JPS61193755A - Electromagnetic stirring method - Google Patents

Electromagnetic stirring method

Info

Publication number
JPS61193755A
JPS61193755A JP3444985A JP3444985A JPS61193755A JP S61193755 A JPS61193755 A JP S61193755A JP 3444985 A JP3444985 A JP 3444985A JP 3444985 A JP3444985 A JP 3444985A JP S61193755 A JPS61193755 A JP S61193755A
Authority
JP
Japan
Prior art keywords
molten steel
magnetic field
flow
static magnetic
steel flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3444985A
Other languages
Japanese (ja)
Inventor
Fujio Hirayama
平山 富士男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3444985A priority Critical patent/JPS61193755A/en
Publication of JPS61193755A publication Critical patent/JPS61193755A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide an improvement in quality of an ingot, etc. by providing a static magnetic field generator to decrease the flow rate of molten steel flow and disposing an electromagnetic stirrer on the down stream thereof. CONSTITUTION:The static magnetic field generator 5 is disposed to the outside on the long side of a casting mold with the molten steel flow 2 in-between. The electromagnetic stirrer 6 is disposed on the down stream of the device 5 to stir the molten steel within the horizontal plane. The force to decrease the flow rate of the molten steel flow 2 is generated by the mutual effect of the static magnetic field generated by the generator 5 and the molten steel flow, by which the collision energy to a solidified shell 3 is decreased. The remelting and the delay in the development of the shell 3 and therefore prevented. The shifting magnetic field is further generated in parallel with the long side direction of the casting mold by the stirrer 6, by which the floating of non-metallic inclusions is accelerated. The quality of the ingot is improved and the stability of the operation is improved as well by the above-mentioned method.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、連続鋳造設備の鋳型内に浸漬ノズルより供給
される溶鋼流の流速な静磁場発生装置C:より低下させ
、かつその下流Cユ設置される移動磁束発生装置I:よ
り溶鋼を攪拌することCユより、鋳片内部の非金属介在
物を低下させ鋳片の品質向上及び安定操業を図る電磁攪
拌方法Cユ関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a static magnetic field generating device C: which further reduces the flow velocity of a molten steel flow supplied from a submerged nozzle into a mold of a continuous casting facility, and a downstream C unit thereof. Installed mobile magnetic flux generator I: It relates to an electromagnetic stirring method for stirring molten steel and reducing non-metallic inclusions inside the slab to improve the quality of the slab and ensure stable operation.

[発明の技術的背景とその問題点] 最近の製鋼業C:おいては、連続鋳造が一般化し、かつ
近年Cユおいては、より高速化を図ると同時(−高品質
化が指向されている。
[Technical background of the invention and its problems] In the recent steel manufacturing industry, continuous casting has become commonplace, and in recent years, continuous casting has become more common in the steel manufacturing industry. ing.

連続鋳造においてσ、溶鋼は、タンプッシュから浸漬ノ
ズルを経て、鋳型内に注入され、鋳型自溶鋼は周辺から
冷却させて凝固シェルを形成、発達しつつ鋳造は連続し
て進行する。この際鋳型内では第4図に示す如く、タン
ディツシュ(図示なし)から注入された溶鋼2げ、浸漬
ノズル1の吐出口より流出し、この溶鋼流2は、鋳片の
短辺側壁(−衝突して、下降流と上昇流C二分流する。
In continuous casting, molten steel is injected into the mold from a tamp push through an immersion nozzle, and the self-melting steel in the mold is cooled from its surroundings to form and develop a solidified shell, while casting continues. At this time, in the mold, as shown in Fig. 4, the molten steel 2 injected from the tundish (not shown) flows out from the discharge port of the immersion nozzle 1, and this molten steel flow 2 flows from the short side wall of the slab (-collision). Then, the flow is divided into a downward flow and an upward flow C.

下降流が溶室流の主流となって鋳片内Cユ深く浸透する
04は鋳片溶鋼表面を酸化防止等の為Cユおおつている
フラックスである。ここで、鋳造速度の上昇環Cユより
、即ち単位時間当りの注入溶鋼蓋が多くなると、浸漬ノ
ズルの吐出孔径が同じであれば、溶鋼の吐出流速は比例
して増加することになる。溶鋼の吐出流速の増加Cユよ
り、操業上或は鋳片品質の点で以下のような問題が生じ
る。
04, whose downward flow becomes the main stream of the melt chamber flow and penetrates deeply into the slab, is a flux that is coated on the surface of the molten steel slab to prevent oxidation. Here, when the casting speed rises C, that is, when the number of molten steel caps injected per unit time increases, the discharge flow rate of the molten steel increases proportionally if the discharge hole diameter of the immersion nozzle is the same. The increase in the discharge flow rate of molten steel causes the following problems in terms of operation and slab quality.

1)溶鋼流の鋳片短辺側への衝突エネルギーが大きくな
るため、凝固シェルの発達の遅れや、再溶解をまねき、
凝固シェル厚の不均一化が生じ、その結果ブレークアウ
トや割れ発生の原因となる。
1) The impact energy of the molten steel flow on the short side of the slab increases, causing a delay in the development of the solidified shell and remelting.
Non-uniform solidified shell thickness occurs, resulting in breakouts and cracking.

2)又、コーナー近傍の凝固シェルの発達の遅れは、液
相が封じ込められ断面欠陥の原因となる。
2) Furthermore, the delay in the development of the solidified shell near the corners causes the liquid phase to be confined and causes cross-sectional defects.

3)浸漬ノズルからの吐出下降溶鋼流の鋳片内への浸入
深さが増大し、その結果非金属介在物の浮上が困難とな
って捕捉される量が著しるしく増加する。
3) The penetration depth of the descending molten steel flow discharged from the immersion nozzle into the slab increases, and as a result, it becomes difficult for nonmetallic inclusions to float, and the amount of trapped nonmetallic inclusions increases significantly.

4)又、近年特に多く採用される様になつ念湾曲型マシ
ンの場合(Jt鋳片の上表面層Cユ非金属介在物が集積
され品質低下の原因となる。
4) Also, in the case of a double bending machine, which has become particularly popular in recent years, non-metallic inclusions accumulate in the upper surface layer C of the Jt slab, causing quality deterioration.

上記の様な問題点を解決するため、鋳造量が増大しても
溶鋼の浸漬ノズルからの吐出流速を増加させない手段と
して、従来から考えられたのは大孔径の浸漬ノズルを採
用することであるが、タンディツシュからの落下エネル
ギーのため1ユ有効に溶鋼流の流速を減じることができ
なく、また浸漬ノズルの耐火物コストの上昇を招いて得
策ではないC 又、別の方法として、鋳型部に電磁攪拌装置を設置し、
溶鋼を水平面内で攪拌することにより凝固シェル1:非
金属介在物が捕捉されにくく、非金属介在物の浮上を図
る案も提案されているが、溶伜の吐出流速スラブ鋳造機
の場合が100a+/sec i二もおよぶため有効で
はない。電磁攪拌装置(−よる攪拌力を強くし非金属介
在物の浮上を図ろうとすると、攪拌力による水平面内で
の溶鋼流速の増大Cユ伴い、鋳型角部において溶鋼の流
れが急変し、溶鋼の波打ち現象が生じ、この波打ち現象
により鋳片表面に傷が生じたり、溶鋼表面に浮かぶフラ
ックスを鋳片内ζ二巻き込み品質の低下をまねく。
In order to solve the above-mentioned problems, the conventional idea was to use a large-hole immersion nozzle as a means of not increasing the flow rate of molten steel discharged from the immersion nozzle even when the casting amount increased. However, due to the falling energy from the tundish, the flow velocity of the molten steel cannot be effectively reduced by 1 unit, and it also increases the cost of the refractory material for the immersion nozzle, which is not a good idea. Install an electromagnetic stirring device,
Solidified shell 1: Non-metallic inclusions are difficult to capture by stirring the molten steel in a horizontal plane, and a plan to float the non-metallic inclusions has been proposed, but the molten steel discharge flow rate in the case of a slab casting machine is 100a+ /sec i2, so it is not valid. When an attempt is made to raise the non-metallic inclusions by increasing the stirring force using an electromagnetic stirring device (-), the flow rate of molten steel increases in the horizontal plane due to the stirring force, and the flow of molten steel changes suddenly at the corners of the mold. A waving phenomenon occurs, and this waving phenomenon causes scratches on the surface of the slab and causes the flux floating on the surface of the molten steel to get caught up in the slab, resulting in a decrease in quality.

又、凝固シェルの発達の遅れを招き、ブレークアウトの
原因):もなる。
It also causes a delay in the development of the solidified shell, causing breakout.

又、一方、上記溶鋼流の方向に対し、垂直方向ζ−静磁
場を発生する装置を配設し、その静磁場と溶鋼流により
、溶鋼の流れ方向とは反対Cユプレーキングカを発生さ
せ、溶鋼流の速度の低下を図り、上述の様な問題点を解
決しようとする方法が提案されているが、その提案ζユ
おいてもある程度は、溶鋼流速を低下することにより、
非金属介在物の低下或σ凝固シェルの不均一化の防止C
二効来があるが、直径寸法の小さな(櫃略200ミクロ
、ン以下)非金属介在物の浮上には効果がなく、どうし
ても、凝固シェル(−捕捉されてしまう。又、特(−湾
曲型マシンの場合には、直径寸法の小さな非金属介在物
が鋳片の上表面層に集積されてしまうという問題点が残
る。
On the other hand, a device that generates a static magnetic field in a direction perpendicular to the direction of the molten steel flow is installed, and the static magnetic field and the molten steel flow generate a C uprecking force that is opposite to the flow direction of the molten steel. A method has been proposed to solve the above problems by reducing the velocity of the molten steel flow.
Reduction of non-metallic inclusions or prevention of non-uniformity of σ solidified shell C
Although it has two effects, it is not effective in floating nonmetallic inclusions with small diameters (approximately 200 microns or less), and they are inevitably trapped in the solidified shell. In the case of machines, the problem remains that nonmetallic inclusions with small diameters accumulate on the upper surface layer of the slab.

[発明の目的] 従って、本発明は前述の欠点を考慮し、非金属介在物の
低下を図り、高品質でかつ、安定操業の向上を図ること
ができる電磁攪拌方法を提供することを目的とする。
[Object of the Invention] Therefore, in consideration of the above-mentioned drawbacks, the present invention aims to provide an electromagnetic stirring method capable of reducing nonmetallic inclusions, achieving high quality, and improving stable operation. do.

[発明の概要] 上記目的を達成するため本発明は、連続鋳造用鋳型の長
辺側の外面で浸漬ノズルから吐出される溶鋼流をにさむ
位flitユ上記溶鋼流の方向に対し垂直方向に静磁場
を発生する装置と、その下流位置の少なくとも長辺側の
一方Cユ、長辺方向と平行な移動磁界を発生する装置を
配設することをその概要としている。
[Summary of the Invention] In order to achieve the above object, the present invention provides a continuous casting mold with an outer surface on the long side side that sandwiches the molten steel flow discharged from the immersion nozzle in a direction perpendicular to the direction of the molten steel flow. The general idea is to provide a device that generates a static magnetic field, and a device that generates a moving magnetic field parallel to the long side direction at least on one of the long sides downstream of the device.

[発明の実施例] 以下、図面を参照して本発明の一実施例を説明する。第
1図に示すように浸漬ノズル1の吐出孔から吐出された
溶鋼流2は、前述のように鋳型短辺側ζユ衝突して分流
し、下降流は鋳片内深く浸入するのでおるが、この溶鋼
流の流速を低下させるために、本発明では第1図Cユ示
すように、長辺側の外面C:浸漬ノズル1から吐出され
る溶鋼流2をはさむ位置Cユ溶匍流2の方向1:対し垂
直方向C:静磁場を発生する静磁場発生装置5を配設し
、該静磁場発生装置5を駆動することにより、静磁場発
生装[5+−より発生された静磁場と溶鋼流21ユより
、その溶鋼流2の流れ方向とは、反対方向に力を発生さ
せ、吐出孔より吐出された溶鋼流2の流速を低下させ、
凝固シェル3への衝突エネルギーを減少せしめ、凝固シ
ェル3の再溶解、発達の遅れを防ぐとともに、直径寸法
の大きな非金属介在物の向上促進を図る。それと同時C
:、該静磁場発生装置5の下流(−長辺方向と平行な移
動磁界を発生する電磁攪拌装置6を配設し、この電磁攪
拌装置6を駆動することζ二より溶鋼を水平面内で攪拌
し、直径寸法の小さな非金属介在物が凝固シェル3の表
面上に捕捉されるのを、攪拌溶鋼の洗浄作用により防止
し、かつ非金属介在物の浮上を促進する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in Fig. 1, the molten steel flow 2 discharged from the discharge hole of the immersion nozzle 1 collides with the shorter side of the mold and is divided, as described above, and the downward flow penetrates deeply into the slab. In order to reduce the flow velocity of this molten steel flow, in the present invention, as shown in FIG. Direction 1: Perpendicular direction C: A static magnetic field generating device 5 that generates a static magnetic field is provided, and by driving the static magnetic field generating device 5, the static magnetic field generated by the static magnetic field generating device [5+-] and A force is generated from the molten steel flow 21 in the direction opposite to the flow direction of the molten steel flow 2 to reduce the flow velocity of the molten steel flow 2 discharged from the discharge hole,
The impact energy on the solidified shell 3 is reduced, preventing remelting of the solidified shell 3 and delay in development, and promoting the improvement of non-metallic inclusions having a large diameter. At the same time C
:, Downstream of the static magnetic field generator 5 (- An electromagnetic stirring device 6 that generates a moving magnetic field parallel to the long side direction is provided, and the electromagnetic stirring device 6 is driven to stir the molten steel in a horizontal plane. However, the cleaning action of the stirred molten steel prevents nonmetallic inclusions with small diameters from being captured on the surface of the solidified shell 3, and promotes floating of the nonmetallic inclusions.

する。do.

ここで、静磁場発生装置5は、第2図(−示すごとく、
鋳片の長辺側の外面Cユ浸漬ノズル1から吐出される溶
鋼流をはさむように、両長辺面Cユ、の各々に設ける必
要がある0又、電磁攪拌装置6は、第1図C−示すごと
く、上述の静磁場発生装e5の下流Cユ、第3図に示す
ようC;@屋の長辺に平行Cユ、各々配設するのが好ま
しい。
Here, the static magnetic field generator 5 is as shown in FIG.
The electromagnetic stirring device 6 that needs to be provided on each of the long side surfaces C of the slab so as to sandwich the molten steel flow discharged from the immersion nozzle 1 is shown in FIG. As shown in FIG. 3, it is preferable to dispose a C-unit downstream of the static magnetic field generator e5, and a C-unit parallel to the long side of the C-shape as shown in FIG.

又、静磁場発生装置5及び電磁攪拌装置6の設置位置に
浸漬ノズル1より吐出される溶鋼流2の流れ方向或は流
速等を考慮して決定すればよい。
Further, the installation positions of the static magnetic field generator 5 and the electromagnetic stirring device 6 may be determined by considering the flow direction or flow velocity of the molten steel flow 2 discharged from the immersion nozzle 1.

「発明の効果」 以上説明した様に本発明によれば、浸漬ノズルの吐出孔
より吐出される溶鋼流の流速を減少させ、凝固シェルの
成長の遅れの防止或は再溶解を防止し、かつ、非金属介
在物の凝固シェル表面への付着を防止し、浮上を促進す
ること(−よりブレークアウト等を防止でき、ひいては
操業上の安定性の向上或は鋳片品質の向上を図ることが
できる。
"Effects of the Invention" As explained above, according to the present invention, the flow velocity of the molten steel flow discharged from the discharge hole of the immersion nozzle is reduced, the growth delay of the solidified shell is prevented or the remelting is prevented, and It is possible to prevent non-metallic inclusions from adhering to the surface of the solidified shell and promote flotation (-, it is possible to prevent breakouts, etc., and to improve operational stability or slab quality. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明を実施するための鋳型部の断面図、第2
図は同鋳型部の平面図、第3図は第2図における溶鋼の
流動方向を示す図、第4図は従来の鋳型部の断面図であ
る。
Fig. 1 is a sectional view of a mold part for carrying out the present invention, Fig. 2
This figure is a plan view of the same mold section, FIG. 3 is a diagram showing the flow direction of molten steel in FIG. 2, and FIG. 4 is a sectional view of the conventional mold section.

Claims (1)

【特許請求の範囲】[Claims] 溶鋼をタンデイツシユから鋳型に連続的に鋳造し鋼塊を
得る連続鋳造設備において、浸漬ノズルの吐出口より吐
出された溶鋼流を包囲する位置に設けられた静磁場を発
生する静磁場発生装置により前記溶鋼流に対して垂直方
向に力を発生させて前記溶鋼流の流速を低下させるとと
もに、前記溶鋼流の前記静磁場発生より下流位置に前記
溶鋼流包囲するように設けられた電磁攪拌装置により前
記溶鋼流を水平方向に攪拌することを特徴とする電磁攪
拌方法。
In continuous casting equipment that continuously casts molten steel from a tundish into a mold to obtain a steel ingot, a static magnetic field generating device that generates a static magnetic field is installed at a position surrounding the molten steel flow discharged from the discharge port of the immersion nozzle. A force is generated perpendicularly to the molten steel flow to reduce the flow velocity of the molten steel flow, and an electromagnetic stirring device is provided to surround the molten steel flow at a position downstream of the generation of the static magnetic field of the molten steel flow. An electromagnetic stirring method characterized by stirring the molten steel flow horizontally.
JP3444985A 1985-02-25 1985-02-25 Electromagnetic stirring method Pending JPS61193755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3444985A JPS61193755A (en) 1985-02-25 1985-02-25 Electromagnetic stirring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3444985A JPS61193755A (en) 1985-02-25 1985-02-25 Electromagnetic stirring method

Publications (1)

Publication Number Publication Date
JPS61193755A true JPS61193755A (en) 1986-08-28

Family

ID=12414558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3444985A Pending JPS61193755A (en) 1985-02-25 1985-02-25 Electromagnetic stirring method

Country Status (1)

Country Link
JP (1) JPS61193755A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828015A (en) * 1986-10-24 1989-05-09 Nippon Steel Corporation Continuous casting process for composite metal material
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
US6513575B1 (en) * 1998-12-01 2003-02-04 Abb Ab Method and device for continuous casting of metals
JP2007237268A (en) * 2006-03-10 2007-09-20 Jfe Steel Kk High-speed casting method for steel
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
JP2009018332A (en) * 2007-07-13 2009-01-29 Furukawa Electric Co Ltd:The Apparatus for continuous casting, ingot manufacturing method, and ingot
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab
EP3134220B1 (en) 2014-04-25 2019-09-04 ThyssenKrupp Steel Europe AG Method and device for thin-slab strand casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828015A (en) * 1986-10-24 1989-05-09 Nippon Steel Corporation Continuous casting process for composite metal material
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
US6513575B1 (en) * 1998-12-01 2003-02-04 Abb Ab Method and device for continuous casting of metals
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
JP2007237268A (en) * 2006-03-10 2007-09-20 Jfe Steel Kk High-speed casting method for steel
JP2009018332A (en) * 2007-07-13 2009-01-29 Furukawa Electric Co Ltd:The Apparatus for continuous casting, ingot manufacturing method, and ingot
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab
EP3134220B1 (en) 2014-04-25 2019-09-04 ThyssenKrupp Steel Europe AG Method and device for thin-slab strand casting

Similar Documents

Publication Publication Date Title
USRE35685E (en) Impact pad for a continuous caster tundish
JPH02284750A (en) Method for continuously casting steel using static magnetic field
JPS61193755A (en) Electromagnetic stirring method
JP3692253B2 (en) Continuous casting method of steel
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JPS6272458A (en) Electromagnetic stirring method
JP3096879B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JP2008055431A (en) Method of continuous casting for steel
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH05177317A (en) Continuous casting method and device therefor
JPH08155593A (en) Method for continuously casting thin cast slab and immersion nozzle for continuous casting
JP4910357B2 (en) Steel continuous casting method
JPH01289543A (en) Continuous casting method for steel
JPH0238058B2 (en)
JPH06226409A (en) Method for continuously casting high clean steel
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JPH01271035A (en) Method for continuously casting steel
JPH11320054A (en) Continuous caster and continuous casting method
JP3538967B2 (en) Continuous casting method
JP2004042063A (en) Continuous casting device and continuous casting method
JP3505053B2 (en) Immersion nozzle for thin-wall wide cast slab continuous casting
JPS61269960A (en) Continuous casting method for steel slab
JPH11226709A (en) Electromagnetic stirring method in mold
JPH05285614A (en) Continuous casting method