JP2008055431A - Method of continuous casting for steel - Google Patents

Method of continuous casting for steel Download PDF

Info

Publication number
JP2008055431A
JP2008055431A JP2006231954A JP2006231954A JP2008055431A JP 2008055431 A JP2008055431 A JP 2008055431A JP 2006231954 A JP2006231954 A JP 2006231954A JP 2006231954 A JP2006231954 A JP 2006231954A JP 2008055431 A JP2008055431 A JP 2008055431A
Authority
JP
Japan
Prior art keywords
magnetic field
mold
molten steel
moving
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006231954A
Other languages
Japanese (ja)
Inventor
Noriko Kubo
典子 久保
Hiromasa Iijima
寛昌 飯嶋
Atsushi Kubota
淳 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006231954A priority Critical patent/JP2008055431A/en
Publication of JP2008055431A publication Critical patent/JP2008055431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of continuous casting for steel, which method can prevent the contamination of mold powder and can carry out a cleaning and removing operation of deoxidation products from solidifying interfaces by using a movable magnetic field and a static magnetic field at the same time. <P>SOLUTION: When the continuous casting is carried out by pouring molten steel into a rectangular casting mold having the long sides and the short sides via a submerged nozzle 2, movable magnetic field generating devices 3 for moving magnetic fields in the direction of the width of a cast strip are arranged so as to oppose to the back surfaces of the long sides of the casting mold such that the projected plane of the movable magnetic field generating devices 3 to the movable magnetic field generating devices opposed to each other across the long sides of the casting mold overlap with at least a part of the locus of the molten steel flow discharged from the discharge port of the submerged nozzle to the short sides of the casting mold. The movable magnetic fields moving from the short sides toward the central side of the casting mold in the direction of the width or moving in the reversed direction are applied using the movable magnetic field generating devices, and at the same time, the static magnetic field generating devices 4 are arranged over the whole width of the cast strip at the position separated downward by a specified distance from the movable magnetic field generating devices, and the casting operation is carried out while applying the static magnetic fields over the whole width of the casting mold using the static magnetic field generating devices. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浸漬ノズルから鋳型内に吐出される溶鋼の吐出流にリニア型の移動磁場を印加すると同時に、このリニア型移動磁場の下方において静磁場を印加し、鋳片の未凝固溶鋼の流動を制御しながら鋳造する鋼の連続鋳造方法に関するものである。   The present invention applies a linear moving magnetic field to the discharge flow of molten steel discharged from a submerged nozzle into a mold and simultaneously applies a static magnetic field below the linear moving magnetic field to flow the unsolidified molten steel in the slab. The present invention relates to a continuous casting method of steel that is cast while controlling the temperature.

鋼の連続鋳造においては、鋳型内溶鋼の流動状態、特に溶鋼湯面近傍の流動状態は、モールドパウダーの巻き込み、ノロカミの発生、脱酸生成物及び不活性ガス気泡の凝固界面への付着などと関係しており、鋳片品質に多大な影響を及ぼすことが知られている。欠陥のない鋳片を製造するためには、鋳型内の溶鋼湯面近傍の溶鋼流動を制御する技術が重要であり、そのために、鋳型内溶鋼湯面近傍の溶鋼に磁場を印加し、印加した磁場と移動する溶鋼とで誘導電流を生じさせ、この誘導電流と印加した磁場とが作用して溶鋼に生じる電磁力を利用し、鋳型内溶鋼湯面近傍の溶鋼流動を適正化する方法が、従来から行われている。尚、上記の不活性ガス気泡とは、アルミナ付着防止のために浸漬ノズルに吹き込まれる不活性ガスによる気泡である。   In continuous casting of steel, the flow state of the molten steel in the mold, particularly the flow state near the molten steel surface, includes mold powder entrainment, generation of scum, adhesion of deoxidation products and inert gas bubbles to the solidification interface, etc. It is related and is known to have a great influence on slab quality. In order to produce a defect-free slab, it is important to control the flow of molten steel near the molten steel surface in the mold. To that end, a magnetic field was applied to the molten steel near the molten steel surface in the mold and applied. A method of optimizing the flow of molten steel in the vicinity of the molten steel surface in the mold by generating an induced current between the magnetic field and the moving molten steel and utilizing the electromagnetic force generated in the molten steel by the action of the induced current and the applied magnetic field, Traditionally done. In addition, said inert gas bubble is a bubble by the inert gas blown into an immersion nozzle in order to prevent alumina adhesion.

この磁場の印加方法の1つとして、静磁場を印加する方法がある。例えば特許文献1には、鋳型長辺背面の溶鋼湯面近傍に相当する高さ位置に、鋳型幅全体に亘る静磁場発生磁極を配置し、鋳造速度、浸漬ノズルの吐出角度、浸漬ノズルの浸漬深さ及び鋳型幅に応じて印加する磁場強度を変更することにより、溶鋼湯面の流速を制御し、モールドパウダーの巻き込みを防止する方法が提案されている。一方、静磁場に代わって移動磁場を印加する方法も提案されている。例えば特許文献2には、鋳型長辺背面の鋳型幅方向に2分割以上に区分された移動磁場発生装置を配置し、鋳型内の溶鋼湯面に水平方向の旋回流が形成されるように移動磁場を印加し、溶鋼湯面の流速を0.1〜0.6m/秒として、凝固界面へ脱酸生成物や不活性ガス気泡などが捕捉されないように洗浄する方法が提案されている。   One method of applying this magnetic field is to apply a static magnetic field. For example, in Patent Document 1, a static magnetic field generating magnetic pole over the entire mold width is disposed at a height position corresponding to the vicinity of the molten steel surface on the back side of the mold long side, and the casting speed, the discharge angle of the immersion nozzle, and the immersion nozzle immersion There has been proposed a method for controlling the flow velocity of the molten steel surface by changing the strength of the magnetic field applied according to the depth and the mold width, thereby preventing the entrainment of mold powder. On the other hand, a method of applying a moving magnetic field instead of a static magnetic field has been proposed. For example, in Patent Document 2, a moving magnetic field generator that is divided into two or more sections in the mold width direction on the back side of the mold long side is arranged so that a horizontal swirl flow is formed on the molten steel surface in the mold. A method has been proposed in which a magnetic field is applied, the flow rate of the molten steel surface is 0.1 to 0.6 m / sec, and cleaning is performed so that deoxidation products and inert gas bubbles are not trapped at the solidification interface.

特許文献2は、移動磁場によって鋳型内溶鋼湯面の流速を直接制御する方法であるが、移動磁場を利用した他の方法として、移動磁場により浸漬ノズルからの溶鋼吐出流の流速を減速させ、これにより鋳型内溶鋼湯面の流速を間接的に制御する方法も提案されている。例えば特許文献3には、鋳型長辺背面に配置した移動磁場発生装置により、浸漬ノズルからの吐出流に対して鋳型短辺側から浸漬ノズル側に向かう方向、つまり浸漬ノズルからの溶鋼の吐出方向と反対方向に移動磁場を印加して、浸漬ノズルからの吐出流を減速させることにより、溶鋼湯面近傍の流速を適正範囲に制御し、モールドパウダーの巻き込みを防止する方法が提案されている。
特開平7−314100号公報 特開平6−606号公報 特開平9−192801号公報
Patent Document 2 is a method of directly controlling the flow rate of the molten steel surface in the mold by the moving magnetic field, but as another method using the moving magnetic field, the flow rate of the molten steel discharge flow from the immersion nozzle is decelerated by the moving magnetic field, Thus, a method for indirectly controlling the flow velocity of the molten steel surface in the mold has also been proposed. For example, in Patent Document 3, a moving magnetic field generator arranged on the back side of a long mold side causes a flow from the short side of the mold toward the submersible nozzle side with respect to a discharge flow from the submerged nozzle, that is, a discharge direction of molten steel from the submerged nozzle. A method has been proposed in which a moving magnetic field is applied in the opposite direction to decelerate the discharge flow from the immersion nozzle, thereby controlling the flow velocity in the vicinity of the molten steel surface within an appropriate range and preventing the entrainment of mold powder.
JP 7-314100 A JP-A-6-606 JP-A-9-192801

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

即ち、特許文献1のような静磁場を印加する方法では、磁場は移動する溶鋼のみに対して働き、しかも制動力としてのみ働くので、溶鋼流の停滞領域では静磁場の効果は発揮されず、停滞域の溶鋼を活性化することができないという問題がある。   That is, in the method of applying a static magnetic field as in Patent Document 1, since the magnetic field works only on the moving molten steel and works only as a braking force, the effect of the static magnetic field is not exhibited in the stagnant region of the molten steel flow, There is a problem that the molten steel in the stagnation area cannot be activated.

移動磁場により溶鋼湯面に旋回流を形成させる特許文献2の方法では、磁場の移動方向に電磁力が働くので、制御の柔軟性を確保できるが、鋳造速度を増した場合には、浸漬ノズルから吐出される溶鋼流速自体が増加し、鋳型内の溶鋼湯面における溶鋼流速も自ずと速くなるので、この状態で水平方向の旋回流が形成されるように移動磁場を印加すると、鋳型内溶鋼湯面における溶鋼流速が更に増大し、モールドパウダーの巻き込みを発生させるという問題がある。   In the method of Patent Document 2 in which a swirling flow is formed on the surface of molten steel by a moving magnetic field, electromagnetic force acts in the moving direction of the magnetic field, so that control flexibility can be ensured, but when the casting speed is increased, the immersion nozzle The molten steel flow rate discharged from the molten steel increases, and the molten steel flow rate at the molten steel surface in the mold naturally increases. Therefore, when a moving magnetic field is applied so that a horizontal swirl flow is formed in this state, There is a problem that the molten steel flow velocity on the surface is further increased and mold powder entrainment occurs.

移動磁場により吐出流の流速を制御する特許文献3の方法は、モールドパウダー巻き込み防止を広範囲な鋳造速度範囲において実施可能であり、モールドパウダー巻き込み防止に関しては有効な方法であるが、溶鋼の流速が減速されることから、凝固界面における脱酸生成物や不活性ガス気泡の洗浄効果が小さくなるという問題がある。   The method of Patent Document 3 that controls the flow rate of the discharge flow by a moving magnetic field can prevent mold powder entrainment in a wide range of casting speeds and is an effective method for preventing mold powder entrainment. Since it is decelerated, there is a problem that the cleaning effect of deoxidation products and inert gas bubbles at the solidification interface is reduced.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、磁場を利用した鋼の連続鋳造において、移動磁場及び静磁場を併用することによって、モールドパウダーの巻き込み防止と、脱酸生成物及び不活性ガス気泡の凝固界面からの洗浄・除去とを同時に達成することのできる、鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is to prevent the entrainment of mold powder and deoxidation by using a moving magnetic field and a static magnetic field in combination in continuous casting of steel using a magnetic field. It is an object of the present invention to provide a continuous casting method of steel that can simultaneously achieve cleaning and removal of products and inert gas bubbles from a solidification interface.

上記課題を解決するための第1の発明に係る鋼の連続鋳造方法は、鋳型長辺及び鋳型短辺を有する矩形状鋳型内に浸漬ノズルを介して溶鋼を注入して連続鋳造するに際し、磁場の移動方向が鋳片幅方向である移動磁場発生装置を、鋳型長辺を隔てて相対する移動磁場発生装置との投影面が浸漬ノズルの吐出孔から鋳型短辺に到達するまでの溶鋼吐出流の軌跡の少なくとも一部分と重なるように、鋳型長辺の背面に相対して配置し、該移動磁場発生装置を用いて鋳型短辺側から鋳型幅方向中心側に向いた方向またはその逆向きの方向に移動する移動磁場を印加すると同時に、前記移動磁場発生装置から下方に一定距離だけ離れた位置に鋳片幅全体に亘る静磁場発生装置を配置し、該静磁場発生装置を用いて鋳型幅方向全域に静磁場を印加しながら鋳造することを特徴とするものである。   The continuous casting method for steel according to the first invention for solving the above-described problems is a method of injecting molten steel into a rectangular mold having a mold long side and a mold short side through an immersion nozzle and continuously casting a magnetic field. The molten steel discharge flow until the projection surface of the moving magnetic field generating device whose moving direction is the slab width direction and the moving magnetic field generating device facing each other across the long mold side reaches the short side of the mold from the discharge hole of the immersion nozzle Is arranged relative to the back of the long side of the mold so as to overlap at least a part of the locus of the mold, and using the moving magnetic field generator, the direction from the short side of the mold toward the center of the mold width direction or the opposite direction At the same time that a moving magnetic field is applied to the moving magnetic field generator, a static magnetic field generating device that covers the entire width of the slab is disposed at a position spaced apart from the moving magnetic field generating device by a certain distance. Applying a static magnetic field to the entire area It is characterized in that the casting.

第2の発明に係る鋼の連続鋳造方法は、第1の発明において、前記移動磁場発生装置と前記静磁場発生装置との距離は、200〜1000mmの範囲であることを特徴とするものである。   The steel continuous casting method according to the second invention is characterized in that, in the first invention, the distance between the moving magnetic field generator and the static magnetic field generator is in the range of 200 to 1000 mm. .

上記構成の本発明によれば、移動磁場によって鋳型内溶鋼湯面における溶鋼流速がモールドパウダーの巻き込みの発生しない領域に制御されるとともに、浸漬ノズルからの溶鋼吐出流が鋳型短辺側に衝突した後に形成される下降流が、移動磁場の下方に配置した静磁場によって堰き止められ、堰き止められた下降流が凝固界面に沿った上昇流となって凝固界面の溶鋼流速が増加するので、モールドパウダーの巻き込み防止と脱酸生成物及び不活性ガス気泡の凝固界面からの洗浄・除去とを同時に達成することができ、従来に比べて格段に清浄な鋳片を製造することが可能となる。   According to the present invention having the above-described configuration, the molten steel flow velocity at the molten steel surface in the mold is controlled by the moving magnetic field to a region where the mold powder does not entrain, and the molten steel discharge flow from the immersion nozzle collides with the mold short side. The downward flow formed later is blocked by a static magnetic field placed below the moving magnetic field, and the blocked downward flow becomes an upward flow along the solidification interface, so that the molten steel flow velocity at the solidification interface increases. Prevention of entrainment of powder and cleaning / removal of deoxidation products and inert gas bubbles from the solidification interface can be achieved at the same time, and it becomes possible to produce a slab that is much cleaner than before.

以下、本発明を詳説する。まず、本発明に至った検討結果から説明する。   The present invention is described in detail below. First, the examination results that led to the present invention will be described.

モールドパウダーの巻き込み防止と脱酸生成物及び不活性ガス気泡の凝固界面からの洗浄・除去とを同時に達成することを目的として、鋳型内溶鋼湯面の表面流速を最適範囲に抑制するとともに凝固界面近傍の溶鋼流速を増大させるべく、移動磁場、静磁場、及び移動磁場と静磁場とを組み合せた3種類の磁場印加について、鋳型内の流動状況を電磁流体シミュレーションによって求めた。   In order to achieve the simultaneous prevention of mold powder entrapment and cleaning / removal of deoxidation products and inert gas bubbles from the solidification interface, the surface flow velocity of the molten steel surface in the mold is suppressed to the optimum range and the solidification interface is achieved. In order to increase the flow velocity of the molten steel in the vicinity, the flow conditions in the mold were determined by electromagnetic fluid simulation for the three types of magnetic field application, a moving magnetic field, a static magnetic field, and a combination of a moving magnetic field and a static magnetic field.

図1に、移動磁場を印加したときの、電磁流体シミュレーションによって求めた流速ベクトル図を示す。図1は、移動磁場発生装置の鉛直方向中心位置を鋳型内溶鋼湯面から345mmの位置(浸漬ノズル吐出孔の下端位置相当)とし、浸漬ノズルの吐出孔から吐出される溶鋼の吐出流に、鋳型短辺側から鋳型幅方向中心側に向いた方向の移動磁場を印加し、吐出流の流速を減速させたときの流速ベクトル図であり、図1(A)は、溶鋼湯面におけるベクトル図、図1(B)は、鋳片の厚み中央断面おけるベクトル図、図1(C)は、鋳片の長辺面、つまり凝固界面近傍におけるベクトル図である。尚、図1(A),(B),(C)では鋳型の右側半分における流速を示しており、図中の符号2は浸漬ノズル、符号6は鋳型短辺であり、図1(B)及び図1(C)では、図中左側の上部部分が浸漬ノズル2に、図中右側端部が鋳型短辺6の内壁面位置に相当している。   FIG. 1 shows a flow velocity vector diagram obtained by magnetohydrodynamic simulation when a moving magnetic field is applied. FIG. 1 shows that the vertical center position of the moving magnetic field generator is 345 mm from the molten steel surface in the mold (corresponding to the lower end position of the immersion nozzle discharge hole), and the discharge flow of the molten steel discharged from the discharge hole of the immersion nozzle is FIG. 1A is a flow velocity vector diagram when a moving magnetic field in a direction from the mold short side to the mold width direction center side is applied to reduce the flow velocity of the discharge flow. FIG. FIG. 1B is a vector diagram in the central section of the slab thickness, and FIG. 1C is a vector diagram in the long side surface of the slab, that is, in the vicinity of the solidification interface. 1 (A), (B), and (C) show the flow velocity in the right half of the mold. Reference numeral 2 in the figure denotes an immersion nozzle, and reference numeral 6 denotes a mold short side. 1C, the upper part on the left side in the figure corresponds to the immersion nozzle 2, and the right side end part in the figure corresponds to the position of the inner wall surface of the mold short side 6.

図1に示すように、浸漬ノズルからの吐出流は、移動磁場によって鋳型短辺に向いた流れは抑えられ、鋳片長辺面に向いた流れに迂回するので、鋳片の厚み中央断面における流れよりも、鋳片凝固界面近傍における流れが強くなっていることが分かる。但し、鋳片凝固界面近傍における流れは下向き方向の流れが主体で、その速度は余り速くないことが分かる。また、鋳型内溶鋼湯面では、鋳片幅の約1/4付近を境として、それよりも鋳型短辺側では鋳型短辺から浸漬ノズルに向いた流れで、鋳片幅の約1/4付近よりも浸漬ノズル側では、浸漬ノズルから鋳型短辺に向いた流れとなり、全体に緩やかな流れになっていることが分かる。即ち、溶鋼湯面近傍の流れが遅く、モールドパウダーの巻き込みは発生しにくくなっているが、凝固界面近傍における流れが遅く、脱酸生成物や不活性ガス気泡を捕捉する恐れがあることが分かる。また、凝固界面近傍における流れは下向きが主体であり、脱酸生成物や不活性ガス気泡を鋳片未凝固層の深くまで侵入させる恐れがあることも分かる。   As shown in FIG. 1, the flow from the immersion nozzle is suppressed by the moving magnetic field to flow toward the short side of the mold and bypasses the flow toward the long side of the slab. It can be seen that the flow near the slab solidification interface is stronger. However, it can be seen that the flow in the vicinity of the slab solidification interface is mainly a downward flow, and the speed is not so high. On the molten steel surface in the mold, about 1/4 of the width of the slab is about 1/4 of the width of the slab, and on the short side of the mold, the flow is from the short side of the mold toward the immersion nozzle. It can be seen that on the immersion nozzle side from the vicinity, the flow is directed from the immersion nozzle toward the mold short side, and the flow is gentle as a whole. That is, although the flow near the molten steel surface is slow and the entrainment of the mold powder is difficult to occur, the flow near the solidification interface is slow and there is a possibility of capturing deoxidation products and inert gas bubbles. . It can also be seen that the flow in the vicinity of the solidification interface is mainly downward, and there is a possibility that deoxidized products and inert gas bubbles may penetrate deep into the slab unsolidified layer.

図2に、静磁場を印加したときの、電磁流体シミュレーションによって求めた流速ベクトル図を示す。図2は、静磁場発生装置の鉛直方向中心位置を鋳型内溶鋼湯面から1110mmの位置(浸漬ノズル吐出孔の下端位置から765mm下方位置に相当)とし、鋳片の幅方向全体に亘って静磁場を印加したときの流速ベクトル図であり、図2(A)は、溶鋼湯面におけるベクトル図、図2(B)は、鋳片の厚み中央断面おけるベクトル図、図2(C)は、鋳片の長辺面、つまり凝固界面近傍におけるベクトル図である。図2も、図1と同様に、鋳型の右側半分における流速を示しており、図中の符号2は浸漬ノズル、符号6は鋳型短辺であり、図2(B)及び図2(C)では、図中左側の上部部分が浸漬ノズル2に、図中右側端部が鋳型短辺6の内壁面位置に相当している。   FIG. 2 shows a flow velocity vector diagram obtained by magnetohydrodynamic simulation when a static magnetic field is applied. FIG. 2 shows that the center position in the vertical direction of the static magnetic field generator is set to a position of 1110 mm from the molten steel surface in the mold (corresponding to a position 765 mm below the lower end position of the submerged nozzle discharge hole). FIG. 2 (A) is a vector diagram at the molten steel surface, FIG. 2 (B) is a vector diagram in the thickness central section of the slab, and FIG. 2 (C) is a flow velocity vector diagram when a magnetic field is applied. It is a vector figure in the long side surface of a slab, ie, the solidification interface vicinity. FIG. 2 also shows the flow velocity in the right half of the mold as in FIG. 1. In FIG. 2, reference numeral 2 is an immersion nozzle, and reference numeral 6 is a short side of the mold. FIGS. 2 (B) and 2 (C) Then, the upper part on the left side in the figure corresponds to the immersion nozzle 2, and the right side end part in the figure corresponds to the inner wall surface position of the mold short side 6.

図2に示すように、静磁場を浸漬ノズルの下方で印加した場合、電磁力は浸漬ノズルからの吐出流に直接影響はしないが、静磁場印加位置によって下方に向いた流れが堰き止められ、静磁場印加位置よりも上側で溶鋼の流れが形成されるので、溶鋼湯面近傍の流速は増大する。従って、モールドパウダーの巻き込みに関しては不適切であるが、凝固界面の流速は増大することから、脱酸生成物や不活性ガス気泡の洗浄・除去に関しては好ましい流れとなる。   As shown in FIG. 2, when a static magnetic field is applied below the immersion nozzle, the electromagnetic force does not directly affect the discharge flow from the immersion nozzle, but the downward flow is blocked by the static magnetic field application position, Since the flow of the molten steel is formed above the position where the static magnetic field is applied, the flow velocity in the vicinity of the molten steel surface increases. Therefore, although it is inappropriate for the entrainment of the mold powder, the flow rate at the solidification interface increases, so that it is a preferable flow for cleaning / removing deoxidation products and inert gas bubbles.

図3に、上部に移動磁場を、下部に静磁場を印加したときの、電磁流体シミュレーションによって求めた流速ベクトル図を示す。図3は、移動磁場発生装置の鉛直方向中心位置を鋳型内溶鋼湯面から345mmの位置(浸漬ノズル吐出孔の下端位置相当)とし、且つ、静磁場発生装置の鉛直方向中心位置を鋳型内溶鋼湯面から1110mmの位置(浸漬ノズル吐出孔の下端位置から765mm下方位置に相当)として、浸漬ノズルの吐出孔から吐出される溶鋼の吐出流に、鋳型短辺側から鋳型幅方向中心側に向いた方向の移動磁場を印加すると同時に、鋳片の幅方向全体に亘って静磁場を印加したときの流速ベクトル図であり、図3(A)は、溶鋼湯面におけるベクトル図、図3(B)は、鋳片の厚み中央断面おけるベクトル図、図3(C)は、鋳片の長辺面、つまり凝固界面近傍におけるベクトル図である。図3も、図1と同様に、鋳型の右側半分における流速を示しており、図中の符号2は浸漬ノズル、符号6は鋳型短辺であり、図3(B)及び図3(C)では、図中左側の上部部分が浸漬ノズル2に、図中右側端部が鋳型短辺6の内壁面位置に相当している。   FIG. 3 shows a flow velocity vector diagram obtained by an electromagnetic fluid simulation when a moving magnetic field is applied to the upper part and a static magnetic field is applied to the lower part. FIG. 3 shows that the vertical center position of the moving magnetic field generator is 345 mm from the molten steel surface in the mold (corresponding to the lower end position of the immersion nozzle discharge hole), and the vertical center position of the static magnetic field generator is the molten steel in the mold. At a position of 1110 mm from the molten metal surface (corresponding to a position 765 mm below the lower end position of the immersion nozzle discharge hole), the molten steel discharged from the discharge hole of the immersion nozzle is directed from the mold short side to the mold width direction center side. FIG. 3A is a flow velocity vector diagram when a static magnetic field is applied over the entire width direction of the slab at the same time as applying the moving magnetic field in the slab direction. FIG. 3A is a vector diagram at the molten steel surface, FIG. ) Is a vector diagram in the thickness central cross section of the slab, and FIG. 3C is a vector diagram in the long side surface of the slab, that is, in the vicinity of the solidification interface. FIG. 3 also shows the flow velocity in the right half of the mold as in FIG. 1. Reference numeral 2 in the figure is the immersion nozzle, and reference numeral 6 is the short side of the mold. FIGS. 3 (B) and 3 (C) Then, the upper part on the left side in the figure corresponds to the immersion nozzle 2, and the right side end part in the figure corresponds to the inner wall surface position of the mold short side 6.

図3に示すように、移動磁場の印加により吐出流が制動されて鋳型内溶鋼湯面における流速が抑制されている様子と、静磁場の印加により下降流が堰き止められ、特に鋳片長辺面では上昇流が形成されている様子が分かる。   As shown in FIG. 3, the discharge flow is braked by application of a moving magnetic field and the flow velocity at the molten steel surface in the mold is suppressed, and the downward flow is blocked by application of a static magnetic field. Then you can see how the upward flow is formed.

これらの結果から、移動磁場を浸漬ノズルからの吐出流に印加して吐出流速を制御すると同時に、移動磁場の下方で鋳片幅方向全体に亘って静磁場を印加することで、鋳型内溶鋼湯面における溶鋼流速が適正範囲に制御され、且つ、凝固界面における溶鋼流速が増大し、溶鋼湯面におけるモールドパウダーの巻き込み防止と、凝固界面における脱酸生成物及び不活性ガス気泡の洗浄・除去効果とが、同時に達成されることが分かった。   From these results, a moving magnetic field is applied to the discharge flow from the immersion nozzle to control the discharge flow velocity, and at the same time, a static magnetic field is applied across the entire slab width direction below the moving magnetic field. The molten steel flow velocity at the surface is controlled within an appropriate range, the molten steel flow velocity at the solidification interface is increased, the mold powder is prevented from being caught on the molten steel surface, and the deoxidation products and inert gas bubbles are washed and removed at the solidification interface. It was found that this was achieved at the same time.

本発明は、この検討結果に基づきなされたもので、磁場の移動方向が鋳片幅方向である移動磁場発生装置を、鋳型長辺を隔てて相対する移動磁場発生装置との投影面が浸漬ノズルの吐出孔から鋳型短辺に到達するまでの溶鋼吐出流の軌跡の少なくとも一部分と重なるように、鋳型長辺の背面に相対して配置し、該移動磁場発生装置を用いて鋳型短辺側から鋳型幅方向中心側に向いた方向またはその逆向きの方向に移動する移動磁場を印加すると同時に、前記移動磁場発生装置から下方に一定距離だけ離れた位置に鋳片幅全体に亘る静磁場発生装置を配置し、該静磁場発生装置を用いて鋳型幅方向全域に静磁場を印加しながら鋳造することを特徴とする。   The present invention has been made on the basis of the results of this study. The projection surface of the moving magnetic field generating device in which the moving direction of the magnetic field is the slab width direction and the moving magnetic field generating device facing each other across the mold long side is an immersion nozzle. It is arranged relative to the back of the long side of the mold so that it overlaps at least part of the trajectory of the molten steel discharge flow from the discharge hole to the short side of the mold, and from the short side of the mold using the moving magnetic field generator Applying a moving magnetic field that moves in the direction toward the center of the mold width direction or in the opposite direction, and at the same time, a static magnetic field generator across the entire slab width at a position spaced apart from the moving magnetic field generator by a fixed distance And casting while applying a static magnetic field to the entire mold width direction using the static magnetic field generator.

以下、添付図面を参照して本発明の実施の形態例を具体的に説明する。図4は、鋳型短辺側から鋳型中央の浸漬ノズル側に向かって、鋳型幅方向(X軸の方向)に移動する移動磁場を印加する場合の流動制御装置及びメカニズムの概略斜視図、図5は、本発明を実施する際に用いたスラブ連続鋳造機の鋳型部位の概略正面図である。   Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 4 is a schematic perspective view of a flow control device and a mechanism in the case of applying a moving magnetic field that moves in the mold width direction (X-axis direction) from the mold short side toward the immersion nozzle side in the mold center. These are the schematic front views of the casting_mold | template part of the slab continuous casting machine used when implementing this invention.

図4及び図5において、相対する鋳型長辺5と、この鋳型長辺5の内側に内装された、相対する鋳型短辺6とから、水平内面空間が矩形状の鋳型1が構成されており、鋳型長辺5と鋳型短辺6とに囲まれて形成される鋳型1の内面空間のほぼ中央位置には、鋳型1の上方所定位置に配置されるタンディッシュ(図示せず)の底部に取り付けられた浸漬ノズル2が挿入されている。浸漬ノズル2の下部には、溶鋼8を鋳型短辺6の方向に向かって吐出するための一対の吐出孔7が備えられている。   4 and 5, a mold 1 having a rectangular horizontal inner surface space is constituted by the opposed mold long sides 5 and the opposed mold short sides 6 provided inside the mold long sides 5. The inner space of the mold 1 formed by being surrounded by the mold long side 5 and the mold short side 6 is substantially at the center position of the tundish (not shown) disposed at a predetermined position above the mold 1. An attached immersion nozzle 2 is inserted. A pair of discharge holes 7 for discharging the molten steel 8 in the direction of the mold short side 6 is provided below the immersion nozzle 2.

鋳型長辺5の背面には、浸漬ノズル2を境として鋳型長辺5の幅方向左右で2つに分割された合計4基のリニア型移動磁場発生装置3が、鋳型長辺5を挟んで相対して配置されている。この場合、リニア型移動磁場発生装置3は、鋳型長辺5を挟んで相対するリニア型移動磁場発生装置同士の投影面が、浸漬ノズル2の吐出孔7から鋳型短辺6に到達するまでの溶鋼8の吐出流9の軌跡の少なくとも一部分と重なるように、配置されている。つまり、吐出流9が吐出孔7から鋳型短辺6に到達するまでの少なくとも一部分に、相対するリニア型移動磁場発生装置3から発生する移動磁場が印加されるように、リニア型移動磁場発生装置3が配置されている。それぞれのリニア型移動磁場発生装置3は交流電源(図示せず)と結線され、また、交流電源は、磁場の移動方向、周波数、及び磁場強度を制御する制御装置(図示せず)と接続されており、制御装置から入力される磁場移動方向、周波数及び磁場強度に基づいて交流電源から供給される電力により、リニア型移動磁場発生装置3から印加される磁場強度、周波数及び磁場移動方向がそれぞれ個別に制御されるようになっている。   On the back of the mold long side 5, a total of four linear type moving magnetic field generators 3 divided into two on the left and right in the width direction of the mold long side 5 with the immersion nozzle 2 as a boundary sandwich the mold long side 5. Arranged relative to each other. In this case, the linear-type moving magnetic field generator 3 is configured so that the projection surfaces of the linear-type moving magnetic field generators facing each other across the mold long side 5 reach the mold short side 6 from the discharge hole 7 of the immersion nozzle 2. It arrange | positions so that it may overlap with at least one part of the locus | trajectory of the discharge flow 9 of the molten steel 8. FIG. That is, the linear moving magnetic field generator is applied so that the moving magnetic field generated from the opposing linear moving magnetic field generator 3 is applied to at least a part of the discharge flow 9 from the discharge hole 7 to the mold short side 6. 3 is arranged. Each linear moving magnetic field generator 3 is connected to an AC power source (not shown), and the AC power source is connected to a control device (not shown) for controlling the moving direction, frequency, and magnetic field strength of the magnetic field. The magnetic field strength, frequency, and magnetic field moving direction applied from the linear moving magnetic field generator 3 are respectively determined by the power supplied from the AC power source based on the magnetic field moving direction, frequency, and magnetic field strength input from the control device. It is controlled individually.

また、リニア型移動磁場発生装置3の下方には、静磁場発生装置4が鋳片長辺面を挟んで、鋳片幅方向全域に亘って相対して配置されている。つまり、鋳片の厚み方向に貫通する静磁場が、鋳片幅方向全域に亘って印加できるように配置されている。静磁場発生装置4は直流電源(図示せず)と結線され、また、直流電源は、磁場強度を制御する制御装置(図示せず)と接続されており、制御装置から入力される磁場強度に基づいて直流電源から供給される電力により、静磁場発生装置4から印加される磁場強度が制御されるようになっている。静磁場発生装置4は、永久磁石で構成することもできるが、磁場強度を任意に変更することができることから、電磁石型が好ましい。   A static magnetic field generator 4 is disposed below the linear moving magnetic field generator 3 so as to face the entire slab width direction across the long side surface of the slab. That is, it arrange | positions so that the static magnetic field which penetrates in the thickness direction of a slab can be applied over the slab width direction whole region. The static magnetic field generator 4 is connected to a direct current power source (not shown), and the direct current power source is connected to a control device (not shown) for controlling the magnetic field strength, and the magnetic field strength input from the control device is adjusted. The magnetic field strength applied from the static magnetic field generator 4 is controlled by the electric power supplied from the DC power source. Although the static magnetic field generator 4 can also be comprised with a permanent magnet, since an intensity | strength of a magnetic field can be changed arbitrarily, an electromagnet type is preferable.

図5では、静磁場発生装置4が、二次冷却帯に配置された、鋳造方向に隣り合うガイドロール13に挟まれて配置されているが、鋳型1とガイドロール13との間隙に配置しても、また、鋳型長辺5の背面に配置してもよい。但し、リニア型移動磁場発生装置3の鋳造方向の中心位置と、静磁場発生装置4の鋳造方向の中心位置とが、200〜1000mmの範囲内となるように配置することが好ましい。リニア型移動磁場発生装置3は吐出流9の位置に応じて配置されるので、静磁場発生装置4をリニア型移動磁場発生装置3の配置位置に応じて決めればよい。   In FIG. 5, the static magnetic field generator 4 is disposed between the guide rolls 13 adjacent to each other in the casting direction and disposed in the secondary cooling zone, but is disposed in the gap between the mold 1 and the guide roll 13. Alternatively, it may be arranged on the back surface of the mold long side 5. However, it is preferable to arrange the linear moving magnetic field generator 3 so that the center position in the casting direction and the center position in the casting direction of the static magnetic field generator 4 are within a range of 200 to 1000 mm. Since the linear type moving magnetic field generator 3 is arranged according to the position of the discharge flow 9, the static magnetic field generator 4 may be determined according to the arrangement position of the linear type moving magnetic field generator 3.

リニア型移動磁場発生装置3と静磁場発生装置4との互いの鋳造方向中心位置が200mm未満では、静磁場発生装置4により堰き止められた溶鋼流が鋳型内の溶鋼湯面10の流れに影響するので、モールドパウダーの巻き込み防止に最適な流速に制御しにくくなり好ましくない。一方、互いの鋳造方向中心位置が1000mmを越えると、静磁場発生装置4の設置位置における溶鋼の流速自体が減衰してしまい、静磁場発生装置4により堰き止められた流れによる上昇流が減速し、所望する凝固界面の流速を得ることができなくなるので好ましくない。   When the center position in the casting direction of the linear moving magnetic field generator 3 and the static magnetic field generator 4 is less than 200 mm, the molten steel flow dammed by the static magnetic field generator 4 affects the flow of the molten steel surface 10 in the mold. As a result, it becomes difficult to control the flow rate to be optimal for prevention of mold powder entrainment. On the other hand, when the center position in the casting direction exceeds 1000 mm, the flow velocity of the molten steel at the installation position of the static magnetic field generator 4 is attenuated, and the upward flow due to the flow blocked by the static magnetic field generator 4 is decelerated. This is not preferable because the desired flow rate of the solidification interface cannot be obtained.

このように構成されるスラブ連続鋳造機を用い、以下のようにして本発明の連続鋳造方法を実施する。   The continuous casting method of this invention is implemented as follows using the slab continuous casting machine comprised in this way.

転炉または電気炉などの一次精錬炉、若しくはRH真空脱ガス装置などの二次精錬炉で溶製された溶鋼8を、浸漬ノズル2を通してタンディッシュから鋳型1に注入する。溶鋼8は、吐出孔7から鋳型短辺6に向かう吐出流9となって鋳型内に注入される。鋳型内に注入された溶鋼8は鋳型1により冷却され、凝固シェル11を形成する。そして、鋳型内に所定量の溶鋼8が注入されたなら、吐出孔7を鋳型内の溶鋼8に浸漬した状態で、鋳型1の下方の二次冷却帯に設置したピンチロール(図示せず)を駆動して、外殻を凝固シェル11とし、内部に未凝固の溶鋼8を有する鋳片の引き抜きを開始する。引き抜き開始後は、溶鋼湯面10の位置を鋳型内の略一定位置に制御しながら鋳造する。鋳型内の溶鋼湯面10の上にはモールドパウダー12を添加する。モールドパウダー12は溶融して、溶鋼8の酸化防止や、凝固シェル11と鋳型1との間に流れ込んで潤滑剤としての効果を発揮する。   Molten steel 8 melted in a primary refining furnace such as a converter or an electric furnace or a secondary refining furnace such as an RH vacuum degassing apparatus is injected into the mold 1 from the tundish through the immersion nozzle 2. The molten steel 8 is injected into the mold as a discharge flow 9 from the discharge hole 7 toward the mold short side 6. The molten steel 8 injected into the mold is cooled by the mold 1 to form a solidified shell 11. If a predetermined amount of molten steel 8 is injected into the mold, a pinch roll (not shown) installed in the secondary cooling zone below the mold 1 with the discharge hole 7 immersed in the molten steel 8 in the mold. Is driven, the outer shell is made into a solidified shell 11, and drawing of a slab having unsolidified molten steel 8 inside is started. After the start of drawing, casting is performed while controlling the position of the molten steel surface 10 to a substantially constant position in the mold. Mold powder 12 is added on the molten steel surface 10 in the mold. The mold powder 12 melts to prevent oxidation of the molten steel 8 and flows between the solidified shell 11 and the mold 1 to exert an effect as a lubricant.

この鋳造中、リニア型移動磁場発生装置3からは移動磁場を、また、静磁場発生装置4からは静磁場を印加する。   During this casting, a moving magnetic field is applied from the linear moving magnetic field generator 3 and a static magnetic field is applied from the static magnetic field generator 4.

リニア型移動磁場発生装置3には、図4に示すように複数の電磁コイル(但し図5では図示せず)が幅方向に並んで設置されており、隣り合う電磁コイルに流す電流の位相をずらすことにより、所謂リニアタイプの移動磁場を発生させている。図4では、磁場が鋳型短辺6から鋳型1の中央部の浸漬ノズル2に向かって移動する状態を示しており、図4において、FX は溶鋼8の吐出流9に作用する電磁力を表し、VX は移動磁場の移動速度を表し、BYは移動磁場の磁束密度を表している。その磁場の移動速度VX は、電磁コイルのポールピッチτと周波数fとから、下記の(1)式によって表される。電磁コイルのポールピッチとは、S極からN極までの距離である。 As shown in FIG. 4, the linear moving magnetic field generator 3 has a plurality of electromagnetic coils (not shown in FIG. 5) arranged side by side in the width direction. By shifting, a so-called linear type moving magnetic field is generated. FIG. 4 shows a state in which the magnetic field moves from the mold short side 6 toward the immersion nozzle 2 in the center of the mold 1. In FIG. 4, F X represents the electromagnetic force acting on the discharge flow 9 of the molten steel 8. represents, V X represents the moving speed of the moving magnetic field, B Y represents a magnetic flux density of the moving magnetic field. The moving speed V X of the magnetic field is expressed by the following equation (1) from the pole pitch τ and the frequency f of the electromagnetic coil. The pole pitch of the electromagnetic coil is the distance from the S pole to the N pole.

Figure 2008055431
Figure 2008055431

レンツの法則より、発生する誘導電流JZ は下記の(2)式で表される。但し、(2)式において、σは溶鋼の電気伝導度、VXは移動磁場の移動速度、BY は移動磁場の磁束密度である。 From Lenz's law, the generated induced current J Z is expressed by the following equation (2). In Equation (2), σ is the electric conductivity of the molten steel, V X is the moving speed of the moving magnetic field, and BY is the magnetic flux density of the moving magnetic field.

Figure 2008055431
Figure 2008055431

電磁力FX は下記の(3)式で表され、磁場の移動方向と同じ向きに電磁力FX が作用する。 The electromagnetic force F X is expressed by the following equation (3), and the electromagnetic force F X acts in the same direction as the moving direction of the magnetic field.

Figure 2008055431
Figure 2008055431

つまり、移動磁場の移動方向とそのときの電磁力FX を設定することにより、リニア型移動磁場発生装置3によって鋳型内の溶鋼流動を制御することができる。 That is, by setting the moving direction of the moving magnetic field and the electromagnetic force F X at that time, the molten steel flow in the mold can be controlled by the linear moving magnetic field generator 3.

本発明において、このリニア型移動磁場発生装置3により印加される移動磁場の印加パターンは、図6及び図7に示す2種類であり、鋳造速度が速く、鋳型1における溶鋼流動を減速したい場合には、図6に示すように、磁場を両方の鋳型短辺6から浸漬ノズル2の方向に移動させて、電磁力FX によって浸漬ノズル2から吐出される溶鋼8の吐出流9を減速させ、また、鋳造速度が遅く、鋳型1における溶鋼流動を促進させたい場合には、図7に示すように、磁場を浸漬ノズル2から鋳型短辺6の方向に移動させて、電磁力FXによって浸漬ノズル2から吐出される溶鋼8の吐出流9を加速させる。尚、図6及び図7は、磁場の移動方向を鋳型1の真上から示した図であり、図中の矢印が磁場の移動方向を表している。 In the present invention, there are two types of application patterns of the moving magnetic field applied by the linear type moving magnetic field generator 3 shown in FIGS. 6 and 7, when the casting speed is fast and the molten steel flow in the mold 1 is to be decelerated. As shown in FIG. 6, the magnetic field is moved from both mold short sides 6 toward the immersion nozzle 2 to decelerate the discharge flow 9 of the molten steel 8 discharged from the immersion nozzle 2 by the electromagnetic force F X. also, slow casting speed, when it is desired to accelerate the flow of molten steel in the mold 1, as shown in FIG. 7, by moving the magnetic field from the immersion nozzle 2 in the direction of the mold short side 6, immersed by the electromagnetic force F X The discharge flow 9 of the molten steel 8 discharged from the nozzle 2 is accelerated. 6 and 7 are diagrams showing the moving direction of the magnetic field from directly above the mold 1, and the arrows in the drawings indicate the moving direction of the magnetic field.

一方、移動磁場によって減速或いは加速された吐出流9のうちの鋳型下方に向かう下降流は、静磁場発生装置4による静磁場の印加された領域に進入する。尚、静磁場では、移動する溶鋼には誘導電流が発生し、この誘導電流と静磁場とによって移動する方向と逆向きの電磁力が溶鋼に作用する。つまり、溶鋼の流動を止めるように電磁力が作用する。   On the other hand, the downward flow of the discharge flow 9 decelerated or accelerated by the moving magnetic field toward the lower side of the mold enters the region where the static magnetic field is applied by the static magnetic field generator 4. In the static magnetic field, an induced current is generated in the moving molten steel, and an electromagnetic force opposite to the moving direction acts on the molten steel by the induced current and the static magnetic field. That is, an electromagnetic force acts so as to stop the flow of molten steel.

静磁場の印加された領域に進入した下降流は、静磁場によって減速するものも生じるが、静磁場の領域を迂回するように、或いは静磁場の領域に撥ね返されるようにして上昇流に転じる。この上昇流によって凝固シェル11の近傍の溶鋼流速が鋳型幅方向全体で増加する。その結果、凝固シェル11と溶鋼8との界面における脱酸生成物及び不活性ガス気泡の洗浄効果が増大し、脱酸生成物及び不活性ガス気泡の付着が抑制され、脱酸生成物及び不活性ガス気泡の極めて少ない凝固シェル11を得ることができる。   The downward flow that has entered the region to which the static magnetic field is applied may be slowed down by the static magnetic field, but turns into an upward flow so that it bypasses the static magnetic field region or repels the static magnetic field region. . This upward flow increases the molten steel flow velocity in the vicinity of the solidified shell 11 over the entire mold width direction. As a result, the cleaning effect of the deoxidized product and the inert gas bubbles at the interface between the solidified shell 11 and the molten steel 8 is increased, the adhesion of the deoxidized product and the inert gas bubbles is suppressed, and the deoxidized product and the inert gas bubbles are suppressed. A solidified shell 11 having very few active gas bubbles can be obtained.

即ち、本発明では、浸漬ノズル2の吐出孔7の位置に設置したリニア型移動磁場発生装置3によって溶鋼湯面10における溶鋼流速が適正な範囲に制御されるとともに、リニア型移動磁場発生装置3よりも下方に設置した静磁場発生装置4により、凝固シェル11の近傍の溶鋼流速が増大し、これらにより、溶鋼湯面10の近傍における凝固シェル11へのモールドパウダー12の巻き込みがなく、且つ凝固シェル11への脱酸生成物及び不活性ガス気泡の付着の極めて少ない、清浄で高品質の鋼スラブ鋳片を安定して製造することが可能となる。   That is, in the present invention, the molten steel flow velocity on the molten steel surface 10 is controlled to an appropriate range by the linear moving magnetic field generator 3 installed at the position of the discharge hole 7 of the immersion nozzle 2, and the linear moving magnetic field generator 3 With the static magnetic field generator 4 installed below, the molten steel flow velocity in the vicinity of the solidified shell 11 is increased, so that the mold powder 12 is not caught in the solidified shell 11 in the vicinity of the molten steel surface 10 and solidified. It is possible to stably produce a clean and high-quality steel slab slab with very little deoxidation product and inert gas bubbles adhering to the shell 11.

本発明の効果を確認するために、図5に示すスラブ連続鋳造機を用いてアルミキルド鋼の鋳造試験を実施した。試験では、鋳片のサイズを、厚みが220mm、幅が1600mmとし、定常鋳造時の鋳造速度を2.3m/分として鋳造した。用いた浸漬ノズルは、ノズル孔の底部が凹状形状である所謂「プール付き」の2孔ノズルで、吐出角度が下向き25度、ノズル内径が90mmの浸漬ノズルである。移動磁場発生装置は、3相交流のリニア型移動磁場発生装置であり、電磁コイルの中心位置が鋳型内溶鋼湯面から345mm離れた位置(浸漬ノズル吐出孔の下端位置相当)になるように設置し、静磁場発生装置は、電磁石とし、電極の中心位置が鋳型内溶鋼湯面から1110mm離れた位置になるように設置した。移動磁場発生装置は、0.12テスラ(T)の強度で、磁場の移動方向を鋳型短辺から浸漬ノズルに向かう方向として印加し、静磁場発生装置は、0.4Tの強度で印加した。   In order to confirm the effect of the present invention, a cast test of aluminum killed steel was performed using a slab continuous casting machine shown in FIG. In the test, the slab was cast with a thickness of 220 mm, a width of 1600 mm, and a casting speed during steady casting of 2.3 m / min. The immersion nozzle used is a so-called “with pool” two-hole nozzle in which the bottom of the nozzle hole has a concave shape, and is an immersion nozzle having a discharge angle of 25 degrees downward and a nozzle inner diameter of 90 mm. The moving magnetic field generator is a three-phase AC linear moving magnetic field generator, and is installed so that the center position of the electromagnetic coil is 345 mm away from the molten steel surface in the mold (corresponding to the lower end position of the immersion nozzle discharge hole). The static magnetic field generator was an electromagnet and was installed such that the center position of the electrode was 1110 mm away from the molten steel surface in the mold. The moving magnetic field generator was applied with a strength of 0.12 Tesla (T), and the moving direction of the magnetic field was applied from the short side of the mold to the immersion nozzle, and the static magnetic field generator was applied with a strength of 0.4 T.

試験は、移動磁場も静磁場も印加しない条件(条件1)、静磁場のみを印加した条件(条件2)、移動磁場のみを印加した条件(条件3)、移動磁場及び静磁場を印加した条件(条件4)の4つ水準で実施した。   The test was performed under conditions in which neither a moving magnetic field nor a static magnetic field was applied (condition 1), only a static magnetic field was applied (condition 2), only a moving magnetic field was applied (condition 3), or a moving magnetic field and a static magnetic field were applied. The test was carried out at the four levels (Condition 4).

鋳造中、条件1、条件3及び条件4では、鋳型内溶鋼湯面近傍の溶鋼流速、並びに、鋳型内溶鋼湯面近傍の凝固界面における溶鋼流速を測定した。溶鋼湯面近傍の溶鋼流速は、溶鋼湯面に耐火物製の浸漬棒を、上端部を回転可能に支持した状態で、その下端部を溶鋼湯面に浸漬させ、溶鋼流速に応じて変化する浸漬棒の傾斜角度から算出した。凝固界面における溶鋼流速は、鋳型に埋設した熱電対の測温値に基づき、熱伝達方程式により算出した。   During casting, under conditions 1, 3 and 4, the molten steel flow velocity near the molten steel surface in the mold and the molten steel flow velocity at the solidification interface near the molten steel surface in the mold were measured. The molten steel flow velocity in the vicinity of the molten steel surface changes depending on the molten steel flow velocity with the lower end portion immersed in the molten steel surface with a refractory immersion rod supported on the molten steel surface in a rotatable manner. It was calculated from the inclination angle of the dip rod. The molten steel flow velocity at the solidification interface was calculated by the heat transfer equation based on the temperature measurement value of the thermocouple embedded in the mold.

図8に、溶鋼湯面近傍の溶鋼流速の測定結果を示し、図9に、凝固界面における溶鋼流速の測定結果を示す。図8及び図9において、横軸の鋳型幅方向位置は鋳型中心を起点(ゼロ)として、左側を負(マイナス)で表示し、右側を正(プラス)で表示している。また、図8の溶鋼流速は、横軸の幅方向位置が負側から正側に向いた流れを正で表示し、その逆向きの流れを負で表示している。図9の溶鋼流は流れの方向に関係なく絶対値で表示している。   FIG. 8 shows the measurement result of the molten steel flow velocity near the molten steel surface, and FIG. 9 shows the measurement result of the molten steel flow velocity at the solidification interface. In FIG. 8 and FIG. 9, the mold width direction position on the horizontal axis starts from the mold center (zero), the left side is displayed as negative (minus), and the right side is displayed as positive (plus). Moreover, the molten steel flow velocity of FIG. 8 displays the flow in which the position in the width direction of the horizontal axis is directed from the negative side to the positive side as positive, and displays the flow in the opposite direction as negative. The molten steel flow in FIG. 9 is displayed as an absolute value regardless of the flow direction.

磁場を印加しない条件1では、鋳型内溶鋼湯面近傍の流速が速く、また、湯面変動も大きく、安定した湯面制御は困難であった。一方、凝固界面の溶鋼流側は速く、脱酸生成物及び不活性ガス気泡の洗浄・除去効果は高いことが分かった。   Under condition 1 where no magnetic field was applied, the flow velocity in the vicinity of the molten steel surface in the mold was fast, and fluctuations in the molten metal surface were large, and stable molten metal surface control was difficult. On the other hand, it was found that the molten steel flow side of the solidification interface was fast, and the deoxidation product and inert gas bubbles were highly effective for cleaning and removing.

静磁場のみを印加した条件2では、条件1とほぼ同等の挙動を示し、鋳型内溶鋼湯面近傍の流速が速く、また、湯面変動も大きく、安定した湯面制御は困難であった。   In condition 2 where only a static magnetic field was applied, the behavior was almost the same as in condition 1, the flow velocity in the vicinity of the molten steel surface in the mold was high, and the molten metal surface fluctuation was large, and stable molten metal surface control was difficult.

移動磁場のみを印加した条件3では、鋳型内溶鋼湯面近傍の流速は抑えられ、且つ、湯面変動も少なく、モールドパウダーの巻き込みは少ないことが伺えた。しかしながら、図9に示すように凝固界面の流速は、試験した4つの水準の中では最も遅く、脱酸生成物や不活性ガス気泡の洗浄・除去効果は少ないことが確認できた。   Under condition 3 in which only the moving magnetic field was applied, the flow velocity in the vicinity of the molten steel surface in the mold was suppressed, the variation in the molten metal surface was small, and it was found that the entrainment of mold powder was small. However, as shown in FIG. 9, the flow velocity at the solidification interface was the slowest among the four levels tested, and it was confirmed that the effect of cleaning and removing deoxidized products and inert gas bubbles was small.

移動磁場と静磁場とを印加した条件4では、鋳型内溶鋼湯面近傍の流速は条件3と同様に抑えられ、且つ、湯面変動も少なく、モールドパウダーの巻き込みは少ないことが伺えた。また、凝固界面の流速は条件3に比べて増大しており、脱酸生成物及び不活性ガス気泡の洗浄・除去効果も確保されることが確認できた。   In condition 4 where a moving magnetic field and a static magnetic field were applied, the flow velocity in the vicinity of the molten steel surface in the mold was suppressed in the same manner as in condition 3, and the molten metal surface fluctuation was small, and it was found that the entrainment of mold powder was small. Further, the flow velocity at the solidification interface was increased as compared with Condition 3, and it was confirmed that the effect of cleaning and removing the deoxidized product and the inert gas bubbles was ensured.

鋳造後のスラブ鋳片を薄鋼板に圧延し、薄鋼板において超音波探傷試験によりモールドパウダー及び脱酸生成物を起因とする欠陥を調査した。その結果、条件1及び条件2では、モールドパウダーを起因とする欠陥が相当数発生した。これに対して条件3及び条件4では、モールドパウダーを起因とする欠陥は検出されなかった。また、条件4では、脱酸生成物に起因すると考えられる微小欠陥は、条件3に比べて約6割減少した。   The cast slab slab was rolled into a thin steel plate, and the thin steel plate was examined for defects caused by mold powder and deoxidation products by an ultrasonic flaw detection test. As a result, under conditions 1 and 2, a considerable number of defects due to the mold powder occurred. On the other hand, in the condition 3 and the condition 4, the defect caused by the mold powder was not detected. Moreover, in condition 4, the micro defect considered to be derived from a deoxidation product was reduced by about 60% compared to condition 3.

以上の結果から、本発明によりモールドパウダーの巻き込み防止と脱酸生成物の凝固界面からの洗浄・除去とを同時に達成することができ、清浄な鋳片の製造が可能となることが確認できた。   From the above results, it was confirmed that the present invention can simultaneously achieve the prevention of mold powder entrainment and the cleaning / removal of the deoxidized product from the solidification interface, and the production of a clean slab is possible. .

移動磁場を印加したときの、電磁流体シミュレーションによって求めた流速ベクトル図である。It is the flow velocity vector figure calculated | required by the electromagnetic fluid simulation when a moving magnetic field is applied. 静磁場を印加したときの、電磁流体シミュレーションによって求めた流速ベクトル図である。It is the flow velocity vector figure calculated | required by the electromagnetic fluid simulation when a static magnetic field is applied. 移動磁場と静磁場とを組み合せて印加したときの、電磁流体シミュレーションによって求めた流速ベクトル図である。It is the flow velocity vector figure calculated | required by the magnetohydrodynamic simulation when applying a combination of a moving magnetic field and a static magnetic field. 鋳型短辺側から鋳型中央の浸漬ノズル側に向かって移動する移動磁場を印加する場合の流動制御装置及びメカニズムの概略斜視図である。It is a schematic perspective view of the flow control apparatus and mechanism in the case of applying the moving magnetic field which moves toward the immersion nozzle side of the mold center from the mold short side. 本発明を実施する際に用いたスラブ連続鋳造機の鋳型部位の概略正面図である。It is a schematic front view of the casting_mold | template part of the slab continuous casting machine used when implementing this invention. 浸漬ノズルから吐出される吐出流を減速させるときの移動磁界の印加パターンを示す図である。It is a figure which shows the application pattern of a moving magnetic field when decelerating the discharge flow discharged from an immersion nozzle. 浸漬ノズルから吐出される吐出流を加速させるときの移動磁界の印加パターンを示す図である。It is a figure which shows the application pattern of a moving magnetic field when accelerating the discharge flow discharged from an immersion nozzle. 溶鋼湯面近傍の溶鋼流速の測定結果を示す図である。It is a figure which shows the measurement result of the molten steel flow velocity of the molten steel surface vicinity. 凝固界面における溶鋼流速の測定結果を示す図である。It is a figure which shows the measurement result of the molten steel flow velocity in a solidification interface.

符号の説明Explanation of symbols

1 鋳型
2 浸漬ノズル
3 リニア型移動磁場発生装置
4 静磁場発生装置
5 鋳型長辺
6 鋳型短辺
7 吐出孔
8 溶鋼
9 吐出流
10 溶鋼湯面
11 凝固シェル
12 モールドパウダー
13 ガイドロール
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Linear type | mold moving magnetic field generator 4 Static magnetic field generator 5 Mold long side 6 Mold short side 7 Discharge hole 8 Molten steel 9 Discharge flow 10 Molten steel surface 11 Solidified shell 12 Mold powder 13 Guide roll

Claims (2)

鋳型長辺及び鋳型短辺を有する矩形状鋳型内に浸漬ノズルを介して溶鋼を注入して連続鋳造するに際し、磁場の移動方向が鋳片幅方向である移動磁場発生装置を、鋳型長辺を隔てて相対する移動磁場発生装置との投影面が浸漬ノズルの吐出孔から鋳型短辺に到達するまでの溶鋼吐出流の軌跡の少なくとも一部分と重なるように、鋳型長辺の背面に相対して配置し、該移動磁場発生装置を用いて鋳型短辺側から鋳型幅方向中心側に向いた方向またはその逆向きの方向に移動する移動磁場を印加すると同時に、前記移動磁場発生装置から下方に一定距離だけ離れた位置に鋳片幅全体に亘る静磁場発生装置を配置し、該静磁場発生装置を用いて鋳型幅方向全域に静磁場を印加しながら鋳造することを特徴とする、鋼の連続鋳造方法。   When injecting molten steel into a rectangular mold having a long mold side and a short mold side through a dipping nozzle and continuously casting, a moving magnetic field generator in which the moving direction of the magnetic field is the slab width direction is used. Arranged relative to the back of the long side of the mold so that the projection surface of the moving magnetic field generator facing each other overlaps at least part of the trajectory of the molten steel discharge flow from the discharge hole of the immersion nozzle to the short side of the mold The moving magnetic field generator is used to apply a moving magnetic field that moves in the direction from the short side of the mold toward the center of the mold width direction or in the opposite direction, and at the same time, a certain distance downward from the moving magnetic field generator. A continuous casting of steel, characterized in that a static magnetic field generator over the entire width of the slab is disposed at a position separated by a distance, and casting is performed while applying a static magnetic field throughout the mold width direction using the static magnetic field generator. Method. 前記移動磁場発生装置と前記静磁場発生装置との距離は、200〜1000mmの範囲であることを特徴とする、請求項1に記載の鋼の連続鋳造方法。   The method for continuous casting of steel according to claim 1, wherein a distance between the moving magnetic field generator and the static magnetic field generator is in a range of 200 to 1000 mm.
JP2006231954A 2006-08-29 2006-08-29 Method of continuous casting for steel Pending JP2008055431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231954A JP2008055431A (en) 2006-08-29 2006-08-29 Method of continuous casting for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231954A JP2008055431A (en) 2006-08-29 2006-08-29 Method of continuous casting for steel

Publications (1)

Publication Number Publication Date
JP2008055431A true JP2008055431A (en) 2008-03-13

Family

ID=39238798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231954A Pending JP2008055431A (en) 2006-08-29 2006-08-29 Method of continuous casting for steel

Country Status (1)

Country Link
JP (1) JP2008055431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method
WO2019164004A1 (en) * 2018-02-26 2019-08-29 日本製鉄株式会社 Molding facility
WO2021132821A1 (en) * 2019-12-27 2021-07-01 주식회사 포스코 Casting equipment and casting method
KR102326865B1 (en) * 2020-10-14 2021-11-16 주식회사 포스코 Casting apparatus and casting method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method
WO2019164004A1 (en) * 2018-02-26 2019-08-29 日本製鉄株式会社 Molding facility
KR20200051724A (en) * 2018-02-26 2020-05-13 닛폰세이테츠 가부시키가이샤 Molding equipment
JPWO2019164004A1 (en) * 2018-02-26 2020-10-22 日本製鉄株式会社 Mold equipment
KR102255634B1 (en) 2018-02-26 2021-05-25 닛폰세이테츠 가부시키가이샤 Mold equipment
WO2021132821A1 (en) * 2019-12-27 2021-07-01 주식회사 포스코 Casting equipment and casting method
KR20210083506A (en) * 2019-12-27 2021-07-07 주식회사 포스코 Casting apparatus and casting method
KR102310701B1 (en) * 2019-12-27 2021-10-08 주식회사 포스코 Casting apparatus and casting method
CN114286728A (en) * 2019-12-27 2022-04-05 株式会社Posco Casting apparatus and casting method
JP2022545965A (en) * 2019-12-27 2022-11-01 ポスコ Casting equipment and casting method
KR102326865B1 (en) * 2020-10-14 2021-11-16 주식회사 포스코 Casting apparatus and casting method

Similar Documents

Publication Publication Date Title
KR101396734B1 (en) Method and apparatus for controlling the flow of molten steel in a mould
JP2008055431A (en) Method of continuous casting for steel
JP4591156B2 (en) Steel continuous casting method
BR112018004704B1 (en) CONTINUOUS SHEET CASTING METHODS USING A SHEET CONTINUOUS CASTING MACHINE
KR101302526B1 (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
JPWO2018198181A1 (en) Continuous steel casting method
JP4407260B2 (en) Steel continuous casting method
JP4910357B2 (en) Steel continuous casting method
JP5369808B2 (en) Continuous casting apparatus and continuous casting method
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JPH07164119A (en) Method for stirring molten steel n continuous casting mold
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
JP2006255759A (en) Method for continuously casting steel
JP5146002B2 (en) Steel continuous casting method
JP2002028761A (en) Electromagnetic stirring method in mold for continuous casting
JPH01289543A (en) Continuous casting method for steel
JP4983320B2 (en) Method and apparatus for continuous casting of steel
JP2006000896A (en) Continuous casting method
JP4254576B2 (en) Steel continuous casting apparatus and continuous casting method
JP4492333B2 (en) Steel continuous casting method
JP6036144B2 (en) Continuous casting method
JP2009226463A (en) Method for continuously casting slab
JP2010221275A (en) Apparatus and method of continuous casting
JP5018144B2 (en) Steel continuous casting method
JP4595351B2 (en) Steel continuous casting method