JPWO2018198181A1 - Continuous steel casting method - Google Patents

Continuous steel casting method Download PDF

Info

Publication number
JPWO2018198181A1
JPWO2018198181A1 JP2017555415A JP2017555415A JPWO2018198181A1 JP WO2018198181 A1 JPWO2018198181 A1 JP WO2018198181A1 JP 2017555415 A JP2017555415 A JP 2017555415A JP 2017555415 A JP2017555415 A JP 2017555415A JP WO2018198181 A1 JPWO2018198181 A1 JP WO2018198181A1
Authority
JP
Japan
Prior art keywords
mold
magnetic field
molten steel
less
immersion nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017555415A
Other languages
Japanese (ja)
Other versions
JP6278168B1 (en
Inventor
章敏 松井
章敏 松井
裕計 近藤
裕計 近藤
菊池 直樹
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6278168B1 publication Critical patent/JP6278168B1/en
Publication of JPWO2018198181A1 publication Critical patent/JPWO2018198181A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

交流磁場を鋳型内溶鋼に印加して鋳型内溶鋼に旋回攪拌流を生起させる連続鋳造方法において、浸漬ノズルの浸漬深さ及び鋳型内溶鋼湯面から交流磁場のピーク位置までの距離に応じた適切な交流磁束密度を与えて、高品質な鋳片を製造する。本発明に係る鋼の連続鋳造方法は、一対の鋳型長辺の背面に相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して鋳型内溶鋼に水平方向の旋回攪拌流を生起させる鋼の連続鋳造方法であって、相対する前記鋳型長辺同士の間隔を200〜300mmとし、2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、且つ、前記交流磁場のピーク位置に応じて、前記浸漬ノズルの浸漬深さ及び前記交流磁場発生装置による交流磁場のピーク位置の磁束密度を、所定の範囲に制御する。In a continuous casting method where an alternating magnetic field is applied to the in-mold molten steel to generate a swirling stirring flow in the in-mold molten steel, appropriate according to the immersion depth of the immersion nozzle and the distance from the in-mold molten steel surface to the peak position of the alternating magnetic field High flux density to produce high quality slabs. The continuous casting method of steel according to the present invention applies the alternating magnetic field to the molten steel in the mold through the alternating magnetic field generator installed opposite to the back of the pair of long sides of the mold and turns horizontally in the molten steel in the mold A continuous casting method of steel causing a stirring flow, wherein the distance between the mold long sides facing each other is 200 to 300 mm, and the discharge angle of the discharge hole of the immersion nozzle having two discharge holes is directed downward 5 ° A range of 50 °, a frequency of the AC magnetic field of 0.5 Hz to 3.0 Hz, and an AC magnetic field generated by the AC magnetic field generator and the immersion depth of the immersion nozzle according to the peak position of the AC magnetic field. The magnetic flux density at the peak position of is controlled to a predetermined range.

Description

本発明は、鋳型内の溶鋼に交流磁場を印加し、交流磁場によって鋳型内の溶鋼流動を制御しながら溶鋼を連続鋳造する鋼の連続鋳造方法に関する。   The present invention relates to a method for continuously casting steel, which applies an alternating magnetic field to molten steel in a mold and continuously casts the molten steel while controlling the flow of molten steel in the mold by the alternating magnetic field.

近年、自動車用鋼板、缶用鋼板、高機能厚鋼板などの高級鋼板製品の品質要求が厳格化しており、連続鋳造で製造されたスラブ鋳片の段階で高品質であることが要望されている。スラブ鋳片(以下、単に「鋳片」とも記す)に要求される品質の1つとして、鋳片の表層及び内部で酸化物系非金属介在物(以下、単に「介在物」と記す)が少ないことが挙げられる。   In recent years, the quality requirements of high-grade steel plate products such as steel plates for automobiles, steel plates for cans, and high-performance thick steel plates are strict, and high quality is demanded at the stage of slab cast manufactured by continuous casting. . Oxide-based nonmetallic inclusions (hereinafter simply referred to as "inclusions") on the surface layer and inside of the slab as one of the qualities required for slab slabs (hereinafter also simply referred to as "slabs") There are few things.

鋳片の表層及び内部に捕捉される介在物としては、(1)アルミニウムなどによる溶鋼の脱酸工程で生成し、溶鋼中に懸濁している脱酸生成物、(2)タンディッシュや浸漬ノズルで溶鋼内に吹き込まれるアルゴンガスの気泡、(3)鋳型内溶鋼湯面上に散布したモールドパウダーが溶鋼中に巻き込まれて懸濁したもの、などがある。これらはいずれも製品段階で表面欠陥や内部欠陥となるので、鋳片の表層及び内部に捕捉される介在物を少なくすることが重要である。   As inclusions trapped on the surface and inside of the slab, (1) Deoxidized product generated in the deoxidation process of molten steel with aluminum etc. and suspended in the molten steel, (2) Tundish and immersion nozzle There are bubbles of argon gas blown into the molten steel at (3) mold powder sprayed on the molten steel surface in the mold is caught in the molten steel and suspended. Since all of these result in surface defects and internal defects at the product stage, it is important to reduce inclusions trapped on the surface and inside of the slab.

従来、介在物による製品欠陥を防止するべく、溶鋼中の脱酸生成物、モールドパウダー及びアルゴン気泡が凝固シェルに捕捉されないようにするために、鋳型内で溶鋼に磁場を印加し、磁場による電磁気力を利用して溶鋼の流動を制御することが行われている。この技術に関して数多くの提案がなされている。   Conventionally, in order to prevent product defects due to inclusions, a magnetic field is applied to the molten steel in the mold to prevent deoxidation products in the molten steel, mold powder and argon bubbles from being trapped in the solidified shell, and Force is used to control the flow of molten steel. A number of proposals have been made for this technology.

例えば、特許文献1には、鋳型内溶鋼に浸漬させた浸漬ノズルからの吐出流に交流磁場を印加し、鋳型内溶鋼湯面の溶鋼流速が介在物付着臨界流速以上で、且つ、モールドパウダー巻込み臨界流速以下の範囲になるように、前記吐出流に制動力または水平方向の回転力を与える技術が開示されている。   For example, in Patent Document 1, an alternating current magnetic field is applied to the discharge flow from the immersion nozzle immersed in in-mold molten steel, and the molten steel flow rate of the in-mold molten steel surface is equal to or higher than the inclusion deposition critical flow rate, and the mold powder is wound. A technique is disclosed that applies a braking force or a horizontal rotational force to the discharge flow so as to be in the range below the inflow critical flow rate.

特許文献2には、交流磁場発生装置の上端を鋳型内溶鋼湯面の20〜60mm下方に位置させ、下向き1〜30°の浸漬ノズルを用い、浸漬ノズルからの吐出流が交流磁場発生装置の中心から下方450mmまでの範囲の凝固シェルに衝突するように制御して、溶鋼を連続鋳造する方法が開示されている。   In Patent Document 2, the upper end of the AC magnetic field generation device is positioned 20 to 60 mm below the molten steel surface in the mold, and the immersion nozzle downwards 1 to 30 °, and the discharge flow from the immersion nozzle is of the AC magnetic field generation device. There is disclosed a method of continuously casting molten steel under control of impacting on a solidified shell ranging from the center to 450 mm below.

また、特許文献3には、交流磁場発生装置によって鋳型内溶鋼に鋳型幅方向の旋回攪拌流を付与する際に、浸漬ノズルの吐出口における磁束密度が交流磁場発生装置の最大磁束密度の50%以下となる位置に前記吐出口を設置して、溶鋼を連続鋳造する方法が開示されている。   Further, according to Patent Document 3, when the swirl magnetic flow in the mold width direction is applied to the molten steel in the mold by the AC magnetic field generator, the magnetic flux density at the discharge port of the immersion nozzle is 50% of the maximum magnetic flux density of the AC magnetic field generator. The method of installing the said discharge port in the position used as the following, and casting a molten steel continuously is disclosed.

特開2003−320440号公報JP 2003-320440 A 特開2000−202603号公報Unexamined-Japanese-Patent No. 2000-202603 特開2001−047201号公報Japanese Patent Application Publication No. 2001-047201

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

即ち、特許文献1は、鋳型内溶鋼湯面における溶鋼流速の値に応じて、浸漬ノズルからの吐出流に制動力または水平方向の攪拌力を与えて流動制御を行う方法であり、したがって、鋳型内溶鋼湯面における溶鋼流速を測定またはモニタリングするための何らかの設備が必要となる。また、鋳型背面に設置される交流磁場発生装置の設置位置を変更した場合には、臨界流速予測式の精度が悪化するといった懸念があり、鋳型背面のどのような位置に設置した交流磁場発生装置にも対応した技術とは言い難い。   That is, Patent Document 1 is a method of performing flow control by applying a braking force or a horizontal stirring force to the discharge flow from the immersion nozzle according to the value of the molten steel flow velocity in the in-mold molten steel surface, and therefore the mold Some equipment is required to measure or monitor the flow rate of molten steel at the surface of the internal molten steel. In addition, there is a concern that the accuracy of the critical flow velocity prediction formula may deteriorate when the installation position of the AC magnetic field generator installed on the mold rear surface is changed, and the AC magnetic field generator installed at any position on the mold rear surface It is difficult to say that the technology corresponds to

特許文献2は、浸漬ノズルからの吐出流が衝突する位置に着目した技術であるが、交流磁場発生装置が鋳型内溶鋼湯面の近傍に設置される場合に限定され、交流磁場発生装置が鋳型内溶鋼湯面よりも比較的下方に設置される場合には対応することができない。   Although patent document 2 is the technique which paid its attention to the position where the discharge flow from an immersion nozzle collides, it is limited when an alternating current magnetic field generator is installed near the molten metal melt surface in a mold, and an alternating current magnetic field generator is a mold It can not cope with the case where it is installed relatively lower than the inner molten steel surface.

特許文献3も、特許文献2と同様に、交流磁場発生装置が鋳型内溶鋼湯面の近傍に設置される場合に限定されるものである。また、最大磁束密度の50%以下の位置に浸漬ノズルの吐出口を設置するとしているが、この場合、交流磁場発生装置よりも下方に浸漬ノズルからの吐出流が向かうために、介在物などが交流磁場発生装置の下方へ潜り込み、鋳片の内部欠陥の要因となる可能性が懸念される。   Similarly to Patent Document 2, Patent Document 3 is also limited to the case where the AC magnetic field generator is installed in the vicinity of the molten steel surface in the mold. In addition, although the discharge port of the immersion nozzle is installed at a position of 50% or less of the maximum magnetic flux density, in this case, since the discharge flow from the immersion nozzle is directed downward from the AC magnetic field generator, inclusions etc. There is a concern that it may sink below the AC magnetic field generator and cause internal defects in the slab.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳型長辺を挟んで設置された交流磁場発生装置から交流磁場を鋳型内溶鋼に印加して鋳型内溶鋼に旋回攪拌流を生起させる連続鋳造方法において、鋳型内溶鋼湯面から交流磁場のピーク位置までの距離及び浸漬ノズルの浸漬深さに応じた適切な交流磁束密度を与え、これによって、高品質な鋳片を製造可能とする、鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to apply an alternating current magnetic field to an in-mold molten steel from an alternating-current magnetic field generator installed across a long side of the mold to stir and stir the in-mold molten steel. In the continuous casting method for generating flow, the appropriate alternating current magnetic flux density is given according to the distance from the mold molten steel surface to the peak position of the alternating current magnetic field and the immersion depth of the immersion nozzle, thereby making high quality slabs It is an object of the present invention to provide a method of continuous casting of steel that can be manufactured.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
鋳型内溶鋼湯面から交流磁場のピーク位置までの距離を200mm以上300mm未満とし、
前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)を100mm以上200mm未満とし、且つ、
前記交流磁場のピーク位置の磁束密度を0.040T以上0.060T未満とする、鋼の連続鋳造方法。
[2]一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
鋳型内溶鋼湯面から交流磁場のピーク位置までの距離を300mm以上400mm未満とし、
前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)を100mm以上300mm未満とし、且つ、
前記交流磁場のピーク位置の磁束密度を0.060T以上0.080T未満とする、鋼の連続鋳造方法。
[3]一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
鋳型内溶鋼湯面から交流磁場のピーク位置までの距離を400mm以上500mm未満とし、
前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)を100mm以上300mm未満とし、且つ、
前記交流磁場のピーク位置の磁束密度を0.080T以上0.100T未満とする、鋼の連続鋳造方法。
[4]一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
前記交流磁場のピーク位置に応じて、前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)及び前記交流磁場発生装置による交流磁場のピーク位置の磁束密度を、下記の条件(A)、条件(B)、条件(C)の3種のうちのいずれか1つを満足させる、鋼の連続鋳造方法。
条件(A);鋳型内溶鋼湯面から交流磁場のピーク位置までの距離が200mm以上300mm未満のときは、前記浸漬ノズルの浸漬深さを100mm以上200mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.040T以上0.060T未満とする。
条件(B);鋳型内溶鋼湯面から交流磁場のピーク位置までの距離が300mm以上400mm未満のときは、前記浸漬ノズルの浸漬深さを100mm以上300mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.060T以上0.080T未満とする。
条件(C);鋳型内溶鋼湯面から交流磁場のピーク位置までの距離が400mm以上500mm未満のときは、前記浸漬ノズルの浸漬深さを100mm以上300mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.080T以上0.100T未満とする。
The gist of the present invention for solving the above-mentioned subject is as follows.
[1] A solidified shell formed by solidifying the molten steel while pouring the molten steel into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space A continuous casting method of steel which is drawn out from steel to produce a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
The distance from the mold molten steel surface to the peak position of the AC magnetic field is 200 mm or more and less than 300 mm,
The immersion depth of the immersion nozzle (the distance from the in-mold molten steel surface to the upper end of the discharge hole of the immersion nozzle) is 100 mm or more and less than 200 mm,
The continuous casting method of steel which makes the magnetic flux density of the peak position of the said alternating current magnetic field 0.040T or more and less than 0.060T.
[2] A molten steel is poured into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space, and a solidified shell formed by solidifying the molten steel is used as the mold A continuous casting method of steel which is drawn out from steel to produce a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
The distance from the in-mold molten steel surface to the peak position of the AC magnetic field is 300 mm or more and less than 400 mm,
The immersion depth of the immersion nozzle (the distance from the in-mold molten steel surface to the upper end of the discharge hole of the immersion nozzle) is 100 mm or more and less than 300 mm,
The continuous casting method of steel which makes the magnetic flux density of the peak position of the said alternating current magnetic field more than 0.060T and less than 0.080T.
[3] A solidified shell formed by solidifying the molten steel while pouring the molten steel into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space is the mold A continuous casting method of steel which is drawn out from steel to produce a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
The distance from the in-mold molten steel surface to the peak position of the AC magnetic field is 400 mm or more and less than 500 mm,
The immersion depth of the immersion nozzle (the distance from the in-mold molten steel surface to the upper end of the discharge hole of the immersion nozzle) is 100 mm or more and less than 300 mm,
The continuous casting method of steel which makes the magnetic flux density of the peak position of the said alternating current magnetic field 0.080T or more and less than 0.100T.
[4] A solidified shell formed by solidifying the molten steel while pouring the molten steel into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space is the mold A continuous casting method of steel which is drawn out from steel to produce a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
Depending on the peak position of the AC magnetic field, the immersion depth of the immersion nozzle (the distance from the molten metal in the mold to the upper end of the discharge hole of the immersion nozzle) and the magnetic flux density of the AC magnetic field peak position by the AC magnetic field generator A continuous casting method of steel, wherein any one of the following three conditions (A), (B) and (C) is satisfied.
Condition (A); When the distance from the mold molten steel surface to the peak position of the alternating current magnetic field is 200 mm or more and less than 300 mm, the immersion depth of the immersion nozzle is 100 mm or more and less than 200 mm. The magnetic flux density is set to 0.040 T or more and less than 0.060 T.
Condition (B): When the distance from the in-mold molten steel surface to the peak position of the alternating current magnetic field is 300 mm or more and less than 400 mm, the immersion depth of the immersion nozzle is 100 mm or more and less than 300 mm. The magnetic flux density is set to not less than 0.060 T and less than 0.080 T.
Condition (C): When the distance from the mold molten steel surface to the peak position of the AC magnetic field is 400 mm or more and less than 500 mm, the immersion depth of the immersion nozzle is 100 mm or more and less than 300 mm, and the peak position of the AC magnetic field The magnetic flux density is set to at least 0.080 T and less than 0.100 T.

本発明によれば、鋳型内溶鋼湯面から交流磁場のピーク位置までの距離及び浸漬ノズルの浸漬深さに応じた適切な磁束密度の交流磁場を印加して鋳型内溶鋼に旋回攪拌流を与えるので、脱酸生成物、アルゴンガス気泡、モールドパウダーの凝固シェルへの捕捉が抑制され、容易に高品質の鋳片を製造することが実現される。   According to the present invention, an alternating magnetic field of an appropriate magnetic flux density according to the distance from the in-mold molten steel surface to the peak position of the alternating magnetic field and the immersion depth of the immersion nozzle is applied to give a swirling stirring flow to the in-mold molten steel. Therefore, deoxidation products, argon gas bubbles and entrapment of mold powder in a solidified shell are suppressed, and it is realized that a high-quality cast piece is easily produced.

図1は、本発明の実施形態の1例を示す図であって、スラブ連続鋳造機の鋳型部位の概略図である。FIG. 1 is a view showing an example of an embodiment of the present invention, and is a schematic view of a mold portion of a slab continuous casting machine. 図2は、図1に示す浸漬ノズルの拡大図である。FIG. 2 is an enlarged view of the immersion nozzle shown in FIG.

以下、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described.

本発明者らは、鋳型内の溶鋼に交流磁場を印加し、交流磁場によって鋳型内の溶鋼に水平方向の旋回攪拌流を生起させる、鋼の連続鋳造方法における鋳型内の溶鋼流動状況について、低融点合金装置を用いて試験及び調査を行った。試験では、一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する鋳型を用い、内部空間の中心部に、2つの吐出孔を有する浸漬ノズル(以下、「2孔式浸漬ノズル」とも記す)を設置し、それぞれの吐出孔から鋳型短辺に向けて溶鋼の吐出流を吐出させた状態を模擬し、特に、交流磁場のピーク位置及び浸漬ノズルの浸漬深さを変化させた場合の鋳型内の溶鋼流動状況について試験した。   The present inventors apply an alternating magnetic field to the molten steel in the mold and cause horizontal swirling flow in the molten steel in the mold by the alternating magnetic field, and the flow condition of molten steel in the mold in the continuous casting method of steel is low. Tests and investigations were performed using a melting point alloy device. In the test, using a mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space, an immersion nozzle having two discharge holes at the center of the internal space (hereinafter referred to as “2 (Also described as “hole type immersion nozzle”) to simulate the discharge flow of molten steel from the respective discharge holes toward the short side of the mold, in particular, the peak position of the AC magnetic field and the immersion depth of the immersion nozzle It tested about the molten steel flow condition in the mold at the time of changing.

ここで、交流磁場のピーク位置とは、鋳型の内部空間を取り囲む鋳型内壁面における交流磁場の磁束密度のうちで、内壁面に直交する成分の、時間周期当たりの二乗平均平方根値最大値が内壁面に沿って最大となる位置である。また、浸漬ノズルの浸漬深さは、鋳型内溶鋼湯面(「メニスカス」ともいう)から浸漬ノズルの吐出孔の上端までの距離で定義する。   Here, the peak position of the AC magnetic field means the maximum root mean square value per time cycle of the component orthogonal to the inner wall surface of the magnetic flux density of the AC magnetic field on the inner wall surface of the mold surrounding the inner space of the mold. This position is the largest along the wall. Further, the immersion depth of the immersion nozzle is defined by the distance from the in-mold molten steel surface (also referred to as "meniscus") to the upper end of the discharge hole of the immersion nozzle.

試験では、鋳型長辺背面に相対して設置した交流磁場発生装置の設置位置及び浸漬ノズルの設置位置つまり浸漬深さを変更し、そのときの低融点合金の鋳型内の流動状況及び鋳型内の流速分布などを数値計算及び実機1/4サイズの低融点合金装置を活用して調査した。低融点合金としては、Bi−Pb−Sn−Cd合金(融点;70℃)を使用した。   In the test, the installation position of the AC magnetic field generator installed opposite to the back of the long side of the mold and the installation position of the immersion nozzle, that is, the immersion depth is changed, and the flow condition of the low melting point alloy in the mold and the inside of the mold at that time. The flow velocity distribution etc. were investigated using numerical calculation and a low melting point alloy device of real machine 1/4 size. As a low melting point alloy, a Bi-Pb-Sn-Cd alloy (melting point: 70 ° C.) was used.

調査の結果、交流磁場のピーク位置及び浸漬ノズルの浸漬深さに応じて、交流磁場の磁束密度の適切な印加範囲が存在することがわかった。即ち、交流磁場のピーク位置及び浸漬ノズルの浸漬深さによって、交流磁場の印加条件は、条件(A)〜(C)の3種類のパターンに大別できることがわかった。調査結果を表1に示す。尚、交流磁場のピーク位置は、鋳型内溶鋼湯面から交流磁場のピーク位置までの距離で定義する。   As a result of investigation, it has been found that an appropriate application range of the magnetic flux density of the alternating magnetic field exists depending on the peak position of the alternating magnetic field and the immersion depth of the immersion nozzle. That is, it turned out that the application condition of an alternating current magnetic field can be divided roughly into three types of conditions (A)-(C) by the peak position of alternating current magnetic field, and the immersion depth of an immersion nozzle. The survey results are shown in Table 1. The peak position of the alternating magnetic field is defined by the distance from the molten metal in the mold to the peak position of the alternating magnetic field.

Figure 2018198181
Figure 2018198181

1;条件(A)
交流磁場のピーク位置が鋳型内溶鋼湯面から200mm以上300mm未満の場合には、2孔式浸漬ノズルの浸漬深さを100mm以上200mm未満としたうえで、交流磁場のピーク位置における磁束密度を0.040T以上0.060T未満とする。
1; Condition (A)
When the peak position of the AC magnetic field is 200 mm or more and less than 300 mm from the in-mold molten steel surface, the magnetic flux density at the peak position of the AC magnetic field is 0 when the immersion depth of the two-hole immersion nozzle is 100 mm or more and less than 200 mm. .040 T or more and less than 0.060 T

尚、磁束密度は、鋳型銅板のうち、その背後に交流磁場発生装置が配設されている鋳型銅板の内部空間を形成する平面から、当該平面の法線方向に沿って前記内部空間に向かう方向に前記平面から15mm離れた位置における前記法線方向の磁束密度のうち、鋳片引抜き方向に沿った前記磁束密度のピーク位置における前記磁束密度の実効値(二乗平均平方根値;Root Mean Square)を、鋳型幅方向に任意のピッチで測定した値の算術平均値で定義する。鋳型幅方向の測定ピッチは、磁束密度の空間プロファイルの代表性を十分に表現できる程度のものであれば良いと考えられる。   The magnetic flux density is a direction from the plane forming the inner space of the mold copper plate to the back of the mold copper plate on which the AC magnetic field generator is disposed, and the direction toward the inner space along the normal direction of the plane. Among the magnetic flux density in the normal direction at a position 15 mm away from the plane, the effective value (root mean square value; Root Mean Square) of the magnetic flux density at the peak position of the magnetic flux density along the slab drawing direction , It is defined by an arithmetic mean value of values measured at an arbitrary pitch in the mold width direction. The measurement pitch in the mold width direction is considered to be sufficient if it can sufficiently represent the representativeness of the space profile of the magnetic flux density.

磁束密度が0.040T未満の場合は、旋回攪拌力が弱いために、アルゴンガス気泡や脱酸生成物の凝固シェルからの洗浄効果を発揮しにくい。一方、磁束密度が0.060T以上の場合は、旋回攪拌力が強すぎるために、モールドパウダーの巻き込みを助長する。   If the magnetic flux density is less than 0.040 T, it is difficult to exert a cleaning effect from the solidified shells of argon gas bubbles and deoxidized products because the swirling stirring force is weak. On the other hand, in the case where the magnetic flux density is 0.060 T or more, the swirling stirring force is too strong, which promotes the winding of the mold powder.

浸漬ノズルの浸漬深さが100mm未満の場合には、鋳型内溶鋼湯面と吐出流との距離が近すぎるために、鋳型内で湯面変動を助長しやすい。浸漬深さが200mm以上の場合には、浸漬ノズル本体胴部が長くなるために耐火物コストが増大することや、耐熱性・耐荷重性の観点でも浸漬ノズルが損傷しやすくなり、かえって操業コストが増大することが懸念される。   When the immersion depth of the immersion nozzle is less than 100 mm, the distance between the in-mold molten steel surface and the discharge flow is too short, so that the fluctuation of the surface is likely to be promoted in the mold. When the immersion depth is 200 mm or more, the immersion nozzle main body becomes longer, the refractory cost increases, and the immersion nozzle tends to be damaged from the viewpoint of heat resistance and load resistance, which in turn causes the operation cost There is concern that the

2;条件(B)
交流磁場のピーク位置が鋳型内溶鋼湯面から300mm以上400mm未満の場合には、2孔式浸漬ノズルの浸漬深さを100mm以上300mm未満としたうえで、交流磁場のピーク位置における磁束密度を0.060T以上0.080T未満とする。
2; Condition (B)
When the peak position of the AC magnetic field is 300 mm or more and less than 400 mm from the in-mold molten steel surface, the magnetic flux density at the peak position of the AC magnetic field is 0 when the immersion depth of the 2-hole immersion nozzle is 100 mm or more and less than 300 mm. .060 T or more and less than 0.080 T

交流磁場のピーク位置が、条件(A)と比較して、鋳型内溶鋼湯面から深い位置になるので、条件(A)よりも強い磁束密度が必要となる。つまり、磁束密度が0.060T未満の場合は、旋回攪拌力が弱いために、アルゴンガス気泡や脱酸生成物の凝固シェルからの洗浄効果を発揮しにくい。一方、磁束密度が0.080T以上の場合は、旋回攪拌力が強すぎるために、モールドパウダーの巻き込みを助長する。   Since the peak position of the AC magnetic field is deeper from the molten steel surface in the mold compared to the condition (A), a magnetic flux density stronger than the condition (A) is required. That is, when the magnetic flux density is less than 0.060 T, it is difficult to exert the cleaning effect of the argon gas bubbles and the deoxidized product from the solidified shell because the swirling stirring force is weak. On the other hand, when the magnetic flux density is equal to or greater than 0.080 T, the swirling stirring force is too strong, which promotes the winding of the mold powder.

浸漬ノズルの浸漬深さが100mm未満の場合には、鋳型内溶鋼湯面と吐出流との距離が近すぎるために、鋳型内で湯面変動を助長しやすい。浸漬深さが300mm以上の場合には、浸漬ノズル本体胴部が長くなるために耐火物コストが増大することや、耐熱性・耐荷重性の観点でも浸漬ノズルが損傷しやすくなり、かえって操業コストが増大することが懸念される。   When the immersion depth of the immersion nozzle is less than 100 mm, the distance between the in-mold molten steel surface and the discharge flow is too short, so that the fluctuation of the surface is likely to be promoted in the mold. If the immersion depth is 300 mm or more, the immersion nozzle main body becomes longer, the refractory cost is increased, and the immersion nozzle is easily damaged from the viewpoints of heat resistance and load resistance, and the operation cost is reduced. There is concern that the

3;条件(C)
交流磁場のピーク位置が鋳型内溶鋼湯面から400mm以上500mm未満の場合には、2孔式浸漬ノズルの浸漬深さを100mm以上300mm未満としたうえで、交流磁場のピーク位置における磁束密度を0.080T以上0.100T未満とする。
3; Condition (C)
When the peak position of the AC magnetic field is 400 mm or more and less than 500 mm from the in-mold molten steel surface, the magnetic flux density at the peak position of the AC magnetic field is 0 when the immersion depth of the two-hole immersion nozzle is 100 mm or more and less than 300 mm. Not less than .080T and less than 0.100T.

交流磁場のピーク位置が、条件(A)及び条件(B)よりも更に鋳型内溶鋼湯面から深い位置になるので、より一層強い磁束密度が必要となる。つまり、磁束密度が0.080T未満の場合は、旋回攪拌力が弱いために、アルゴンガス気泡や脱酸生成物の凝固シェルへの洗浄効果を発揮しにくい。一方、磁束密度が0.100T以上の場合は、旋回攪拌力が強すぎるために、モールドパウダーの巻き込みを助長する。   Since the peak position of the AC magnetic field is deeper from the in-mold molten steel surface than in the conditions (A) and (B), a stronger magnetic flux density is required. That is, when the magnetic flux density is less than 0.080 T, it is difficult to exert a cleaning effect on the solidified shell of argon gas bubbles and deoxidized products because the swirling stirring force is weak. On the other hand, when the magnetic flux density is 0.100 T or more, the swirling stirring force is too strong, thereby promoting mold powder entrainment.

浸漬ノズルの浸漬深さが100mm未満の場合には、鋳型内溶鋼湯面と吐出流との距離が近すぎるために、鋳型内で湯面変動を助長しやすい。浸漬深さが300mm以上の場合には、浸漬ノズル本体胴部が長くなるために耐火物コストが増大することや、耐熱性・耐荷重性の観点でも浸漬ノズルが損傷しやすくなり、かえって操業コストが増大することが懸念される。   When the immersion depth of the immersion nozzle is less than 100 mm, the distance between the in-mold molten steel surface and the discharge flow is too short, so that the fluctuation of the surface is likely to be promoted in the mold. If the immersion depth is 300 mm or more, the immersion nozzle main body becomes longer, the refractory cost is increased, and the immersion nozzle is easily damaged from the viewpoints of heat resistance and load resistance, and the operation cost is reduced. There is concern that the

条件(A)〜(C)において、使用する浸漬ノズルの吐出角度は、下向き5°から下向き50°の範囲とする。吐出角度が下向き5°よりも小さい場合には、交流磁場を吐出流に十分に作用させることができない。一方、吐出角度が下向き50°よりも大きい場合には、吐出流の下向き流れが強くなりすぎるために、脱酸生成物やガス気泡が鋳造方向の深い位置へ潜り込み、内部欠陥となって鋼板の成形加工時に割れの起点となる懸念がある。   In the conditions (A) to (C), the discharge angle of the immersion nozzle used is in the range of 5 ° downward to 50 ° downward. When the discharge angle is smaller than 5 ° downward, the alternating magnetic field can not sufficiently act on the discharge flow. On the other hand, if the discharge angle is larger than 50 ° downward, the downward flow of the discharge flow becomes too strong, so the deoxidized product or gas bubbles sink into a deep position in the casting direction and become an internal defect, resulting in the steel plate There is a concern that it becomes a starting point of cracking during molding processing.

本発明において、交流磁場のピーク位置は、鋳型内溶鋼湯面から200mm以上500mm未満とする。交流磁場のピーク位置を鋳型内溶鋼湯面から200mm未満とした場合は、浸漬ノズルからの吐出流に交流磁場を作用させるためには、浸漬ノズルの浸漬深さを交流磁場ピーク位置よりも浅い位置にしなければならず、操業上の制約が生じ、交流磁場の効率的な印加ができない。また、交流磁場のピーク位置を鋳型内溶鋼湯面から500mm以上離れた位置とした場合には、凝固シェルが成長した領域で旋回攪拌流を付与することになり、脱酸生成物やアルゴンガス気泡の凝固シェルへの洗浄効果が乏しくなる。   In the present invention, the peak position of the AC magnetic field is 200 mm or more and less than 500 mm from the in-mold molten steel surface. When the peak position of the alternating magnetic field is less than 200 mm from the in-mold molten steel surface, in order to apply the alternating magnetic field to the discharge flow from the immersion nozzle, the immersion depth of the immersion nozzle is shallower than the alternating magnetic field peak position This imposes operational constraints and prevents efficient application of alternating magnetic fields. In addition, when the peak position of the AC magnetic field is at a position 500 mm or more away from the in-mold molten steel surface, the swirling stirring flow is applied in the area where the solidified shell has grown, and deoxidation products and argon gas bubbles The cleaning effect on the coagulated shell is poor.

交流磁場の周波数は、0.5〜3.0Hzとし、好ましくは1.0〜2.0Hzとする。周波数が0.5Hz未満では、交流磁場による電磁気力の付与が間歇的になりすぎ、脱酸生成物やアルゴンガス気泡の凝固シェルへの洗浄効果が安定しない。一方、周波数が3.0Hzを超えると、鋳型や凝固シェルによる磁束密度の減衰が大きくなり、鋳型内溶鋼に効率的に交流磁場を印加することができない。   The frequency of the alternating magnetic field is 0.5 to 3.0 Hz, preferably 1.0 to 2.0 Hz. If the frequency is less than 0.5 Hz, the application of electromagnetic force by the alternating magnetic field becomes too intermittent, and the cleaning effect of the deoxidation product or the argon gas bubble on the solidified shell is not stable. On the other hand, when the frequency exceeds 3.0 Hz, the attenuation of the magnetic flux density by the mold and the solidified shell becomes large, and the alternating magnetic field can not be applied efficiently to the molten steel in the mold.

以下、本発明の具体的な実施方法を図面に基づいて説明する。図1は、本発明の実施形態の1例を示す図であって、スラブ連続鋳造機の鋳型部位の概略図で、図2は、図1に示す浸漬ノズルの拡大図である。   Hereinafter, a specific implementation method of the present invention will be described based on the drawings. FIG. 1 is a view showing an example of an embodiment of the present invention, and is a schematic view of a mold portion of a slab continuous caster, and FIG. 2 is an enlarged view of an immersion nozzle shown in FIG.

図1及び図2において、符号1は溶鋼、2は凝固シェル、3は鋳型内溶鋼湯面、4は吐出流、5は鋳片、6は鋳型、7は水冷式の鋳型長辺、8は水冷式の鋳型短辺、9は浸漬ノズル、10は吐出孔、11は交流磁場発生装置、12はモールドパウダー、θは浸漬ノズルの吐出角度である。   In FIG. 1 and FIG. 2, 1 is a molten steel, 2 is a solidified shell, 3 is a molten steel surface in a mold, 4 is a discharge flow, 5 is a cast slab, 6 is a mold, 7 is a water-cooled mold long side, 8 is a A water-cooled mold short side, 9 is an immersion nozzle, 10 is a discharge hole, 11 is an AC magnetic field generator, 12 is a mold powder, and θ is a discharge angle of the immersion nozzle.

鋳型6は、相対する一対の鋳型長辺7と、この鋳型長辺7に挟持された、相対する一対の鋳型短辺8とを有し、一対の鋳型長辺7と一対の鋳型短辺8とで、矩形の内部空間が形成されている。鋳型長辺7の背面には、鋳型長辺7を挟んで相対して配置された、一対の交流磁場発生装置11が設置されている。ここで、相対する鋳型長辺同士の間隔は200〜300mmであり、浸漬ノズル9は2つの吐出孔10を有し、吐出孔10の吐出角度(θ)は下向き5°から下向き50°の範囲である。   The mold 6 has a pair of opposing mold long sides 7 and a pair of opposing mold short sides 8 sandwiched by the mold long sides 7, and the pair of mold long sides 7 and the pair of mold short sides 8 And a rectangular internal space is formed. A pair of alternating current magnetic field generating devices 11 disposed opposite to each other across the long side 7 of the mold are installed on the back of the long side 7 of the mold. Here, the distance between mutually opposing mold long sides is 200 to 300 mm, the immersion nozzle 9 has two discharge holes 10, and the discharge angle (θ) of the discharge holes 10 is in the range of 5 ° downward to 50 ° downward It is.

鋳型6の矩形の内部空間の中心部に浸漬ノズル9を設置し、2つの吐出孔10から、それぞれの吐出孔10が相対する鋳型短辺8に向けて溶鋼1の吐出流4を吐出させ、鋳型6の内部空間に溶鋼1を注入する。鋳型6の内部空間に注入された溶鋼1は、鋳型長辺7及び鋳型短辺8によって冷却され、凝固シェル2を形成する。そして、鋳型6の内部空間に所定量の溶鋼1が注入されたなら、吐出孔10を鋳型内の溶鋼1に浸漬させた状態でピンチロール(図示せず)を駆動して、外殻を凝固シェル2として内部に未凝固の溶鋼1を有する鋳片5の引き抜きを開始する。引き抜き開始後は鋳型内溶鋼湯面3の位置をほぼ一定位置に制御しながら、鋳片引き抜き速度を増速して所定の鋳片引き抜き速度とする。図1では、浸漬ノズル9の浸漬深さを「L」で表示し、また、鋳型内溶鋼湯面3から交流磁場のピーク位置までの距離を「L」で表示している。The immersion nozzle 9 is placed at the center of the rectangular internal space of the mold 6, and the discharge flow 4 of the molten steel 1 is discharged from the two discharge holes 10 toward the mold short side 8 where the discharge holes 10 face each other. The molten steel 1 is injected into the inner space of the mold 6. The molten steel 1 injected into the inner space of the mold 6 is cooled by the mold long side 7 and the mold short side 8 to form a solidified shell 2. Then, when a predetermined amount of molten steel 1 is injected into the inner space of the mold 6, a pinch roll (not shown) is driven to solidify the outer shell in a state where the discharge holes 10 are immersed in the molten steel 1 in the mold. Pulling out of the cast slab 5 having the unsolidified molten steel 1 inside as the shell 2 is started. After the start of drawing, while controlling the position of the molten steel melt surface 3 in the mold to a substantially constant position, the cast strip drawing speed is increased to a predetermined cast strip drawing speed. In FIG. 1, the immersion depth of the immersion nozzle 9 is indicated by "L 1 ", and the distance from the in-mold molten steel surface 3 to the peak position of the alternating magnetic field is indicated by "L 2 ".

鋳型内溶鋼湯面3の上にはモールドパウダー12を添加する。モールドパウダー12は溶融して、溶鋼1の酸化防止や凝固シェル2と鋳型6との間に流れ込み潤滑剤としての効果を発揮する。また、浸漬ノズル9を流下する溶鋼1には、溶鋼中に懸濁する脱酸生成物の浸漬ノズル内壁への付着を防止するために、アルゴンガス、窒素ガスまたはアルゴンガスと窒素ガスとの混合ガスを吹き込む。   Mold powder 12 is added onto the molten steel surface 3 in the mold. The mold powder 12 melts, prevents oxidation of the molten steel 1 and flows between the solidified shell 2 and the mold 6 to exert an effect as a lubricant. In addition, in the molten steel 1 flowing down the immersion nozzle 9, argon gas, nitrogen gas or a mixture of argon gas and nitrogen gas is used to prevent adhesion of the deoxidized product suspended in the molten steel to the inner wall of the immersion nozzle. Blow in the gas.

このようにして溶鋼1を連続鋳造する際に、交流磁場発生装置11から鋳型内の溶鋼1に交流磁場を印加し、鋳型内の溶鋼1に水平方向の旋回攪拌流を生起させる。交流磁場の周波数は0.5Hz以上3.0Hz以下とする。   Thus, when continuously casting the molten steel 1, an alternating current magnetic field is applied from the alternating current magnetic field generator 11 to the molten steel 1 in the mold to generate a horizontal swirling flow in the molten steel 1 in the mold. The frequency of the alternating magnetic field is 0.5 Hz or more and 3.0 Hz or less.

交流磁場を印加する場合に、鋳型内溶鋼湯面3から交流磁場のピーク位置までの距離(L)が200mm以上300mm未満の場合(条件(A))には、浸漬ノズル9の浸漬深さ(L)を100mm以上200mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.040T以上0.060T未満とする。When applying an alternating magnetic field, the immersion depth of the immersion nozzle 9 in the case where the distance (L 2 ) from the in-mold molten steel surface 3 to the peak position of the alternating magnetic field is 200 mm or more and less than 300 mm (condition (A)). (L 1 ) is 100 mm or more and less than 200 mm, and the magnetic flux density at the peak position of the alternating magnetic field is 0.040 T or more and less than 0.060 T.

また、鋳型内溶鋼湯面3から交流磁場のピーク位置までの距離(L)が300mm以上400mm未満の場合(条件(B))には、浸漬ノズル9の浸漬深さ(L)を100mm以上300mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.060T以上0.080T未満とする。In addition, when the distance (L 2 ) from the mold molten steel surface 3 to the peak position of the alternating current magnetic field is 300 mm or more and less than 400 mm (condition (B)), the immersion depth (L 1 ) of the immersion nozzle 9 is 100 mm. The magnetic flux density at the peak position of the alternating magnetic field is set to 0.060 T or more and less than 0.080 T.

また更に、鋳型内溶鋼湯面3から交流磁場のピーク位置までの距離(L)が400mm以上500mm未満の場合(条件(C))には、浸漬ノズル9の浸漬深さ(L)を100mm以上300mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.080T以上0.100T未満とする。Furthermore, when the distance (L 2 ) from the mold molten steel surface 3 to the peak position of the AC magnetic field is 400 mm or more and less than 500 mm (condition (C)), the immersion depth (L 1 ) of the immersion nozzle 9 is 100 mm or more and less than 300 mm, and the magnetic flux density at the peak position of the AC magnetic field is 0.080 T or more and less than 0.100 T.

交流磁場のピーク位置における磁束密度の調整は、以下のようにして実施する。即ち、予め、交流磁場発生装置11に供給する電力と、鋳型6の内部空間における交流磁場のピーク位置での鋳型銅板表面から15mm離れた位置における磁束密度との関係を測定しておき、交流磁場のピーク位置における磁束密度が所望する磁束密度となるように、交流磁場発生装置11に供給する電力を調整する。   Adjustment of the magnetic flux density at the peak position of the alternating magnetic field is performed as follows. That is, the relationship between the power supplied to the AC magnetic field generator 11 and the magnetic flux density at a position 15 mm away from the surface of the mold copper plate at the peak position of the AC magnetic field in the internal space of the mold 6 is measured beforehand. The power supplied to the alternating current magnetic field generator 11 is adjusted so that the magnetic flux density at the peak position of the magnetic flux density becomes the desired magnetic flux density.

以上説明したように、本発明によれば、鋳型内溶鋼湯面3から交流磁場のピーク位置までの距離(L)及び浸漬ノズルの浸漬深さ(L)に応じた適切な磁束密度の交流磁場を印加して鋳型内溶鋼に旋回攪拌流を与えるので、脱酸生成物、アルゴンガス気泡、モールドパウダー12の凝固シェル2への捕捉が抑制され、容易に高品質のスラブ鋳片を製造することが実現される。As described above, according to the present invention, the magnetic flux density appropriate for the distance (L 2 ) from the in-mold molten steel surface 3 to the peak position of the AC magnetic field and the immersion depth (L 1 ) of the immersion nozzle Since an alternating magnetic field is applied to give a swirling stirring flow to the molten steel in the mold, deoxidation products, argon gas bubbles, and capture of mold powder 12 to the solidified shell 2 are suppressed, and high quality slab slabs are easily manufactured. To be realized.

図1に示すような鋳型を有するスラブ連続鋳造機を用いて、浸漬ノズルの浸漬深さ(L)及び鋳型内溶鋼湯面から交流磁場のピーク位置までの距離(L)を種々変更して、約300トンのアルミキルド溶鋼を連続鋳造する試験を実施した。スラブ鋳片の厚みは250mm、幅は1000〜2200mmであり、定常鋳造域の溶鋼注入流量を2.0〜6.5トン/min(鋳片引き抜き速度で1.0〜3.0m/min)とした。また、交流磁場の周波数は1.0Hzとした。Using a slab continuous caster having a mold as shown in FIG. 1, variously change the immersion depth (L 1 ) of the immersion nozzle and the distance (L 2 ) from the in-mold molten steel surface to the peak position of the AC magnetic field A test was conducted to continuously cast about 300 tons of aluminum killed molten steel. The slab slab has a thickness of 250 mm and a width of 1000 to 2200 mm, and the molten steel injection flow rate in the steady casting area is 2.0 to 6.5 ton / min (1.0 to 3.0 m / min in slab extraction speed) And Moreover, the frequency of the alternating magnetic field was 1.0 Hz.

使用した浸漬ノズルは、吐出角度(θ)が下向き25°の2孔式浸漬ノズルであり、浸漬ノズルを流下する溶鋼に上ノズルを介してアルゴンガスを吹き込んだ。鋳造されたスラブ鋳片に対して、熱間圧延、冷間圧延、合金化溶融亜鉛めっき処理を順次施した。この合金化溶融亜鉛めっき鋼板における表面欠陥をオンライン表面欠陥計測装置で連続的に測定した。測定した欠陥の概観観察、SEM分析及びICP分析を実施し、測定した欠陥のうちで製鋼性欠陥(脱酸生成物性欠陥、アルゴンガス気泡性欠陥、モールドパウダー性欠陥)を判別し、合金化溶融亜鉛めっき鋼板の長さ100mあたりの製鋼性欠陥個数(製品欠陥指数)で評価した。   The immersion nozzle used was a two-hole immersion nozzle with a discharge angle (θ) directed downward of 25 °, and argon gas was blown into the molten steel flowing down the immersion nozzle through the upper nozzle. The hot-rolled, cold-rolled, and alloyed hot-dip galvanizing treatments were sequentially applied to the cast slab slabs. The surface defects in this alloyed galvanized steel sheet were continuously measured by an on-line surface defect measuring apparatus. Perform an overview observation of the measured defects, SEM analysis and ICP analysis, and among the measured defects, identify steelmaking defects (deoxidizing physical property defects, argon gas foaming defects, mold powder properties defects) and perform alloying and melting The number of steelmaking defects per 100 m in length of the galvanized steel sheet (product defect index) was evaluated.

本発明例に相当する試験結果を表2に示し、また、比較例に相当する試験結果を表3に示す。   The test results corresponding to the inventive examples are shown in Table 2, and the test results corresponding to the Comparative Example are shown in Table 3.

Figure 2018198181
Figure 2018198181

Figure 2018198181
Figure 2018198181

本発明例1〜12は、表1の条件(A)に該当し、本発明例13〜24は、表1の条件(B)に該当し、本発明例25〜36は、表1の条件(C)に該当する。本発明例1〜36はいずれも製品欠陥指数が0.21〜0.34個/100mの範囲であり良好な結果であった。   Invention Examples 1 to 12 correspond to the condition (A) in Table 1, Invention Examples 13 to 24 correspond to the condition (B) in Table 1, and Invention Examples 25 to 36 are the conditions in Table 1 It corresponds to (C). In all of Invention Examples 1 to 36, the product defect index was in the range of 0.21 to 0.34 pieces / 100 m, which was a good result.

一方、比較例1〜24は、交流磁場のピーク位置における磁束密度が本発明の範囲外の試験であり、製品欠陥指数は0.46〜0.55個/100mと劣位であった。   On the other hand, in Comparative Examples 1 to 24, the magnetic flux density at the peak position of the alternating magnetic field was a test outside the scope of the present invention, and the product defect index was inferior at 0.46 to 0.55 pieces / 100 m.

また、比較例25〜32は、浸漬ノズルの浸漬深さ(L)が本発明の範囲外の試験であり、これらも製品欠陥指数は0.47〜0.55個/100mと劣位であった。比較例25〜32は、鋳型内溶鋼湯面から交流磁場のピーク位置までの距離(L)が表1の条件(A)に該当するケースのみであるが、条件(B)及び条件(C)の場合においても、浸漬ノズルの浸漬深さ(L)が本発明の範囲外の条件では製品欠陥指数が悪化することを確認している。Moreover, Comparative Examples 25 to 32 are tests in which the immersion depth (L 1 ) of the immersion nozzle is out of the range of the present invention, and the product defect index is also inferior such as 0.47 to 0.55 pieces / 100 m. The In Comparative Examples 25 to 32, the distance (L 2 ) from the in-mold molten steel surface to the peak position of the alternating current magnetic field is only the case corresponding to the condition (A) in Table 1, but the condition (B) and the condition (C) Also in the case of), it has been confirmed that the product defect index is deteriorated when the immersion depth (L 1 ) of the immersion nozzle is out of the range of the present invention.

尚、本実施例では記載しなかったが、鋳片の厚みが200〜300mmの範囲においては、本実施例にて記載したものと同等の効果が得られることを確認している。また、浸漬ノズルの形状についても、本実施例で記載した条件に限定されるものではなく、吐出角度(θ)が下向き5°から下向き50°の範囲であれば、同等の効果が得られることを確認している。   In addition, although not described in the present example, it is confirmed that the same effect as that described in the present example can be obtained when the thickness of the slab is in the range of 200 to 300 mm. Further, the shape of the immersion nozzle is not limited to the conditions described in the present embodiment, and the same effect can be obtained if the discharge angle (θ) is in the range of 5 ° downward to 50 ° downward. Have confirmed.

このように、本発明に係る連続鋳造方法を適用することで、優れた品質のスラブ鋳片を鋳造できることが確認された。   Thus, it has been confirmed that by applying the continuous casting method according to the present invention, slab slabs of excellent quality can be cast.

1 溶鋼
2 凝固シェル
3 鋳型内溶鋼湯面
4 吐出流
5 鋳片
6 鋳型
7 鋳型長辺
8 鋳型短辺
9 浸漬ノズル
10 吐出孔
11 交流磁場発生装置
12 モールドパウダー
DESCRIPTION OF SYMBOLS 1 Molten steel 2 Solidification shell 3 Molten steel surface in mold 4 Discharge flow 5 Slab 6 Mold 7 Mold long side 8 Mold short side 9 Immersion nozzle 10 Discharge hole 11 AC magnetic field generator 12 Mold powder

Claims (4)

一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
鋳型内溶鋼湯面から交流磁場のピーク位置までの距離を200mm以上300mm未満とし、
前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)を100mm以上200mm未満とし、且つ、
前記交流磁場のピーク位置の磁束密度を0.040T以上0.060T未満とする、鋼の連続鋳造方法。
While pouring molten steel into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space, a solidified shell formed by solidifying the molten steel is drawn from the mold A continuous casting method of steel for producing a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
The distance from the mold molten steel surface to the peak position of the AC magnetic field is 200 mm or more and less than 300 mm,
The immersion depth of the immersion nozzle (the distance from the in-mold molten steel surface to the upper end of the discharge hole of the immersion nozzle) is 100 mm or more and less than 200 mm,
The continuous casting method of steel which makes the magnetic flux density of the peak position of the said alternating current magnetic field 0.040T or more and less than 0.060T.
一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
鋳型内溶鋼湯面から交流磁場のピーク位置までの距離を300mm以上400mm未満とし、
前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)を100mm以上300mm未満とし、且つ、
前記交流磁場のピーク位置の磁束密度を0.060T以上0.080T未満とする、鋼の連続鋳造方法。
While pouring molten steel into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space, a solidified shell formed by solidifying the molten steel is drawn from the mold A continuous casting method of steel for producing a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
The distance from the in-mold molten steel surface to the peak position of the AC magnetic field is 300 mm or more and less than 400 mm,
The immersion depth of the immersion nozzle (the distance from the in-mold molten steel surface to the upper end of the discharge hole of the immersion nozzle) is 100 mm or more and less than 300 mm,
The continuous casting method of steel which makes the magnetic flux density of the peak position of the said alternating current magnetic field more than 0.060T and less than 0.080T.
一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
鋳型内溶鋼湯面から交流磁場のピーク位置までの距離を400mm以上500mm未満とし、
前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)を100mm以上300mm未満とし、且つ、
前記交流磁場のピーク位置の磁束密度を0.080T以上0.100T未満とする、鋼の連続鋳造方法。
While pouring molten steel into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space, a solidified shell formed by solidifying the molten steel is drawn from the mold A continuous casting method of steel for producing a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
The distance from the in-mold molten steel surface to the peak position of the AC magnetic field is 400 mm or more and less than 500 mm,
The immersion depth of the immersion nozzle (the distance from the in-mold molten steel surface to the upper end of the discharge hole of the immersion nozzle) is 100 mm or more and less than 300 mm,
The continuous casting method of steel which makes the magnetic flux density of the peak position of the said alternating current magnetic field 0.080T or more and less than 0.100T.
一対の鋳型長辺と一対の鋳型短辺とを有し、矩形の内部空間を形成する連続鋳造用鋳型に溶鋼を注入しつつ、前記溶鋼が凝固して生成した凝固シェルを前記鋳型から引き抜いて鋳片を製造する鋼の連続鋳造方法であって、
前記一対の鋳型長辺の背面に、該鋳型長辺を挟んで相対して設置された交流磁場発生装置を介して鋳型内溶鋼に交流磁場を印加して、該交流磁場によって鋳型内溶鋼に水平方向の旋回攪拌流を生起させることとし、
相対する前記鋳型長辺同士の間隔を200〜300mmとし、
前記内部空間に溶鋼を注入するための2つの吐出孔を有する浸漬ノズルの前記吐出孔の吐出角度を下向き5°から下向き50°の範囲とし、
前記交流磁場の周波数を0.5Hz以上3.0Hz以下とし、
前記交流磁場のピーク位置に応じて、前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から浸漬ノズルの吐出孔の上端までの距離)及び前記交流磁場発生装置による交流磁場のピーク位置の磁束密度を、下記の条件(A)、条件(B)、条件(C)の3種のうちのいずれか1つを満足させる、鋼の連続鋳造方法。
条件(A);鋳型内溶鋼湯面から交流磁場のピーク位置までの距離が200mm以上300mm未満のときは、前記浸漬ノズルの浸漬深さを100mm以上200mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.040T以上0.060T未満とする。
条件(B);鋳型内溶鋼湯面から交流磁場のピーク位置までの距離が300mm以上400mm未満のときは、前記浸漬ノズルの浸漬深さを100mm以上300mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.060T以上0.080T未満とする。
条件(C);鋳型内溶鋼湯面から交流磁場のピーク位置までの距離が400mm以上500mm未満のときは、前記浸漬ノズルの浸漬深さを100mm以上300mm未満とし、且つ、交流磁場のピーク位置の磁束密度を0.080T以上0.100T未満とする。
While pouring molten steel into a continuous casting mold having a pair of mold long sides and a pair of mold short sides and forming a rectangular internal space, a solidified shell formed by solidifying the molten steel is drawn from the mold A continuous casting method of steel for producing a slab,
An alternating current magnetic field is applied to the molten steel in the mold via an alternating magnetic field generator disposed oppositely across the long side of the mold on the back of the pair of long sides of the mold, and the molten steel in the mold is horizontal by the alternating magnetic field To create a swirling flow in the direction of
The distance between the opposing mold long sides is 200 to 300 mm,
The discharge angle of the discharge hole of the immersion nozzle having two discharge holes for injecting the molten steel into the internal space is in the range of 5 ° downward to 50 ° downward,
The frequency of the alternating magnetic field is set to 0.5 Hz or more and 3.0 Hz or less,
Depending on the peak position of the AC magnetic field, the immersion depth of the immersion nozzle (the distance from the molten metal in the mold to the upper end of the discharge hole of the immersion nozzle) and the magnetic flux density of the AC magnetic field peak position by the AC magnetic field generator A continuous casting method of steel, wherein any one of the following three conditions (A), (B) and (C) is satisfied.
Condition (A); When the distance from the mold molten steel surface to the peak position of the alternating current magnetic field is 200 mm or more and less than 300 mm, the immersion depth of the immersion nozzle is 100 mm or more and less than 200 mm. The magnetic flux density is set to 0.040 T or more and less than 0.060 T.
Condition (B): When the distance from the in-mold molten steel surface to the peak position of the alternating current magnetic field is 300 mm or more and less than 400 mm, the immersion depth of the immersion nozzle is 100 mm or more and less than 300 mm. The magnetic flux density is set to not less than 0.060 T and less than 0.080 T.
Condition (C): When the distance from the mold molten steel surface to the peak position of the AC magnetic field is 400 mm or more and less than 500 mm, the immersion depth of the immersion nozzle is 100 mm or more and less than 300 mm, and the peak position of the AC magnetic field The magnetic flux density is set to at least 0.080 T and less than 0.100 T.
JP2017555415A 2017-04-25 2017-04-25 Steel continuous casting method Active JP6278168B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016326 WO2018198181A1 (en) 2017-04-25 2017-04-25 Continuous casting method for steel

Publications (2)

Publication Number Publication Date
JP6278168B1 JP6278168B1 (en) 2018-02-14
JPWO2018198181A1 true JPWO2018198181A1 (en) 2019-06-27

Family

ID=61195735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017555415A Active JP6278168B1 (en) 2017-04-25 2017-04-25 Steel continuous casting method

Country Status (7)

Country Link
EP (1) EP3597328B1 (en)
JP (1) JP6278168B1 (en)
KR (1) KR102324300B1 (en)
CN (1) CN110573271B (en)
BR (1) BR112019022263B1 (en)
TW (1) TWI690377B (en)
WO (1) WO2018198181A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106484A1 (en) * 2019-11-29 2021-06-03 Jfeスチール株式会社 Method for casting molten steel, method for producing continuous cast slab, and method for producing steel for bearing
WO2024017662A1 (en) 2022-07-18 2024-01-25 Refractory Intellectual Property Gmbh & Co. Kg Stopper rod and method for inducing a rotational flow of a molten metal

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888312B2 (en) * 1991-09-25 1999-05-10 川崎製鉄株式会社 Continuous casting method of steel slab by static magnetic field
JP4203167B2 (en) 1999-01-11 2008-12-24 新日本製鐵株式会社 Continuous casting method for molten steel
JP3583954B2 (en) 1999-08-12 2004-11-04 新日本製鐵株式会社 Continuous casting method
JP4380171B2 (en) 2002-03-01 2009-12-09 Jfeスチール株式会社 Flow control method and flow control device for molten steel in mold and method for producing continuous cast slab
JP2003326344A (en) * 2002-03-07 2003-11-18 Jfe Steel Kk Method for continuously casting cast bloom
JP4407260B2 (en) * 2003-11-28 2010-02-03 Jfeスチール株式会社 Steel continuous casting method
JP4746398B2 (en) * 2005-10-11 2011-08-10 新日本製鐵株式会社 Steel continuous casting method
JP4508209B2 (en) * 2007-05-10 2010-07-21 住友金属工業株式会社 Continuous casting method of multi-layer slab and slab
JP5104247B2 (en) * 2007-08-20 2012-12-19 Jfeスチール株式会社 Manufacturing method of continuous cast slab
JP4505530B2 (en) * 2008-11-04 2010-07-21 新日本製鐵株式会社 Equipment for continuous casting of steel
JP4807462B2 (en) * 2009-11-10 2011-11-02 Jfeスチール株式会社 Steel continuous casting method
CN104942246B (en) * 2014-03-28 2017-02-22 宝山钢铁股份有限公司 Multidimensional electromagnetic modulating device for electromagnetic stirring of slab crystallizer
KR20170086574A (en) * 2015-03-31 2017-07-26 신닛테츠스미킨 카부시키카이샤 Continuous casting method for steel

Also Published As

Publication number Publication date
BR112019022263B1 (en) 2022-08-23
EP3597328A4 (en) 2020-04-22
EP3597328B1 (en) 2021-11-17
KR102324300B1 (en) 2021-11-09
EP3597328A1 (en) 2020-01-22
BR112019022263A2 (en) 2020-05-19
CN110573271B (en) 2021-11-02
TWI690377B (en) 2020-04-11
KR20190127894A (en) 2019-11-13
JP6278168B1 (en) 2018-02-14
TW201838744A (en) 2018-11-01
WO2018198181A1 (en) 2018-11-01
CN110573271A (en) 2019-12-13

Similar Documents

Publication Publication Date Title
JP4807462B2 (en) Steel continuous casting method
JP2011121114A (en) Continuous casting method of steel
JP6278168B1 (en) Steel continuous casting method
JP6164040B2 (en) Steel continuous casting method
JP5929872B2 (en) Steel continuous casting method
JP4591156B2 (en) Steel continuous casting method
CN108025354B (en) Continuous casting method of slab
JP2008055431A (en) Method of continuous casting for steel
JP5772767B2 (en) Steel continuous casting method
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JP5413277B2 (en) Continuous casting method for steel slabs
JP2010058148A (en) Continuous casting method of steel
JP2009248089A (en) Continuous casting method for extralow carbon steel or low carbon steel using grooved immersion nozzle
JP5874677B2 (en) Steel continuous casting method
JP7283633B2 (en) Steel continuous casting method
JP7200722B2 (en) In-mold flow control method in curved continuous casting equipment
JP2006255759A (en) Method for continuously casting steel
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP4432263B2 (en) Steel continuous casting method
JP5079663B2 (en) Continuous casting method of slab in which static magnetic field is applied to upward flow of mold narrow surface.
JP4300955B2 (en) Steel continuous casting method
JP5217784B2 (en) Steel continuous casting method
JP2011212723A (en) Continuous casting method of steel cast slab
JP2008221242A (en) Continuously casting method for steel
JP2013052446A (en) Method for continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171030

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R150 Certificate of patent or registration of utility model

Ref document number: 6278168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250