12 is reduced at its depth by receiving a brake force and the floating of an inclusion is facilitated. Consequently the generation rate of the surface flaw of a slab is reduced because the molten metal level wave motion is restrained and the inclusion is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はスラブ連続鋳造において、鋳型内の溶鋼の流
動を調整し介在物の浮上しやすくすることによって表面
性状の良好なスラブを製造する鋼の連続鋳造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a method of producing slabs with good surface quality by adjusting the flow of molten steel in a mold and making it easier for inclusions to float in continuous slab casting. This invention relates to a continuous casting method.

[従来の技術] 第6図はスラブの連続鋳造機の鋳型の溶湯表面の要部を
示す図である。第7図は湯面波動の概略図である。この
図を参照して従来の技術を説明する。鋳型1内の溶湯8
の表面には、溶湯8の酸化防止と保温、凝固シェル9と
鋳型1との間の潤滑、非金属介在物の吸着等の役目を持
つモールドパウダー5がある。このモールドパウダー5
の湯面8側は溶湯の熱で溶融状態になっており、その大
気側は粉状パウダーとなって溶湯8表面を覆っている。
[Prior Art] FIG. 6 is a diagram showing the main part of the molten metal surface of the mold of a continuous slab casting machine. FIG. 7 is a schematic diagram of the surface wave motion. The conventional technology will be explained with reference to this figure. Molten metal 8 in mold 1
There is mold powder 5 on the surface of the mold powder 5, which has the functions of preventing oxidation and keeping the molten metal 8 warm, lubricating the space between the solidified shell 9 and the mold 1, and adsorbing nonmetallic inclusions. This mold powder 5
The molten metal surface 8 side is in a molten state due to the heat of the molten metal, and the atmosphere side is turned into powder and covers the molten metal 8 surface.

溶融パウダー6は凝固シェル9と鋳型1との間に流入し
て潤滑剤の役目を果たす、従って溶融パウダー6は消耗
するので一定厚のモールドパウダー5を維持するため、
前記溶融パウダー6の消耗量に見合うだけ補給される。
The molten powder 6 flows between the solidified shell 9 and the mold 1 and plays the role of a lubricant. Therefore, since the molten powder 6 is consumed, in order to maintain a constant thickness of the mold powder 5,
The molten powder 6 is replenished in an amount corresponding to the consumed amount.

第7図に示すように鋳型1中夫に鉛直に設けられた浸漬
ノズル2の先端に設けられた吐出孔3は、鋳型1短辺に
対向して開口している。溶湯はこの吐出孔3がら鋳型内
に吐出される。溶湯の吐出流4は鋳型1短辺方向にハの
字型になって鋳型内に注入される。
As shown in FIG. 7, a discharge hole 3 provided at the tip of a submerged nozzle 2 vertically provided in the middle of the mold 1 opens opposite to the short side of the mold 1. The molten metal is discharged into the mold through the discharge hole 3. The discharge flow 4 of the molten metal is injected into the mold in a V-shape in the direction of the short side of the mold 1.

この溶湯の吐出流4が、短辺に衝突して上下の2つの流
れ反転流11と侵入流12に分かれ、短辺面の凝固シェ
ル9に沿って上昇する反転流11は鋳型1の上部短辺面
付近の湯面変動10の原因となる。この湯面波動を渦流
距離計15により測定し、その電圧値をフィルターを通
して高周波数成分(ここでは10Hz以上の周波数成分
)を除去後、ミリボルト計で測定した。この渦流距離計
15の設置位置は第7図に示すように、短辺面から50
mm、湯面から50mmである。第8図は約1分間の湯
面レベルの経時変化を示す図である。約1分間の中で、
最大の湯面レベルの変化を湯面波動高さ10hとした。
The discharge flow 4 of the molten metal collides with the short side and is divided into two upper and lower flow reversed flows 11 and intrusion flows 12, and the reversed flow 11 rising along the solidified shell 9 on the short side faces is formed by the upper short side of the mold 1. This causes the hot water level fluctuation 10 near the side surface. This hot water surface wave was measured with an eddy current distance meter 15, and the voltage value was filtered to remove high frequency components (here, frequency components of 10 Hz or higher), and then measured with a millivolt meter. The installation position of this eddy current distance meter 15 is as shown in FIG.
mm, 50 mm from the hot water surface. FIG. 8 is a diagram showing changes in the hot water level over time for about 1 minute. In about 1 minute,
The maximum change in the hot water level was defined as the hot water surface wave height of 10 h.

上矢印は上昇方向を意味し、上矢印は下降方向を示す、
第9図は湯面波動高さと熱延板表面欠陥との関係を示す
図である。この図から明らかなように湯面波動高さ10
が4mm〜8mmの範囲で熱延板の表面欠陥の発生率が
少ない、この湯面変動が大きい場合溶融パウダー6が、
溶湯変動により溶湯側に巻き込まれ懸濁する。溶湯中に
巻き込まれた溶融パウダー6は、溶湯と溶融パウダー6
の比重差ににより浮上してしまうが、一部凝固シエル9
に捕捉される。
Up arrow means upward direction, upward arrow indicates downward direction,
FIG. 9 is a diagram showing the relationship between the wave height of the hot-molten metal surface and the surface defects of the hot-rolled sheet. As is clear from this figure, the height of the water surface wave is 10
is in the range of 4 mm to 8 mm, the incidence of surface defects on the hot rolled sheet is low, and when this level fluctuation is large, the molten powder 6 is
Due to fluctuations in the molten metal, it gets caught up in the molten metal and becomes suspended. The molten powder 6 caught in the molten metal is mixed with the molten metal and the molten powder 6.
It floats due to the difference in specific gravity of the shell, but some of the solidified shell 9
captured by

一方湯面変動が小さい場合には、溶湯表面への新しい溶
湯の供給が少ないので、モールドパウダー5の溶融性も
悪い、従って溶融パウダー6に溶湯中の介在物の溶解吸
着性が悪くなり、介在物は凝固シェル9に捕捉され鋳片
の内質欠陥となると考えられる。ここで示した湯面波動
高さ10の適正範囲は4mm〜8mmという値は連続鋳
造操業の経験によって得られた値であり、この範囲に入
るように浸漬ノズル2の形状、浸漬ノズル2の吐出角度
、浸漬ノズル2の詰まり、鋳型1の幅等を規制していた
On the other hand, when the melt level fluctuation is small, there is little supply of new molten metal to the molten metal surface, so the meltability of the mold powder 5 is also poor.Therefore, the molten powder 6 has poor ability to dissolve and adsorb inclusions in the molten metal, and It is thought that the substances are trapped in the solidified shell 9 and become internal defects in the slab. The appropriate range of the surface wave height 10 shown here is 4 mm to 8 mm, which is a value obtained from experience in continuous casting operations, and the shape of the immersion nozzle 2 and the discharge of the immersion nozzle 2 should be adjusted to fall within this range. The angle, clogging of the immersion nozzle 2, width of the mold 1, etc. were regulated.

しかしながら、最近の連続鋳造機の生産性の向上のため
、1)一つのタンデイツシュ及び浸漬ノズルで数チャー
ジ連続して連続鋳造を行う多連続鋳造技術、2)鋳造中
の鋳型幅の変更、3)長造速度が低速から高速に変わる
等の操業条件が変わってきた。この結果、最初の操業条
件に適した浸漬ノズルの吐出孔の形状や吐出角度では満
足できない操業条件が発生するようになり、湯面変動高
さ最適範囲に制御できなくなった。湯面変動高さをコン
トロールする技術として、 1)直流磁場による吐出流にブレーキを掛ける方法(*
1:以下従来方法1という)で、鋳型長辺面の冷却箱内
に2対の直流磁石を設置し、浸漬ノズルから吐出流に対
して直流磁場を作用させ、流動する溶湯内に発生する誘
導電流と直流磁場とにより、溶湯の流動とは逆方向に発
生する電磁力により溶湯の流動を制御するものである。
However, in order to improve the productivity of recent continuous casting machines, 1) multi-continuous casting technology that performs continuous casting for several charges with one tundish and immersion nozzle, 2) changing the mold width during casting, 3) Operating conditions have changed, such as the long production speed changing from low to high speed. As a result, operating conditions were created that could not be satisfied with the shape and discharge angle of the discharge hole of the submerged nozzle that were suitable for the initial operating conditions, and it became impossible to control the height of the fluid level fluctuation within the optimal range. As a technology to control the height of fluctuation in the hot water level, 1) A method of applying a brake to the discharge flow using a DC magnetic field (*
1: In conventional method 1), two pairs of DC magnets are installed in the cooling box on the long side of the mold, and a DC magnetic field is applied to the flow discharged from the immersed nozzle to induce the induction generated in the flowing molten metal. The flow of the molten metal is controlled by an electromagnetic force generated in the opposite direction to the flow of the molten metal using an electric current and a DC magnetic field.

2)前湯面位置に直流磁場を印加する方法(*2:以下
従来方法2という)で、湯面位置に直流磁場を配置し、
湯面に水平に直流磁場を印加することにより、磁場内の
湯面変動高さを制御するものである。
2) A method of applying a DC magnetic field to the front hot water surface position (*2: hereinafter referred to as conventional method 2), placing a DC magnetic field at the hot water level position,
By applying a DC magnetic field horizontally to the hot water surface, the height of the hot water level fluctuation within the magnetic field is controlled.

例えば (*1)永井ら=68.鉄と鋼(1982) 、 52
70鈴木ら:68.鉄と鋼(1982) 、 592(
*2)小環らニア2.鉄と鋼(1986) 、 371
8[発明が解決しようとする問題点] しかしながら従来方法1では、浸漬ノズルと短辺面との
途中の吐出流に直角に直流磁場を印加して流体にブレー
キを掛ける方法であるが、浸漬ノズルから吐出された後
の流体は拡散して行くため、広い範囲に直流磁場を印加
する必要がある。このため設備が大型になりコストが高
くなること、又は、磁束密度を上げることが困難である
For example, (*1) Nagai et al. = 68. Iron and Steel (1982), 52
70 Suzuki et al.: 68. Iron and Steel (1982), 592 (
*2) Near Kokane 2. Iron and Steel (1986), 371
8 [Problems to be Solved by the Invention] However, in conventional method 1, a direct current magnetic field is applied perpendicularly to the discharge flow between the immersed nozzle and the short side surface to apply a brake to the fluid. Since the fluid diffuses after being discharged from the tube, it is necessary to apply a DC magnetic field over a wide range. For this reason, the equipment becomes large and the cost increases, or it is difficult to increase the magnetic flux density.

従来方法2では、湯面波動に直接直流磁場を印加するた
め、波動抑制効果は大きいが、湯面波動の最も激しい位
置は短辺面から100mmの範囲である。この位置に直
流磁場を印加するため、長辺面に磁場発生装置を設置し
て、スラブ厚み方向に直流磁束方向を選ぶのが最も効果
的であるが、この場合、スラブの幅変更によって磁石を
移動させる必要が発生するため、設備が大掛かりとなる
In conventional method 2, a direct current magnetic field is applied directly to the hot water surface waves, so the wave suppression effect is large, but the most intense position of the hot water surface waves is within 100 mm from the short side surface. In order to apply a DC magnetic field to this position, it is most effective to install a magnetic field generator on the long side and select the DC magnetic flux direction in the thickness direction of the slab. The equipment will be large-scale as it will need to be moved.

この発明は、係る事情に鑑みてなされたものであって、
設備が単純で、電磁石の移動の必要もない永久磁石もし
くは電磁石を短辺面に組み込んで短辺面の凝固シェルに
沿って流動する流体にブレーキを掛けることによって、
湯面波動を抑制し、パウダー巻き込みを防止し、かつ、
侵入深さも浅くして、介在物の浮上をしやすくすること
により、健全なスラブを製造する方法を提供することを
目的とする。
This invention was made in view of the circumstances, and
The equipment is simple, and there is no need to move the electromagnet.By incorporating a permanent magnet or electromagnet into the short side surface and applying a brake to the fluid flowing along the solidified shell on the short side surface,
Suppresses surface vibrations, prevents powder entrainment, and
It is an object of the present invention to provide a method for manufacturing a sound slab by reducing the penetration depth and making it easier for inclusions to float.

[問題点を解決するための手段] この発明の鋼の連続鋳造方法は、タンデッシュから浸漬
ノズルを通して溶鋼を鋳型内に鋳造する連続鋳造方法に
おいて、相対向する短辺面鋳型の上端から50〜300
mmの範囲と500〜650mmの範囲との2ケ所の位
置に、磁束方向がスラブの厚み方向になるように永久磁
石又は、電磁石を設置し、直流磁場を溶鋼に印加しなが
ら鋳造することを特徴とする。
[Means for Solving the Problems] The continuous casting method for steel of the present invention is a continuous casting method in which molten steel is cast from a tundish into a mold through an immersion nozzle.
Permanent magnets or electromagnets are installed at two positions, one in the mm range and the other in the 500-650 mm range, so that the magnetic flux direction is in the thickness direction of the slab, and casting is performed while applying a DC magnetic field to the molten steel. shall be.

[作用] この発明は連続鋳造の吐出流の衝突点より上側(衝突点
と場面との間)と下側(衝突点と鋳型下端の間)に1個
又は数個の永久磁石もしくは電磁石を磁束方向がスラブ
厚み方向に向くように短辺鋳型の背面に設置している。
[Operation] This invention provides magnetic flux by installing one or more permanent magnets or electromagnets above (between the collision point and the scene) and below (between the collision point and the lower end of the mold) the collision point of the discharge flow in continuous casting. It is installed on the back side of the short side mold so that the direction is in the slab thickness direction.

より上向きの反転流に垂直な磁場を与えることによりブ
レーキ力を発生させ反転流の上向きの運動エネルギーを
減衰させ湯面波動を抑制させる。一方、短辺面凝固シェ
ルに沿って下向きに流れる侵入流は、侵入流に乗った介
在物をストランドの奥深く押し込むため、湯面への浮上
分離を難しくさせているが、前記の装置を設置すること
により電磁力は侵入流に対しブレーキ力となって働くた
め侵入流の深さを浅くできる。この結果介在物はストラ
ンドの奥深く入ることがなく浮上し易くなる。短辺面鋳
型の上端から50mm未満は電磁石の設置ができない、
短辺面鋳型の上端から300mm超〜500mm未満は
この部分に浸漬ノズルの吐出流が鋳型壁に衝突する所で
あり反転流及び侵入流はコントロールできない、短辺面
鋳型の上端から650mm超えると侵入流の流速が遅く
なるため、発生する電磁力が小さくなりブレーキの効果
が少なくなる。
By applying a perpendicular magnetic field to the more upward reversal flow, a braking force is generated, attenuating the upward kinetic energy of the reversal flow and suppressing surface waves. On the other hand, the intrusion flow that flows downward along the short-side solidified shell pushes the inclusions riding on the intrusion flow deep into the strand, making it difficult to float and separate them to the surface of the molten metal. As a result, the electromagnetic force acts as a braking force against the intruding flow, making it possible to reduce the depth of the intruding flow. As a result, inclusions do not enter deep into the strands and easily float up. Electromagnets cannot be installed less than 50mm from the top of the short side mold.
More than 300 mm to less than 500 mm from the top of the short side mold is where the discharge flow of the submerged nozzle collides with the mold wall, and reverse flow and intrusion flow cannot be controlled. Since the flow velocity becomes slower, the electromagnetic force generated becomes smaller and the braking effect becomes less effective.

[実施例] 以下、添付図面を参照してこの発明の実施例について具
体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

先ず、流体に電磁力を作用させた場合の流体の流動につ
いての考え方を説明する。直流磁場の磁束方向を良電導
体の流体に垂直に印加すると流体内には、(1)式に基
づく起電力Eが発生する。
First, the concept of fluid flow when an electromagnetic force is applied to a fluid will be explained. When the magnetic flux direction of a DC magnetic field is applied perpendicularly to a fluid that is a good conductor, an electromotive force E based on equation (1) is generated in the fluid.

E=VxB=VY−Bz ■ = 流体の速度(m/就) B : 磁束密度 Bz: 厚み方向の磁束密度 この起電力により流体内に渦電流Iが流れ渦電流Iと印
加磁場との相互作用により流体の運動方向と逆方向に体
積力Fが働く。
E=VxB=VY-Bz ■ = Velocity of fluid (m/d) B: Magnetic flux density Bz: Magnetic flux density in the thickness direction Eddy current I flows in the fluid due to this electromotive force, and the interaction between eddy current I and the applied magnetic field Therefore, body force F acts in the opposite direction to the direction of fluid movement.

F=−IXB−一σVY−B22 σ : 流体の比電気抵抗 (1)式により、体積力の大きさはVYとBz2に依存
する。
F=-IXB--σVY-B22 σ: Specific electrical resistance of fluid According to equation (1), the magnitude of body force depends on VY and Bz2.

溶鋼の連続鋳造においては、低速鋳造の場合はVYが小
さいため、溶鋼に働くブレーキ力は小さいが、高速鋳造
になる程、VYが大きくなるのでブレーキ力は大きく作
用する。第1図は本発明の実施例の短辺鋳型銅板部の概
要図で、(a)は斜視図、(b)は平面断面図である。
In continuous casting of molten steel, in the case of low-speed casting, VY is small, so the braking force acting on the molten steel is small, but the higher the speed of casting, the larger VY becomes, so the braking force acts more strongly. FIG. 1 is a schematic diagram of a short-side mold copper plate portion according to an embodiment of the present invention, in which (a) is a perspective view and (b) is a plan sectional view.

1は鋳型短辺の銅板、22は鋳型短辺の銅板の押さえ板
、23は永久磁石又は電磁石、24は冷却溝である。即
ち、鋳型短辺の銅板1の寸法は厚みは30mm〜40m
m、幅は228mm、長さは950mmである。鋳型短
辺の銅板1の裏面側には長さ方向に幅:5mm、深さ1
5mmの鋳型短辺の冷却するための冷却溝24が切削さ
れている。
1 is a copper plate on the short side of the mold, 22 is a holding plate for the copper plate on the short side of the mold, 23 is a permanent magnet or an electromagnet, and 24 is a cooling groove. That is, the dimensions of the copper plate 1 on the short side of the mold are 30 mm to 40 m thick.
m, width is 228 mm, and length is 950 mm. Width: 5 mm, depth 1 in the length direction on the back side of the copper plate 1 on the short side of the mold
A cooling groove 24 for cooling the short side of the mold of 5 mm is cut.

冷却溝24内には冷却水が流れされている。鋳型短辺の
銅板1の背面側にはステンレス製の鋳型短辺の銅板の押
さえ板22で冷却水の漏れを防いでいる。鋳型短辺の銅
板の押さえ板22には永久磁石23(磁極の大きさ50
mmX50mm)が設置できるような溝が切削されてお
り、磁極(N極とS極)とが鋳型短辺の銅板21の幅方
向に配置した。永久磁石23の取付は位置は鋳型短辺の
銅板1の長さ方向の位置は鋳型短辺の銅板1の上端から
250mmと650mmの位置である。永久磁石23の
磁束密度の測定の場所は鋳型短辺の銅板21の表面であ
る。
Cooling water is flowing into the cooling grooves 24. On the back side of the copper plate 1 on the short side of the mold, a press plate 22 made of stainless steel and made of a copper plate on the short side of the mold prevents leakage of cooling water. A permanent magnet 23 (magnetic pole size 50
A groove was cut into which a mold (mm x 50 mm) could be installed, and the magnetic poles (N pole and S pole) were arranged in the width direction of the copper plate 21 on the short side of the mold. The permanent magnets 23 are attached at positions 250 mm and 650 mm from the upper end of the copper plate 1 on the short side of the mold in the length direction of the copper plate 1 on the short side of the mold. The magnetic flux density of the permanent magnet 23 is measured at the surface of the copper plate 21 on the short side of the mold.

(実施例1) 第2図は本発明の一実施例の短辺鋳型銅板部の断面図で
、(a)は平面断面図、(b)は(a>のX−Y断面図
である。鋳型短辺の銅板1の上端から250mmと65
0mmの位置に馬蹄形の永久磁石23を組み込んだ、永
久磁石23の磁極の大きさは、50mmX50mmの角
である。磁束密度500〜6000ガウスまでの範囲の
永久磁石23を鋳型短辺の銅板1に組み込み鋳造を行い
、鋳型短辺の銅板1の表面から50mmで、溶湯の表面
から5Qmm離れた位置に渦流距離計15を設置し湯面
波動を測定し、前述したように高周波成分を除去した後
、1分間の最大湯面レベルの変化を20回測定し、その
中の最大値を最大湯面波動高さ(max、H)とした。
(Example 1) FIG. 2 is a cross-sectional view of a short-side mold copper plate portion according to an example of the present invention, in which (a) is a plan cross-sectional view, and (b) is an X-Y cross-sectional view of (a>). 250mm and 65mm from the top of copper plate 1 on the short side of the mold
A horseshoe-shaped permanent magnet 23 is incorporated at the 0 mm position, and the magnetic pole size of the permanent magnet 23 is 50 mm x 50 mm square. A permanent magnet 23 with a magnetic flux density in the range of 500 to 6000 gauss is incorporated into the copper plate 1 on the short side of the mold, and casting is performed, and an eddy current distance meter is installed at a position 50 mm from the surface of the copper plate 1 on the short side of the mold and 5 Q mm from the surface of the molten metal. 15 was installed to measure the water surface wave, and after removing the high-frequency components as described above, the change in the maximum hot water level for one minute was measured 20 times, and the maximum value was calculated as the maximum hot water surface wave height ( max, H).

この時の鋳造条件は、スラブ寸法が、幅1000mm、
厚み220mm、引き抜き速度2.5m/min、浸漬
ノズル2の吐出孔角度は下向き25度である。
The casting conditions at this time were that the slab dimensions were 1000mm wide,
The thickness is 220 mm, the drawing speed is 2.5 m/min, and the discharge hole angle of the immersion nozzle 2 is 25 degrees downward.

第3図は永久磁石の磁束密度と最大湯面波動高さの関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the magnetic flux density of the permanent magnet and the maximum height of the liquid surface wave.

この図から明らかなように適正範囲の最大湯面波動高さ
である4〜8mmにするには永久磁石の磁束密度は13
00〜5000ガウスを印加する必要がある。
As is clear from this figure, the magnetic flux density of the permanent magnet is 13 mm in order to achieve the maximum surface wave height of 4 to 8 mm within the appropriate range.
It is necessary to apply 00 to 5000 Gauss.

(実施例2) 第4図は引き抜き速度と最大湯面波動高さの関係を示す
図である。この時の鋳造条件は実施例1の鋳型を用いて
、永久磁石23の磁束密度は3000ガウス、スラブ寸
法が幅1000mm、厚み220 m m、浸漬ノズル
2の吐出孔角度は下向き25度である。この図で○は永
久磁石を使用しなかったもので、・は永久磁石を使用し
た場合を示す、この図から明らかなように永久磁石を使
用しなかったものは、引き抜き速度1.8m/min以
上の場合には適正範囲の最大湯面波動高さを越えてしま
うが、永久磁石を使用した場合は、1.2m/min〜
2.5m/minの引き抜き速度の範囲では適正範囲の
最大湯面波動高さの範囲内に充分コントロールされてい
る。
(Example 2) FIG. 4 is a diagram showing the relationship between drawing speed and maximum surface wave height. The casting conditions at this time were that the mold of Example 1 was used, the magnetic flux density of the permanent magnet 23 was 3000 Gauss, the slab dimensions were 1000 mm in width and 220 mm in thickness, and the discharge hole angle of the immersion nozzle 2 was 25 degrees downward. In this figure, ○ indicates the case where a permanent magnet was not used, and . In the above cases, the maximum surface wave height of the appropriate range will be exceeded, but if a permanent magnet is used, 1.2 m/min ~
In the drawing speed range of 2.5 m/min, the maximum surface wave height is sufficiently controlled within the appropriate range.

(実施例3) 実施例1の鋳型を用いて、鋳造条件は永久磁石23の磁
束密度は2000ガウス、引き抜き速度2、Qm/mi
n、スラブ寸法が幅1000mm厚み220mm、浸漬
ノズル2の吐出孔角度は下向き25度である。第5図は
スラブ厚み方向の介在物指数を示すグラフ図である。こ
の図では上表面をスラブ上面側とし、下表面側をスラブ
上面側とした。介在物指数の計算方法は次の通りである
(Example 3) Using the mold of Example 1, the casting conditions were: the magnetic flux density of the permanent magnet 23 was 2000 Gauss, the drawing speed was 2, and Qm/mi.
n, the slab dimensions are 1000 mm in width and 220 mm in thickness, and the discharge hole angle of the immersion nozzle 2 is 25 degrees downward. FIG. 5 is a graph showing the inclusion index in the thickness direction of the slab. In this figure, the upper surface is the upper surface of the slab, and the lower surface is the upper surface of the slab. The calculation method of the inclusion index is as follows.

介在物指数:光学順微鏡で400倍で、60点観察しア
ルミナ性介在物の個数をカウントし、最大値(従来方法
の115位置の介在物)を1.0として、他の位置を指
数化した。この図でOは永久磁石を使用しなかったもの
で、・は永久磁石を使用した場合を示す、この図から明
らかなように介在物分布は磁場なし、磁場あって同じ傾
向を示しているがピーク値が1/2以下に減少している
。磁場印加により侵入流の深さが浅くなり、介在物浮上
が促進されていることを示している。
Inclusion index: Observe 60 points with an optical microscope at 400x magnification, count the number of alumina inclusions, set the maximum value (inclusions at 115 positions in the conventional method) as 1.0, and index other positions. It became. In this figure, O indicates the case where a permanent magnet was not used, and . indicates the case where a permanent magnet was used.As is clear from this figure, the inclusion distribution shows the same tendency without a magnetic field and with a magnetic field. The peak value has decreased to 1/2 or less. This shows that the depth of the intruding flow becomes shallower due to the application of a magnetic field, promoting the floating of inclusions.

第1表に熱延板表面欠陥発生率を調査したものについて
、その時の操業条件をまとめたものである。
Table 1 summarizes the operating conditions under which the hot rolled sheet surface defect incidence was investigated.

この表から明らかなように、永久磁石を使用したこの発
明は、永久磁石を使用しなかった従来法に比較すると熱
延板表面欠陥発生率は115〜1/10低減している。
As is clear from this table, in this invention using permanent magnets, the hot rolled sheet surface defect incidence rate is reduced by 115 to 1/10 compared to the conventional method which does not use permanent magnets.

この発明では永久磁石の例で示しが、電磁石の場合も同
じ結果であった。
In this invention, a permanent magnet was used as an example, but the same result was obtained when an electromagnet was used.

[発明の効果] この発明によれば、以上のように構成されているので浸
漬ノズルからの吐出流が短辺面凝固シェルに衝突し、そ
の後吐出流は短辺面凝固シェルに沿って上昇する反転流
と下降する侵入流とに分かれる0反転流と侵入流の流速
を抑制して反転流に起因して発生する鋳型内の湯面波動
を小さくし、かつ短辺面凝固シェルに沿って下向きに流
れる侵入流は、前記の装置を設置することにより電磁力
は侵入流に対しブレーキ力となって働くため侵入流の深
さを浅くできる。この結果介在物はストランドの奥深く
入ることがなく浮上し易くなり、表面疵発生率が減少す
る。
[Effects of the Invention] According to the present invention, as configured as above, the discharge flow from the immersion nozzle collides with the short side solidified shell, and then the discharge flow rises along the short side solidified shell. It is divided into a reverse flow and a descending intrusion flow.The flow velocity of the reverse flow and the intrusion flow is suppressed to reduce the surface waves in the mold that occur due to the reverse flow, and the flow is directed downward along the short side solidified shell. By installing the above-mentioned device, the depth of the intruding flow can be made shallow because the electromagnetic force acts as a braking force on the intruding flow. As a result, inclusions do not enter deep into the strands and float easily, reducing the incidence of surface flaws.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の短辺鋳型銅板部の概要図、第
2図は本発明の一実施例の短辺鋳型銅板部の断面図、第
3図に永久磁石の磁束密度と最大湯面波動高さの関係を
示すグラフ図、第4図は引き抜き速度と最大湯面波動高
さの関係を示すグラフ図、第5図はスラブ厚み方向の介
在物指数を示すグラフ図、第6図はスラブの連続鋳造機
の鋳型の溶湯表面の要部を示す図、第7図は湯面波動の
概略図、第9図は湯面波動高さと熱延板表面欠陥との関
係を示すグラフ図である。 1・・・鋳型短辺の銅板、22・・・鋳型短辺の銅板の
押さえ板、23・・・永久磁石又は電磁石、24・・・
冷却溝。
Fig. 1 is a schematic diagram of the short side mold copper plate part of an embodiment of the present invention, Fig. 2 is a sectional view of the short side mold copper plate part of an embodiment of the present invention, and Fig. 3 shows the magnetic flux density of the permanent magnet and the maximum Figure 4 is a graph showing the relationship between the height of the hot water surface waves; Figure 4 is a graph showing the relationship between the withdrawal speed and the maximum height of the hot water surface waves; Figure 5 is a graph showing the inclusion index in the thickness direction of the slab; The figure shows the main parts of the molten metal surface of the mold of a continuous slab casting machine, Figure 7 is a schematic diagram of the molten metal surface waves, and Figure 9 is a graph showing the relationship between the height of the molten metal surface waves and hot-rolled sheet surface defects. It is a diagram. 1...Copper plate on the short side of the mold, 22...Press plate for the copper plate on the short side of the mold, 23...Permanent magnet or electromagnet, 24...
cooling groove.

Claims (1)

【特許請求の範囲】[Claims]  タンデッシュから浸漬ノズルを通して溶鋼を鋳型内に
鋳造する連続鋳造方法において、相対向する短辺面鋳型
の上端から50〜300mmの範囲と500〜650m
mの範囲との2ヶ所の位置に、磁束方向がスラブの厚み
方向になるように永久磁石又は、電磁石を設置し、直流
磁場を溶鋼に印加しながら鋳造することを特徴とする鋼
の連続鋳造方法。
In a continuous casting method in which molten steel is cast into a mold from a tundish through an immersion nozzle, a range of 50 to 300 mm from the upper end of opposing short side molds and a range of 500 to 650 m
Continuous casting of steel, characterized in that permanent magnets or electromagnets are installed at two positions in the range of m so that the magnetic flux direction is in the thickness direction of the slab, and casting is performed while applying a DC magnetic field to the molten steel. Method.
JP33687487A 1987-12-29 1987-12-29 Continuous casting method for steel Pending JPH01289543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33687487A JPH01289543A (en) 1987-12-29 1987-12-29 Continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33687487A JPH01289543A (en) 1987-12-29 1987-12-29 Continuous casting method for steel

Publications (1)

Publication Number Publication Date
JPH01289543A true JPH01289543A (en) 1989-11-21

Family

ID=18303449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33687487A Pending JPH01289543A (en) 1987-12-29 1987-12-29 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JPH01289543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033534A (en) * 1990-03-02 1991-07-23 Nkk Corporation Method for continuous casting of steel
WO2002055234A1 (en) * 2001-01-10 2002-07-18 Abb Ab Electromagnetic brake
US6460606B2 (en) * 1996-09-19 2002-10-08 Corus Staal Bv Continuous casting machine
JP2010149149A (en) * 2008-12-25 2010-07-08 Kobe Steel Ltd Continuous casting equipment for slab in which static magnetic field acts on the rising stream of molten steel in mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033534A (en) * 1990-03-02 1991-07-23 Nkk Corporation Method for continuous casting of steel
US6460606B2 (en) * 1996-09-19 2002-10-08 Corus Staal Bv Continuous casting machine
WO2002055234A1 (en) * 2001-01-10 2002-07-18 Abb Ab Electromagnetic brake
US7320356B2 (en) 2001-01-10 2008-01-22 Abb Ab Electromagnetic brake
JP2010149149A (en) * 2008-12-25 2010-07-08 Kobe Steel Ltd Continuous casting equipment for slab in which static magnetic field acts on the rising stream of molten steel in mold

Similar Documents

Publication Publication Date Title
US7628196B2 (en) Method and apparatus for continuous casting of metals
EP0401504A2 (en) Apparatus and method for continuous casting
JP2009066618A (en) Continuous casting method of steel
JPH10305353A (en) Continuous molding of steel
EP0445328B1 (en) Method for continuous casting of steel
JPH01289543A (en) Continuous casting method for steel
KR20070052348A (en) Induction stirring coil
JP2008055431A (en) Method of continuous casting for steel
JPS61193755A (en) Electromagnetic stirring method
JP2733991B2 (en) Steel continuous casting method
JP2773154B2 (en) Steel continuous casting method
JP5375242B2 (en) Continuous casting apparatus and continuous casting method
KR950012480B1 (en) Method for continuous casting of steel
JP2005152996A (en) Method for continuously casting steel
JP2008173644A (en) Electromagnetic coil for continuous casting mold
JPH10305358A (en) Continuous molding of steel
JPH01266949A (en) Method for continuously casting steel
JP3149821B2 (en) Continuous casting method
JP2009066619A (en) Method and apparatus for continuously casting steel
JP4492333B2 (en) Steel continuous casting method
JP2006255759A (en) Method for continuously casting steel
JP3039346B2 (en) Continuous casting machine for molten metal
JP3147824B2 (en) Continuous casting method
JPH11123507A (en) Method for removing inclusion in tundish for continuous casting
JP2011212723A (en) Continuous casting method of steel cast slab