JP2773154B2 - Steel continuous casting method - Google Patents

Steel continuous casting method

Info

Publication number
JP2773154B2
JP2773154B2 JP63246477A JP24647788A JP2773154B2 JP 2773154 B2 JP2773154 B2 JP 2773154B2 JP 63246477 A JP63246477 A JP 63246477A JP 24647788 A JP24647788 A JP 24647788A JP 2773154 B2 JP2773154 B2 JP 2773154B2
Authority
JP
Japan
Prior art keywords
mold
magnetic field
immersion nozzle
molten steel
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63246477A
Other languages
Japanese (ja)
Other versions
JPH0292445A (en
Inventor
幹雄 鈴木
融 北川
忍 宮原
章生 長棟
義行 金尾
裕則 山本
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP63246477A priority Critical patent/JP2773154B2/en
Publication of JPH0292445A publication Critical patent/JPH0292445A/en
Application granted granted Critical
Publication of JP2773154B2 publication Critical patent/JP2773154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は鋳型内浸漬ノズルからの吐出流の流速を減
衰すると同時に、片流れを抑制して、鋳型内湯面波動高
さを制御すると共に良好な表面性状を有する製品を製造
する鋼の連続鋳造方法に関する。
The present invention attenuates the flow velocity of the discharge flow from a submerged nozzle in a mold, suppresses one-sided flow, controls the wave height of the molten metal in the mold, and improves the quality. The present invention relates to a method for continuously casting steel for producing a product having a surface property.

[従来の技術] 第7図はスラブの連続鋳造における鋳型内の溶鋼の状
態を示す図である。この図を参照して従来の技術を説明
する。鋳型1内の溶鋼8の表面には、溶鋼8の酸化防止
と保温、凝固シェル9と鋳型1との間の潤滑、非金属介
在物の吸着等の役目を持つモールドパウダー5がある。
このモールドパウダー5の湯面側は溶鋼8の熱で溶融し
て溶融パウダー6になっており、大気側は粉状パウダー
7となって溶鋼8の表面を覆っている。溶融パウダー6
は凝固シェル9と鋳型1との間に流入して潤滑剤の役目
を果たす。従って溶融パウダー6は消耗するので一定厚
のモールドパウダー5を維持するため、前記溶融パウダ
ー6の消耗量に見合うだけ補給される。第7図に示すよ
うに鋳型1中央に鉛直に設けられた浸漬ノズル2の先端
に設けられた吐出孔3は、鋳型1短辺に対向して開口し
ている。溶鋼はこの吐出孔3から鋳型内に吐出される。
溶鋼の吐出流4は鋳型内で鋳型短辺面に向かって斜め下
方に注入される。この溶融の吐出流4が、鋳型短辺に衝
突して上下の2つの流れ、反転流11と侵入流12に分か
れ、鋳型短辺面の凝固シェル9に沿って上昇する反転流
11は鋳型1の上部短辺面付近の湯面波動の原因となる。
第8図は湯面波動の概略図である。ここで湯面波動と
は、第8図に示すように浸漬ノズル2の吐出孔3からの
吐出流は反転流11と侵入流12に分れるが、反転流11が溶
湯表面に到達した際に発生する鋳型内溶湯表面の波立ち
である。この湯面波動を渦流距離計15により測定し、そ
の電圧値をフィルターを通して高周波数成分(ここでは
10Hz以上の周波数成分)を除去後、ミリボルト計で測定
する。この渦流距離計15の設置位置は第8図に示すよう
に、鋳型短辺面から50mm、湯面から50mmである。第9図
は従来技術における約1分間の湯面レベルの経時変化を
示す図である。1分間の最大波動レベルを測定し、その
最大値を最大湯面波動高さhとしてデータ処理を行った
ものである。上矢印は上昇方向を意味し、下矢印は下降
方向を示す。特に溶鋼の吐出量が3ton/min以上の高速鋳
造においては、浸漬ノズル2の吐出孔3の吐出流速が大
きいため、凝固シェル9に衝突後の反転流11も大きく、
大きな湯面波動が発生する。第10図は従来技術における
最大湯面波動高さと熱延板表面欠陥指数の関係を示すグ
ラフ図である。この図から明らかなように、最大湯面波
動高さが4mm〜8mmの範囲で熱延板の表面欠陥の発生率が
少なく、最大湯面波動高さには最適範囲がある。この湯
面波動が大きい場合溶融パウダー6が、湯面波動により
溶鋼側に巻き込まれ懸濁する。溶鋼中に巻き込まれた溶
融パウダー6は、溶鋼と溶融パウダー6の比重差により
浮上してしまうが、その一部は凝固シェル9に捕捉され
る。一方湯面波動が小さい場合には、溶鋼表面への新し
い溶鋼の供給が少ないので、モールドパウダー5の溶融
性も悪い。従って溶融パウダー6への溶鋼中の介在物の
溶解吸着性が悪くなり、介在物は凝固シェル9に捕捉さ
れ鋳片の内質欠陥となると考えられる。ここで示した最
大湯面波動高さの適正範囲4mm〜8mmという値は連続鋳造
操業の経験によって得られた値であり、この範囲に入る
ように浸漬ノズル2の形状、浸漬ノズル2の吐出角度、
浸漬ノズル2の吐出孔3の面積、鋳型1の幅等を規制し
ていた。
[Prior Art] FIG. 7 is a view showing a state of molten steel in a mold in continuous casting of a slab. The prior art will be described with reference to FIG. On the surface of the molten steel 8 in the mold 1, there is a mold powder 5 having a role of preventing oxidation of the molten steel 8 and keeping it warm, lubricating between the solidified shell 9 and the mold 1, adsorbing nonmetallic inclusions, and the like.
The molten powder 8 is melted by the heat of the molten steel 8 to form a molten powder 6 on the molten metal surface side of the mold powder 5, and the powdery powder 7 on the atmosphere side covers the surface of the molten steel 8. Melting powder 6
Flows between the solidified shell 9 and the mold 1 and acts as a lubricant. Accordingly, since the molten powder 6 is consumed, the mold powder 5 having a constant thickness is maintained. As shown in FIG. 7, a discharge hole 3 provided at the tip of an immersion nozzle 2 provided vertically in the center of the mold 1 is opened to face the short side of the mold 1. Molten steel is discharged from the discharge holes 3 into the mold.
The molten steel discharge stream 4 is injected obliquely downward in the mold toward the short side of the mold. The molten discharge flow 4 collides with the short side of the mold and divides into two upper and lower flows, a reverse flow 11 and an inflow flow 12, and rises along the solidification shell 9 on the short side of the mold.
Numeral 11 causes the surface wave near the upper short side surface of the mold 1.
FIG. 8 is a schematic diagram of the surface wave motion. Here, the molten surface wave means that, as shown in FIG. 8, the discharge flow from the discharge hole 3 of the immersion nozzle 2 is divided into a reverse flow 11 and an intrusion flow 12, but when the reverse flow 11 reaches the surface of the molten metal. This is the undulation on the surface of the molten metal in the mold. This level wave is measured by the eddy current distance meter 15, and the voltage value is passed through a filter to a high frequency component (here,
After removing 10Hz or more frequency components), measure with a millivolt meter. As shown in FIG. 8, the installation position of the eddy current distance meter 15 is 50 mm from the short side of the mold and 50 mm from the surface of the molten metal. FIG. 9 is a diagram showing the change over time of the molten metal level for about one minute in the prior art. The maximum wave level for one minute was measured, and the maximum value was used as the maximum wave height h to perform data processing. The upward arrow indicates the upward direction, and the downward arrow indicates the downward direction. In particular, in high-speed casting in which the molten steel discharge rate is 3 ton / min or more, since the discharge flow rate of the discharge hole 3 of the immersion nozzle 2 is large, the reversal flow 11 after colliding with the solidified shell 9 is also large,
A large level wave is generated. FIG. 10 is a graph showing the relationship between the maximum wave height of the molten steel surface and the surface defect index of the hot-rolled sheet in the prior art. As is clear from this figure, the occurrence rate of surface defects of the hot-rolled sheet is small when the maximum level wave height is in the range of 4 mm to 8 mm, and there is an optimum range for the maximum level wave height. When the level wave is large, the molten powder 6 is caught and suspended on the molten steel side by the level wave. The molten powder 6 entrained in the molten steel floats due to a difference in specific gravity between the molten steel and the molten powder 6, but a part thereof is captured by the solidified shell 9. On the other hand, when the surface wave is small, the supply of new molten steel to the molten steel surface is small, so that the melting property of the mold powder 5 is poor. Therefore, it is considered that the inclusion and dissolution of inclusions in the molten steel to the molten powder 6 is poor, and the inclusions are trapped by the solidified shell 9 and become internal defects of the slab. The value of the appropriate range of the maximum surface wave height of 4 mm to 8 mm shown here is a value obtained from the experience of the continuous casting operation, and the shape of the immersion nozzle 2 and the discharge angle of the immersion nozzle 2 fall within this range. ,
The area of the discharge hole 3 of the immersion nozzle 2, the width of the mold 1, and the like were regulated.

しかしながら、最近の連続通常の生産性向上のため、 (1)一つのタンディッシュ及び浸漬ノズルで数チャー
ジ連続して連続通常を行う多連続鋳造技術、 (2)鋳造中の鋳型幅の変更、 (3)鋳造速度が低速から高速に変わる 等が実施されるようになり、操業条件が変わってきた。
この結果、最初の操業条件に適した浸漬ノズルの吐出孔
の形状や吐出角度では満足できない操業条件が発生する
ようになり、湯面波動高さを最適範囲に制御できなくな
った。湯面波動高さをコントロールする技術として、 (1)直流磁場により吐出流にブレーキを掛ける方法
(*1:以下従来方法1という) 鋳型長辺面の冷却箱内に2対の直流磁石を設置し、浸
漬ノズルからの吐出流に対して直流磁場を作用させ、流
動する溶鋼内に発生する誘導電流と直流磁場とにより、
溶鋼の流動とは逆方向に発生する電磁力により溶鋼の流
動を制御するものである。
However, in order to improve the productivity of recent continuous ordinary, (1) a multi-continuous casting technique in which a single tundish and a submerged nozzle perform continuous ordinary for several charges continuously, (2) a change of a mold width during casting, ( 3) The casting speed changes from low to high, etc., and the operating conditions have changed.
As a result, operating conditions that cannot be satisfied with the shape and the discharge angle of the immersion nozzle of the immersion nozzle suitable for the initial operating conditions are generated, and the level of the surface wave cannot be controlled to the optimum range. Techniques for controlling the wave height of the molten metal surface: (1) Method of applying a brake to the discharge flow using a DC magnetic field (* 1: hereinafter referred to as conventional method 1) Two pairs of DC magnets are installed in the cooling box on the long side of the mold Then, a DC magnetic field is applied to the discharge flow from the immersion nozzle, and the induced current and the DC magnetic field generated in the flowing molten steel,
The flow of the molten steel is controlled by an electromagnetic force generated in a direction opposite to the flow of the molten steel.

(2)湯面位置に直流磁場を印加する方法(*2:以下従
来方法2という) 湯面位置に直流磁石を配置し、湯面に水平に直流磁場
を印加することにより、鋳型内の湯面波動高さを制御す
るものである。
(2) Method of applying a DC magnetic field to the surface of the molten metal (* 2: hereinafter referred to as conventional method 2) A DC magnet is arranged at the position of the surface of the molten metal, and the DC magnetic field is applied horizontally to the surface of the molten metal, so that the molten metal in the mold is heated. It controls the surface wave height.

例 (*1)永井ら:68,鉄と鋼(1982),S270 鈴木ら:68,鉄と鋼(1982),S92 (*2)小塚ら:72,鉄と鋼(1986),S718 [発明が解決しようとする課題] 鋳型内の湯面波動の発生は、浸漬ノズルから吐出され
た吐出流が凝固シェルに衝突し、上向きの反転流と下向
きの侵入流に分かれる。このうち、上向きの反転流の持
つ運動エネルギーが湯面を振動させるため湯面波動が発
生する。
Example (* 1) Nagai et al .: 68, Iron and Steel (1982), S270 Suzuki et al .: 68, Iron and Steel (1982), S92 (* 2) Kozuka et al .: 72, Iron and Steel (1986), S718 [Invention Problems to be Solved] When the surface wave in the mold is generated, the discharge flow discharged from the immersion nozzle collides with the solidification shell and is divided into an upward reverse flow and a downward inflow flow. Among them, the kinetic energy of the upward reversal flow causes the surface of the metal to vibrate, so that a surface wave of the surface of the metal occurs.

しかしながら従来方法1では、浸漬ノズルと鋳型短辺
面との途中の吐出流に直角に直流磁場を印加して流体に
ブレーキを掛ける方法であるが、浸漬ノズルから吐出さ
れた後の吐出流は拡散して行くため、広い範囲に直流磁
場を印加する必要がある。このため設備が大型になりコ
ストが高くなる。又この方法では、吐出流と印加した直
流磁場との相互作用によって発生する渦電流の回路が溶
鋼内にできるため、電流密度を大きくできない。従って
大きなブレーキ力を発生させるためには磁束密度を大き
くする必要があり、このことによって設備コストが高く
なるという問題がある。
However, in the conventional method 1, the fluid is braked by applying a DC magnetic field at right angles to the discharge flow on the way between the immersion nozzle and the short side surface of the mold. Therefore, it is necessary to apply a DC magnetic field to a wide range. For this reason, the equipment becomes large and the cost increases. Further, in this method, an eddy current circuit generated by the interaction between the discharge flow and the applied DC magnetic field can be formed in the molten steel, so that the current density cannot be increased. Therefore, in order to generate a large braking force, it is necessary to increase the magnetic flux density, which causes a problem that the equipment cost increases.

従来方法2では、湯面波動に直接直流磁場を印加する
ため、波動の制御は最もやりやすいが、湯面波動の最も
激しい位置は鋳型短辺面から100mmの範囲である。従っ
て、この位置に直流磁場を印加すれば良く、そのため磁
場発生装置は鋳型長辺銅板の裏面の鋳型長辺銅板の上端
から約100mm付近に設置する必要がある。この場合に
は、冷却水箱の構造が複雑になり、かつ鋳型銅板の冷却
溝の方向も横方向にする必要があり、鋳型長辺銅板の冷
却が不十分になる。
In the conventional method 2, since the direct current magnetic field is applied directly to the level wave, the control of the level wave is easiest, but the position where the level wave is most intense is within a range of 100 mm from the short side surface of the mold. Therefore, it is sufficient to apply a DC magnetic field to this position. Therefore, the magnetic field generator needs to be installed at about 100 mm from the upper end of the long side copper plate on the back side of the long side copper plate. In this case, the structure of the cooling water box becomes complicated, and the direction of the cooling groove of the mold copper plate needs to be horizontal, so that the cooling of the copper plate on the long side of the mold becomes insufficient.

この発明は、係る事情に鑑みてなされたものであっ
て、鋳型内の湯面波動を制御し、良好な表面性状を有す
る製品を製造する鋼の連続鋳造方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a continuous casting method of steel for controlling a wave motion of a molten metal in a mold to produce a product having good surface properties.

[課題を解決するための手段] この発明の鋼の連続鋳造方法は、スラブの連続鋳造の
鋳型部分に直流磁場を印加する鋼の連続鋳造方法におい
て、一方の磁極を鋳型長辺銅板の上端の直上とし、他方
の磁極を浸漬ノズルの吐出孔より下方の鋳型長辺鋼板の
背面とした直流電磁石を、浸漬ノズルを挟んで相対する
磁極の極性が同じとなるように鋳型長辺銅板の背面に少
なくとも一対配置すると共に、鋼型内溶鋼の湯面波動を
測定し、この湯面波動の測定値に基づいて前記直流電磁
石から印加する磁界強さを調整しつつ、磁界の向きが鉛
直で、磁界の広がりが浸漬ノズルを挟んでスラブの幅方
向で対称である磁界を、浸漬ノズルから排出する溶鋼の
吐出流に印加することを特徴とするものである [作用] この発明は、連続鋳造鋳型内の浸漬ノズル吐出孔から
の溶鋼吐出流に対し、鉛直方向に直流磁場を印加しなが
ら鋳造する。導電性流体である溶鋼が磁場中を流動する
とフレミングの右手の法則により流体内に起電力が発生
し、渦電流が流れる。この渦電流と印加磁場との相互作
用により、流体方向とは逆方向に流体に電磁力(フレミ
ングの左手の法則)が働くため、流体運動は妨げられ
る。この結果吐出流は減速する。吐出流が減速すると、
鋳型短辺面シェルに衝突後の反転流の流速も小さくな
り、湯面波動は起こりにくくなる。又、片流れ現象が発
生して、一方の吐出流速が大きい場合、電磁力は流速が
速いほど、より大きくなり、大きな制動力となる。この
結果、片流れ現象は抑制される。直流磁場を鉛直方向に
印加すると渦電流のパスは第6図(b)に示すように浸
漬ノズルの周りに回路を描く。この時、渦電流は回路の
一部として電気抵抗の小さい鋳型銅板を流れるため、回
路の電気抵抗が小さくなり電流密度が大きくとれる。こ
の結果、発生する電磁力は大きくなり効率的に電磁力を
発生させることが可能となる。直流磁場を水平方向(ス
ラブ厚み方向と同じ)に印加した場合には、発生する渦
電流は鋳型と平行な面で、電気抵抗の大きい溶鋼内に回
路を作るため、回路の電気抵抗が大きくなり渦電流密度
が小さくなる。そのため、直流磁場を鉛直方向に印加で
きるように直流磁石の一方の磁極を鋳型長辺銅板の上端
の真上と他方の磁極を浸漬ノズル吐出孔より下方の鋳型
長辺銅板の背面に配置した。一方の磁極を鋳型長辺銅板
の真上に置くことで、この磁極と浸漬ノズル吐出孔の下
方に設けた磁極とを結ぶ磁束の多くは、鋳型長辺銅板中
を通らずに溶鋼中を通るので、溶融中に効率良く電磁力
を発生させることができる。尚、吐出流に一定の磁束密
度を印加したままでは、鋳造条件の変化や浸漬ノズル内
壁へのAl2O3付着による吐出流速の経時変化のため、最
適な湯面波動に制御することが困難である。そこで、湯
面波動を測定しながら、その値が所定の範囲より大きい
場合に電磁石に電流を流し、常に湯面波動を適正範囲に
入るように調節する。これにより湯面波動に伴うモール
ドパウダーの巻き込みを減少させることができる。
[Means for Solving the Problems] The continuous casting method for steel according to the present invention is directed to a continuous casting method for steel in which a direct current magnetic field is applied to a mold portion of a continuous casting of a slab. Immediately above, the other magnetic pole is a DC electromagnet with the back of the mold long side steel plate below the discharge port of the immersion nozzle, and the DC electromagnet is placed on the back of the long side copper plate of the mold so that the polarities of the magnetic poles facing each other across the immersion nozzle are the same. At least one pair is arranged and the level wave of the molten steel in the steel mold is measured, and while the strength of the magnetic field applied from the DC electromagnet is adjusted based on the measured value of the level wave, the direction of the magnetic field is vertical, A magnetic field whose spread is symmetric in the width direction of the slab across the immersion nozzle is applied to the discharge flow of the molten steel discharged from the immersion nozzle. Immersion nozzle To the molten steel discharge flow from Deana, casting while applying a DC magnetic field in a vertical direction. When molten steel, which is a conductive fluid, flows in a magnetic field, an electromotive force is generated in the fluid by Fleming's right-hand rule, and an eddy current flows. Due to the interaction between the eddy current and the applied magnetic field, an electromagnetic force (Fleming's left-hand rule) acts on the fluid in a direction opposite to the fluid direction, so that the fluid motion is hindered. As a result, the discharge flow is decelerated. When the discharge flow slows down,
The flow velocity of the reversal flow after colliding with the shell on the short side of the mold is also reduced, and the surface wave is less likely to occur. In addition, when the one-sided flow phenomenon occurs and one of the discharge flow rates is large, the electromagnetic force increases as the flow rate increases, resulting in a large braking force. As a result, the one-sided flow phenomenon is suppressed. When a DC magnetic field is applied in the vertical direction, the path of the eddy current draws a circuit around the immersion nozzle as shown in FIG. 6 (b). At this time, since the eddy current flows as a part of the circuit through the mold copper plate having a small electric resistance, the electric resistance of the circuit is reduced and the current density can be increased. As a result, the generated electromagnetic force increases, and the electromagnetic force can be generated efficiently. When a DC magnetic field is applied in the horizontal direction (same as the slab thickness direction), the generated eddy current is in a plane parallel to the mold, and a circuit is created in the molten steel with a high electric resistance. Eddy current density is reduced. Therefore, one magnetic pole of the DC magnet was disposed immediately above the upper end of the copper plate on the long side of the mold and the other magnetic pole was disposed on the back surface of the copper plate on the long side of the mold below the immersion nozzle discharge hole so that a DC magnetic field could be applied in the vertical direction. By placing one magnetic pole directly above the copper plate on the long side of the mold, most of the magnetic flux connecting this magnetic pole and the magnetic pole provided below the discharge port of the immersion nozzle passes through the molten steel without passing through the copper plate on the long side of the mold Therefore, an electromagnetic force can be efficiently generated during melting. If a constant magnetic flux density is applied to the discharge flow, it is difficult to control the optimum surface wave due to changes in casting conditions and changes over time in the discharge flow rate due to the adhesion of Al 2 O 3 to the inner wall of the immersion nozzle. It is. Therefore, while measuring the level wave, if the value is larger than a predetermined range, a current is supplied to the electromagnet to adjust the level wave so that the level wave always falls within an appropriate range. This can reduce the entrapment of the mold powder due to the surface wave motion.

[実施例] 先ず、溶鋼に電磁力を作用させた場合の溶鋼の流動に
ついての考え方を説明する。第6図は鋳型内の溶鋼に電
磁力を作用させた場合の溶鋼の流動を示す図で、(a)
図は鋳型内の縦断面図、(b)図は(a)図のA−A平
面断面図である。21は鋳型長辺銅板、22は浸漬ノズル、
23は電磁石、24は直流磁石、25は直流磁石コイル、26は
磁界(印又は点線の矢印)、27は吐出流(黒矢印)、
28は渦電流(実線矢印)、29は制動力(白矢印)30は溶
鋼、31は直流磁石の一方の磁極、32は直流磁石の他方の
磁極、33は浸漬ノズルの吐出孔である。溶鋼30をタンデ
ィッシュから浸漬ノズル22を通して鋳型に注入する連続
鋳造方法において、浸漬ノズル22を挟んで相対する、少
なくとも一対の電磁石23(直流磁石24と直流磁石コイル
25から構成されている)を設置し、前記直流磁石24は一
方の磁極31(N極あるいはS極)を鋳型流辺銅板21の上
端の真上に、他方の磁極32(S極あるいはN極)を浸漬
ノズルの吐出孔33より下方の鋳型長辺面21の背面に配置
し、浸漬ノズル22を挟んで、相対する磁極(31と31又は
32と32)の極性を同一にして、浸漬ノズル22からの吐出
流27に対し、磁界26を鉛直に印加しながら、鋳造するこ
とによって、吐出流27内にその運動方向とは逆向きの制
動力29を発生させることによって吐出流27を減衰させる
ことができる。
[Example] First, the concept of the flow of molten steel when an electromagnetic force is applied to the molten steel will be described. FIG. 6 is a view showing the flow of molten steel when an electromagnetic force is applied to the molten steel in the mold.
The figure is a longitudinal sectional view in the mold, and the figure (b) is a sectional view taken along the line AA of the figure (a). 21 is the copper plate on the long side of the mold, 22 is the immersion nozzle,
23 is an electromagnet, 24 is a DC magnet, 25 is a DC magnet coil, 26 is a magnetic field (marked or dotted arrow), 27 is a discharge flow (black arrow),
28 is an eddy current (solid arrow), 29 is a braking force (white arrow) 30 is molten steel, 31 is one magnetic pole of the DC magnet, 32 is the other magnetic pole of the DC magnet, and 33 is a discharge hole of the immersion nozzle. In a continuous casting method in which molten steel 30 is injected from a tundish into a mold through an immersion nozzle 22, at least a pair of electromagnets 23 (DC magnet 24 and DC magnet coil
25, and the DC magnet 24 has one magnetic pole 31 (N pole or S pole) positioned directly above the upper end of the casting side copper plate 21 and the other magnetic pole 32 (S pole or N pole). ) Is arranged on the back side of the mold long side surface 21 below the discharge hole 33 of the immersion nozzle, and the opposite magnetic poles (31 and 31 or
32 and 32) with the same polarity, and casting while applying a magnetic field 26 vertically to the discharge flow 27 from the immersion nozzle 22 to control the flow in the discharge flow 27 in the direction opposite to the direction of movement. By generating the motive power 29, the discharge flow 27 can be attenuated.

流動している溶鋼30に直流磁場を印加すると、下式に
より起電力が発生する。
When a DC magnetic field is applied to the flowing molten steel 30, an electromotive force is generated by the following equation.

=×=VY・BZ ……(1) :溶鋼の速度(m/sec) :磁束密度 VY:溶鋼の速度の鋳型幅方向の成分(m/sec) BZ:磁束密度の鉛直方向成分 この起電力により溶鋼内に渦電流が流れ渦電流
と印加磁場との相互作用により溶鋼の運動方向と逆方向
に制動力が働く。
= × = V Y・ B Z …… (1): Speed of molten steel (m / sec): Magnetic flux density V Y : Component of velocity of molten steel in mold width direction (m / sec) B Z : Vertical direction of magnetic flux density Component An eddy current flows in the molten steel by the electromotive force, and a braking force acts in a direction opposite to a moving direction of the molten steel due to an interaction between the eddy current and the applied magnetic field.

=−×=−σVY・BZ 2 ……(2) σ:流体の比電気抵抗 (2)式により、制動力の大きさはVYとBZ 2に依存す
る。
= − × = −σV Y · B Z 2 (2) σ: Specific electric resistance of fluid According to the equation (2), the magnitude of the braking force depends on V Y and B Z 2 .

溶鋼の連続鋳造においては、低速鋳造の場合はVYが小
さいため、溶鋼に働く制動力は小さいが、高速鋳造にな
る程、VYが大きくなるので制動力は大きくなる。
In continuous casting of molten steel, for the case of low-speed casting V Y is small, although the braking force acting on the molten steel is small, enough to be faster casting, the braking force since V Y increases increases.

浸漬ノズル22から吐出された吐出流27は、直流磁場が
無い場合には、片方の吐出孔33から優先的に流出する片
流れ現象が起こりやすく、直流磁場を鉛直方向応に印加
することによって、吐出流速の速い方には、(2)式に
従ってより大きな制動力が働くため、吐出流は均一化さ
れ、片流れ現象は緩和される。こうすることによって湯
面波動高さが、一定の範囲に制御可能となる。
In the absence of a DC magnetic field, the discharge flow 27 discharged from the immersion nozzle 22 tends to cause a one-flow phenomenon that preferentially flows out of one of the discharge holes 33, and the discharge flow 27 is applied by applying a DC magnetic field in a vertical direction. The larger the flow velocity, the greater the braking force acting according to the equation (2), so that the discharge flow is made uniform and the one-sided flow phenomenon is reduced. This makes it possible to control the wave height of the molten metal surface within a certain range.

浸漬ノズルからの水平方向に吐出された導電性を有す
る吐出流とこれに鉛直に印加された磁界によって、起電
力が発生し、この起電力に基づき溶鋼内に渦電流が流れ
る。渦電流は浸漬ノズルの周囲を流れ、その回路の一部
は溶鋼(溶鋼の比電気抵抗:150×10-8Ωm)よりも電気
抵抗率の小さい鋳型長辺鋼板(鋳型長辺銅板の比電気抵
抗:2.5×10-8Ωm)を通るため、渦電流の回路の電気抵
抗が全体として小さくなるため、電流密度が高くなる。
この結果、(2)式に従って大きな制動力を発生させる
ことができる。
An electromotive force is generated by a discharge flow having conductivity discharged from the immersion nozzle in a horizontal direction and a magnetic field applied vertically thereto, and an eddy current flows in the molten steel based on the electromotive force. The eddy current flows around the immersion nozzle, and a part of its circuit has a long-sided steel plate with a lower electrical resistivity than the molten steel (specific electrical resistance of molten steel: 150 × 10 -8 Ωm). Resistance: 2.5 × 10 −8 Ωm), the electric resistance of the eddy current circuit becomes small as a whole, and the current density becomes high.
As a result, a large braking force can be generated according to the equation (2).

以下、添付図面を参照してこの発明の一実施例につい
て具体的に説明する。
Hereinafter, an embodiment of the present invention will be specifically described with reference to the accompanying drawings.

第1図はこの発明の方法を実施するための連続鋳造鋳
型の一実施例を示す断面図で、(a)図は側面図、
(b)図は(a)図のA−A断面図、(c)図は(a)
図のB−B断面における斜視図である。21は鋳型長辺銅
板、22は浸漬ノズル、23は電磁石、24は直流磁石、25は
直流磁石コイル、30は溶鋼、31は直流磁石の一方の磁
極、32は直流磁石の他方の磁極、33は浸漬ノズルの吐出
孔、34は渦流距離計、35は鋳型短辺銅板である。
FIG. 1 is a cross-sectional view showing one embodiment of a continuous casting mold for carrying out the method of the present invention.
(B) is a sectional view taken along line AA of (a), and (c) is (a).
It is a perspective view in the BB cross section of the figure. 21 is a copper plate on the long side of the mold, 22 is an immersion nozzle, 23 is an electromagnet, 24 is a DC magnet, 25 is a DC magnet coil, 30 is molten steel, 31 is one magnetic pole of the DC magnet, 32 is the other magnetic pole of the DC magnet, 33 Is a discharge hole of the immersion nozzle, 34 is an eddy current distance meter, and 35 is a copper plate on a short side of a mold.

図示しないタンディッシュの下部に取り付けられた浸
漬ノズル22を挟んで前、後面の鋳型長辺銅板21の背後に
相対する一対の電磁石23(直流磁石24と直流磁石コイル
25から構成されている)が配置されている。直流磁石は
一方の磁極31を鋳型長辺銅板21の上端の直上に、他方の
磁極32は浸漬ノズルの吐出孔33の下方300mm位置に配置
した。直流磁石24の断面寸法は100(H)×600(W)mm
であり、磁極中心間距離は600mmの直流磁石24を用い
た。対向している磁極間隔は、上部が260mm、下部が360
mmである。直流磁石24の磁極(31又は32)の極性は、浸
漬ノズル22を挟んで、同極対向になるように選んだ。こ
うすることにより磁界方向を鉛直方向、すなわち浸漬ノ
ズル22と平行にすることができる。この直流磁石の構成
で得られた磁束密度は、浸漬ノズルの吐出孔33の位置で
最大2500ガウスであった。
A pair of electromagnets 23 (a DC magnet 24 and a DC magnet coil) facing each other behind a long side copper plate 21 on the front and rear sides of a dipping nozzle 22 attached to the lower part of a tundish (not shown)
Consists of 25). In the DC magnet, one magnetic pole 31 was disposed immediately above the upper end of the copper plate 21 on the long side of the mold, and the other magnetic pole 32 was disposed 300 mm below the discharge hole 33 of the immersion nozzle. The cross-sectional dimension of the DC magnet 24 is 100 (H) x 600 (W) mm
And a DC magnet 24 having a distance between the magnetic pole centers of 600 mm was used. The distance between the facing magnetic poles is 260 mm at the top and 360 mm at the bottom.
mm. The polarity of the magnetic pole (31 or 32) of the DC magnet 24 was selected so as to be of the same polarity across the immersion nozzle 22. By doing so, the direction of the magnetic field can be made vertical, that is, parallel to the immersion nozzle 22. The magnetic flux density obtained with this DC magnet configuration was 2500 gauss at the maximum at the position of the discharge hole 33 of the immersion nozzle.

鋳型内の湯面波動を測定するために、上向き反転流に
よって発生する湯面波動の最も激しい鋳型短辺鋼板35近
傍位置に渦流距離計34を取り付けた。渦流距離計34で計
測された湯面波動のデータをΔt秒間隔で採取し、次式
により湯面波動速度Vlを求める。
In order to measure the level wave in the mold, an eddy current meter 34 was attached to a position near the short side steel plate 35 where the level wave generated by the upward reversal flow was most intense. The water level wave data measured by the eddy current distance meter 34 is collected at intervals of Δt seconds, and the water level wave velocity Vl is obtained by the following equation.

Vl=((Ht+Δt)−Ht)/Δt ……(3) ここで、Ht:時刻tの次の湯面波動、 Ht+Δt:時刻t+Δtの次の湯面波動 Vlの符号が変わる時の湯面レベル位置H1を記憶し、次
に、Vlの符号が変わる時の湯面レベル位置H2との差の絶
対値を湯面波動高さHとした。
Vl = ((Ht + Δt) −Ht) / Δt (3) where, Ht: the next level wave at time t, Ht + Δt: the next level wave at time t + Δt, the level at which the sign of V1 changes storing position H 1, then, it was the molten metal surface wave height H of the absolute value of the difference between the molten metal surface level position of H 2 when the sign of the Vl changes.

H=|H1−H2| ……(4) 熱延板で表面欠陥の発生しない湯面波動高さHの範囲
は、3〜8mmであることが経験的に分かっているので、
湯面波動高さHがこの範囲内に入るように渦流距離計34
のデータをフィードバックして直流磁石のコイル電流を
制御する。
H = | H 1 −H 2 | (4) Since it is empirically known that the range of the surface wave height H at which no surface defects occur in the hot-rolled sheet is 3 to 8 mm,
The eddy current distance meter 34 is set so that the wave height H falls within this range.
Is fed back to control the coil current of the DC magnet.

(実施例1) 第1図で示した直流磁石24を設置した連続鋳造鋳型を
用いて、直流磁石をON−OFF運転しながら鋳造した際の
鋳型短辺銅板35近傍の湯面波動高さの測定結果を以下に
示す。220mm厚み、1200mm幅の断面寸法のスラブを引抜
速度1.4〜2.5m/minの範囲で変更させた鋳造を実施し
た。この時の鋳造速度は、2.6〜4.7ton/minの間で変化
した。第2図は一定の直流磁場強さをON−OFF印加させ
た時の鋳型短辺銅板近傍の湯面波動高さ及び引抜速度と
鋳造時間の関係を示すグラフ図である。この図中の−は
直流磁石のONの状態を示す。−の無いところは直流磁石
のOFFの状態を示す。使用した浸漬ノズルは、吐出角度
下向き25度、逆Y型である。鋳型短辺銅板35から浸漬ノ
ズル22側に40mm離れたところに渦流距離計34を設置し
て、湯面波動高さHを測定しながら、このデータを基に
直流磁場の印加を行った。湯面波動のデータサンプリン
グ時間間隔Δtを5秒にセットして、湯面波動高さH
が、8mm以上になった時、浸漬ノズルの吐出孔33位置で
の磁束密度を2000ガウスになるように、直流磁石のコイ
ル電流を流した。湯面波動高さHが、8mm以下になった
時には、直流磁石のコイル電流はゼロにした。このよう
なON−OFF制御をした時の湯面波動高さHの鋳造中の変
化と直流磁石の運転状況を見ると湯面波動高さHは直流
磁石の運転直後を除いて、8mm以内に抑えることができ
る。
(Example 1) Using the continuous casting mold in which the DC magnet 24 shown in FIG. 1 was installed, when the DC magnet was cast while performing the ON-OFF operation, the height of the level wave height near the copper plate 35 on the short side of the mold was measured. The measurement results are shown below. Casting was performed with a slab having a cross-sectional dimension of 220 mm thickness and 1200 mm width changed at a drawing speed of 1.4 to 2.5 m / min. The casting speed at this time varied between 2.6 and 4.7 ton / min. FIG. 2 is a graph showing the relationship between the height of the surface wave near the copper plate on the short side of the mold, the drawing speed, and the casting time when a constant DC magnetic field strength is applied ON-OFF. -In this figure shows the ON state of the DC magnet. The place without-indicates that the DC magnet is off. The used immersion nozzle is an inverted Y type with a discharge angle of 25 degrees downward. An eddy current meter 34 was installed at a position 40 mm away from the copper plate 35 on the side of the immersion nozzle 22 from the copper plate 35 on the short side of the mold, and a DC magnetic field was applied based on this data while measuring the wave height H of the molten metal surface. By setting the data sampling time interval Δt of the level wave to 5 seconds, the level wave height H
However, when the diameter became 8 mm or more, the coil current of the DC magnet was passed so that the magnetic flux density at the position of the discharge hole 33 of the immersion nozzle became 2000 gauss. When the surface wave height H became 8 mm or less, the coil current of the DC magnet was set to zero. Looking at the change during casting of the surface wave height H during such ON-OFF control and the operating condition of the DC magnet, the surface wave height H is within 8 mm, except immediately after the operation of the DC magnet. Can be suppressed.

(実施例2) 第1図で示した直流磁石24を設置した連続鋳造鋳型を
用いて、浸漬ノズルの吐出流27に直流磁場を印加しなが
ら鋳造を実施した。第3図は印加磁束密度(ガウス)を
パラメータにして、湯面波動高さHと平均湯面波動速度
との関係を示す図である。平均湯面波動速度(Ve)はミ
リボルト計に記録したアナログデータを使って求めた。
平均湯面波動速度(Ve)が0.4mm/sec以上の範囲におい
ては、湯面波動高さHと平均湯面波動速度(Ve)とは、
ほぼ直線の関係がある。第3図をのデータを基にして湯
面波動高さH=6mmになる時の磁束密度Bと、平均湯面
波動速度(Ve)との関係を重回帰分析により、実験式と
して求めた。
Example 2 Using a continuous casting mold provided with the DC magnet 24 shown in FIG. 1, casting was performed while applying a DC magnetic field to the discharge flow 27 of the immersion nozzle. FIG. 3 is a diagram showing the relationship between the level wave height H and the average level wave velocity using the applied magnetic flux density (Gauss) as a parameter. The average level wave velocity (Ve) was determined using analog data recorded on a millivolt meter.
In the range where the average level wave velocity (Ve) is 0.4 mm / sec or more, the level wave height H and the average level wave velocity (Ve) are as follows.
There is an almost linear relationship. Based on the data shown in FIG. 3, the relationship between the magnetic flux density B when the surface wave height H = 6 mm and the average surface wave speed (Ve) was obtained as an experimental formula by multiple regression analysis.

B=α+α1Ve+α2Ve2 ……(5) ここで、α01は、重回帰分析により決定され
る定数 磁束密度Bと直流磁石のコイル電流とは、一義的な関
係があるので、磁束密度Bが決まると、直流磁石のコイ
ル電流を決定できる。渦流距離計の設置位置、データサ
ンプリング時間間隔は実施例1と同じであり、(5)式
に従って、直流磁石のコイル電流を流した。又、湯面波
動高さHが3mm以下の時は直流磁石のコイル電流をゼロ
とした。第4図は直流磁場制御を行った時の鋳造時間と
鋳造速度及び湯面波動高さを示すグラフである。この図
から明らかなように、定常鋳造中の湯面波動高さHは全
て3〜8mmの範囲にコントロールすることができる。第
5図は直流磁場制御による熱延板表面欠陥指数と鋳造速
度との関係を示すグラフ図である。○は直流磁場無し
で、●は直流磁場制御有りである。表面欠陥指数とはヘ
ゲ個数を観察面積で割った値を指数化したものである。
この図から明らかなように直流磁場制御を行うことによ
り、高速鋳造において熱延板表面欠陥指数が著しく減少
している。
B = α 0 + α 1 Ve + α 2 Ve 2 (5) Here, α 0 , α 1 , and α 2 are constants determined by multiple regression analysis. The magnetic flux density B and the coil current of the DC magnet are univocal. When the magnetic flux density B is determined, the coil current of the DC magnet can be determined. The installation position of the eddy current rangefinder and the data sampling time interval were the same as those in Example 1, and the coil current of the DC magnet was passed according to the equation (5). When the level wave height H was 3 mm or less, the coil current of the DC magnet was set to zero. FIG. 4 is a graph showing a casting time, a casting speed, and a wave height of a molten metal surface when a DC magnetic field control is performed. As is apparent from this figure, the height H of the surface wave during steady casting can all be controlled in the range of 3 to 8 mm. FIG. 5 is a graph showing a relationship between a hot-rolled sheet surface defect index and a casting speed by DC magnetic field control. ○ indicates no DC magnetic field, and ● indicates DC magnetic field control. The surface defect index is an index obtained by dividing the number of scabs by the observation area.
As is apparent from this figure, by performing the DC magnetic field control, the hot-rolled sheet surface defect index is significantly reduced in high-speed casting.

[発明の効果] 以上説明したように、本発明による鋼の連続鋳造方法
は、浸漬ノズルを挟んで、一対以上の直流磁石を設置
し、一方の磁極を鋳型長辺銅板の上端の直上もしくは外
側に、他方の磁極を浸漬ノズルの吐出孔より下方の鋳型
長辺銅板の背面に配置し、鋳型を挟んで相対する磁極の
極性を同一にして、直流磁界を発生させ、浸漬ノズルか
らの溶鋼の吐出流に垂直に直流磁界を印加しながら鋳造
する際、鋳型短辺面近傍の溶鋼湯面上方に設置した渦流
距離計によって湯面波動高さを測定して、湯面波動が所
定範囲内になるように、前記直流磁石に流す電流を調節
して電磁力を制御した結果、湯面波動は常に最適範囲に
制御可能となり、良好な表面性状を有する製品を製造す
ることができた。
[Effects of the Invention] As described above, in the continuous casting method of steel according to the present invention, one or more pairs of DC magnets are installed with an immersion nozzle in between, and one magnetic pole is placed directly above or outside the upper end of the copper plate on the long side of the mold. Then, the other magnetic pole is arranged on the back side of the copper plate on the long side of the mold below the discharge hole of the immersion nozzle, the polarities of the magnetic poles facing each other across the mold are generated, a DC magnetic field is generated, and the molten steel from the immersion nozzle is When casting while applying a DC magnetic field perpendicular to the discharge flow, the level wave height is measured by an eddy current distance meter installed above the molten steel level near the short side of the mold, and the level wave is within a predetermined range. As a result, the electromagnetic force was controlled by adjusting the current flowing through the DC magnet. As a result, the surface wave could always be controlled to an optimum range, and a product having good surface properties could be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの本発明の方法を実施するための連続鋳造鋳
型の一実施例を示す断面図、第2図は一定の直流磁場強
さをON−OFFさせた時の鋳型短辺銅板近傍の湯面波動高
さ及び引抜速度と鋳造時間の関係を示すグラフ図、第3
図は印加磁束密度をパラメータとして湯面波動高さHと
平均湯面波動速度との関係を示す図、第4図は直流磁場
制御を行った時の鋳造時間と引抜速度及び湯面波動高さ
を示すグラフ図、第5図は直流磁場制御による熱延板表
面欠陥指数と鋳造速度との関係を示すグラフ図、第6図
は鋳型内の溶鋼に電磁力を作用させた場合の溶鋼の流動
を示す図、第7図はスラブの連続鋳造における鋳型内の
溶鋼状態を示す図、第8図は湯面波動の概略図、第9図
は従来技術における約1分間の湯面ベルの経時変化を示
す図、第10図は従来技術における最大湯面波動高さの熱
延板表面欠陥指数の関係を示すグラフ図である。 21……鋳型長辺銅板、22……浸漬ノズル、 23……電磁石、24……直流磁石、 25……直流磁石コイル、30……溶鋼、 31……直流磁石の一方の磁極、 32……直流磁石の他方の磁極、 33……浸漬ノズルの吐出孔、34……渦流距離計、 35……鋳型短辺銅板。
FIG. 1 is a cross-sectional view showing one embodiment of a continuous casting mold for carrying out the method of the present invention, and FIG. 2 is a view showing the vicinity of a short side copper plate of the casting mold when a constant DC magnetic field strength is turned on and off. FIG. 3 is a graph showing the relationship between the height of the surface wave and the drawing speed and the casting time, FIG.
The figure shows the relationship between the surface wave height H and the average surface wave speed using the applied magnetic flux density as a parameter. FIG. 4 shows the casting time, the drawing speed and the surface wave height when DC magnetic field control is performed. FIG. 5 is a graph showing the relationship between the surface defect index of the hot-rolled sheet by DC magnetic field control and the casting speed, and FIG. 6 is the flow of molten steel when an electromagnetic force is applied to the molten steel in the mold. FIG. 7, FIG. 7 is a view showing a molten steel state in a mold in continuous casting of a slab, FIG. 8 is a schematic view of a level wave, and FIG. 9 is a time-dependent change of the level bell for about 1 minute in the prior art. FIG. 10 is a graph showing the relationship between the maximum wave height of the molten steel surface and the surface defect index of the hot-rolled sheet in the prior art. 21 ... Mold long side copper plate, 22 ... Immersion nozzle, 23 ... Electromagnet, 24 ... DC magnet, 25 ... DC magnet coil, 30 ... Metal steel, 31 ... One pole of DC magnet, 32 ... The other magnetic pole of the DC magnet, 33 ... the discharge hole of the immersion nozzle, 34 ... the eddy current distance meter, 35 ... the copper plate on the short side of the mold.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金尾 義行 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 山本 裕則 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 審査官 天野 斉 (56)参考文献 特開 平1−83356(JP,A) 特開 平2−75456(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/00 - 11/22──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiyuki Kanao 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (72) Inventor Hironori Yamamoto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Examiner Hitoshi Amano within Nippon Kokan Co., Ltd. (56) References JP-A-1-83356 (JP, A) JP-A-2-75456 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) B22D 11/00-11/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】スラブの連続鋳造の鋳型部分に直流磁場を
印加する鋼の連続鋳造方法において、一方の磁極を鋳型
長辺銅板の上端の直上とし、他方の磁極を浸漬ノズルの
吐出孔より下方の鋳型長辺鋼板の背面とした直流電磁石
を、浸漬ノズルを挟んで相対する磁極の極性が同じとな
るように鋳型長辺銅板の背面に少なくとも一対配置する
と共に、鋼型内溶鋼の湯面波動を測定し、この湯面波動
の測定値に基づいて前記直流電磁石から印加する磁界強
さを調整しつつ、磁界の向きが鉛直で、磁界の広がりが
浸漬ノズルを挟んでスラブの幅方向で対称である磁界
を、浸漬ノズルから排出する溶鋼の吐出流に印加するこ
とを特徴とする鋼の連続鋳造方法。
In a continuous casting method of a steel in which a direct current magnetic field is applied to a mold portion of a continuous casting of a slab, one magnetic pole is located directly above an upper end of a copper plate on a long side of the mold, and the other magnetic pole is located below a discharge hole of an immersion nozzle. At least one pair of DC electromagnets on the back of the mold long side steel plate are arranged on the back of the mold long side copper plate so that the polarities of the magnetic poles facing each other across the immersion nozzle are the same. While adjusting the strength of the magnetic field applied from the DC electromagnet based on the measured value of the level wave, the direction of the magnetic field is vertical, and the spread of the magnetic field is symmetrical in the width direction of the slab across the immersion nozzle. A continuous casting method for steel, wherein the magnetic field is applied to a discharge flow of molten steel discharged from an immersion nozzle.
JP63246477A 1988-09-30 1988-09-30 Steel continuous casting method Expired - Fee Related JP2773154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246477A JP2773154B2 (en) 1988-09-30 1988-09-30 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63246477A JP2773154B2 (en) 1988-09-30 1988-09-30 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JPH0292445A JPH0292445A (en) 1990-04-03
JP2773154B2 true JP2773154B2 (en) 1998-07-09

Family

ID=17148982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246477A Expired - Fee Related JP2773154B2 (en) 1988-09-30 1988-09-30 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP2773154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493328A (en) * 2016-11-16 2017-03-15 攀钢集团攀枝花钢铁研究院有限公司 A kind of 400 is stainless continuous cast method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258441A (en) * 1990-03-06 1991-11-18 Nkk Corp Method for continuously casting steel
FR2805483B1 (en) * 2000-02-29 2002-05-24 Rotelec Sa EQUIPMENT FOR SUPPLYING MOLTEN METAL TO A CONTINUOUS CASTING LINGOTIERE, AND METHOD OF USING SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733991B2 (en) * 1988-09-08 1998-03-30 日本鋼管株式会社 Steel continuous casting method
JPH0642982A (en) * 1992-04-30 1994-02-18 Moriyama Kogyo Kk Bar indication type tachometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493328A (en) * 2016-11-16 2017-03-15 攀钢集团攀枝花钢铁研究院有限公司 A kind of 400 is stainless continuous cast method

Also Published As

Publication number Publication date
JPH0292445A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
KR100710714B1 (en) Method and Apparatus for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
EP0445328B1 (en) Method for continuous casting of steel
JPS5855157A (en) Method and device for controlling charged flow in continuous casting
JP2773154B2 (en) Steel continuous casting method
US4273800A (en) Coating mass control using magnetic field
JP4591156B2 (en) Steel continuous casting method
JPH1029044A (en) Method and device for delaying molten metal flow to casting machine
JPH0318538B2 (en)
JP2733991B2 (en) Steel continuous casting method
WO2018198181A1 (en) Continuous casting method for steel
JP2008055431A (en) Method of continuous casting for steel
JPH01289543A (en) Continuous casting method for steel
JP4407260B2 (en) Steel continuous casting method
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP5047742B2 (en) Steel continuous casting method and continuous casting apparatus
KR950012480B1 (en) Method for continuous casting of steel
KR20090073500A (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
JP3966054B2 (en) Continuous casting method of steel
JPH01266949A (en) Method for continuously casting steel
JPH0428460A (en) Apparatus and method for preventing molten metal vortex flow
JPH03258441A (en) Method for continuously casting steel
JP2011212716A (en) Continuous casting method of steel cast slab
JPH01271035A (en) Method for continuously casting steel
JPH09150243A (en) Continuous casting method
JP3149821B2 (en) Continuous casting method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees