JPH09150243A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH09150243A
JPH09150243A JP30897395A JP30897395A JPH09150243A JP H09150243 A JPH09150243 A JP H09150243A JP 30897395 A JP30897395 A JP 30897395A JP 30897395 A JP30897395 A JP 30897395A JP H09150243 A JPH09150243 A JP H09150243A
Authority
JP
Japan
Prior art keywords
mold
magnetic field
molten steel
long side
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30897395A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
俊夫 石井
Noriko Kubo
典子 久保
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30897395A priority Critical patent/JPH09150243A/en
Publication of JPH09150243A publication Critical patent/JPH09150243A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the defect caused by inclusion in a cast slab by preventing descending flow concentrated along a short side frame of a mold without causing clogging state of molten steel flow. SOLUTION: In a continuous casting method, by which electromagnets having almost the same width of a long side frame to the long side frame 1 side at the mold in the rectangular cross sectional mold are arranged opposite to the magnetic poles 7 and electromagnetic force is acted to the molten steel flow spouted in the mold from an immersion nozzle 3 to control the molten steel fluid, the electromagnets to be arranged at the long side frame 1 side of the mold are arranged so that its magnetic pole is arranged with the height difference at the center part of the width direction of the long side frame. Further, this height difference is made to 30-50mm. Then, the frequency of current impressed to the electromagnet is set to >=1Hz and the magnetic field is made magnetic field static type AC magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型内に吐出され
る溶鋼流を電磁力によって制御する鋼の連続鋳造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel in which molten steel flow discharged into a mold is controlled by electromagnetic force.

【0002】[0002]

【従来の技術】薄鋼板用スラブ連続鋳造では、生産能力
向上のため、高速鋳造技術の開発が盛んである。高速鋳
造においては、浸漬ノズルから鋳型内に注入される溶鋼
は大きな吐出速度を持っており、溶鋼吐出流が鋳型短辺
に衝突して、鋳型短辺に沿って上下2方向の溶鋼流が生
じる。
2. Description of the Related Art In continuous slab casting for thin steel sheets, high-speed casting technology has been actively developed in order to improve production capacity. In high-speed casting, the molten steel injected from the dipping nozzle into the mold has a large discharge speed, and the molten steel discharge flow collides with the short side of the mold to generate a molten steel flow in two vertical directions along the short side of the mold. .

【0003】このため、溶鋼中に含まれるアルミナを主
体とする脱酸生成物は下向きの溶鋼流といっしょに鋳型
から奥深くまで侵入してしまい、また、上向きの溶鋼流
は鋳型内湯面を暴れさせて、モールドパウダーを巻き込
み凝固シェルに補捉し、これらが製品での介在物性欠陥
となる。
For this reason, the deoxidation product mainly composed of alumina contained in the molten steel penetrates deeply from the mold together with the downward molten steel flow, and the upward molten steel flow causes the molten metal surface in the mold to be violent. As a result, the mold powder is caught and trapped in the solidified shell, and these become defects in inclusion properties in the product.

【0004】このような溶鋼流に由来する鋳片内の介在
物性欠陥は、鋳造速度の増大と共に顕著になり、高温鋳
片製造のため高速鋳造が前提となる熱間直送圧延プロセ
スでは、深刻な問題となる。
[0004] The inclusion defect in the slab due to the molten steel flow becomes remarkable as the casting speed increases, and is serious in the hot direct rolling process, which requires high speed casting for the production of high temperature slab. It becomes a problem.

【0005】この防止対策として、電磁誘導力を利用し
て溶鋼流動(溶鋼吐出流)を制御しようとする試みが数
多く提案されている。
As a countermeasure against this, many attempts have been proposed to control molten steel flow (molten steel discharge flow) by utilizing electromagnetic induction force.

【0006】例えば、特開平3−258442公報(以
下、先行技術1という)には、鋳型長辺側の幅方向全幅
に亘って直流電磁石を、その磁極を対極させて配置し、
浸漬ノズルからの溶鋼吐出流が磁場を通過する際に、吐
出流にブレーキを掛け、勢いを制動する方法が開示され
ている。これにより磁場通過後の溶鋼流動は、長辺全幅
に亘って均一に制動されるため、鋳型長辺幅方向に電磁
石を局部的に配置(例えば特開平2−75455公報
等)した場合で、かつ、電磁力が強すぎて制動力が過剰
な状態において認められる、吐出直後の吐出口付近に生
じる非定常的な溶鋼流の乱れ(様々な方向に溶鋼流が発
生する状態)を防止することができる。
For example, in Japanese Patent Laid-Open No. 3-258442 (hereinafter, referred to as Prior Art 1), a DC electromagnet is arranged over the entire width in the width direction on the long side of the mold, with its magnetic poles facing each other.
A method is disclosed in which when the molten steel discharge flow from the immersion nozzle passes through a magnetic field, the discharge flow is braked to stop the momentum. As a result, the molten steel flow after passing through the magnetic field is uniformly damped over the entire width of the long side, so that the electromagnet is locally arranged in the width direction of the long side of the mold (for example, JP-A-2-75455). , It is possible to prevent unsteady turbulence of molten steel flow (a state in which molten steel flow is generated in various directions) near the discharge port immediately after discharge, which is observed when the electromagnetic force is too strong and the braking force is excessive. it can.

【0007】また特開平1−150450公報(以下、
先行技術2という)には、先行技術1のような常時一方
向の静的な誘導電流を発生させる直流磁場の代わりに、
浸漬ノズル下方の1.5〜4メートルの位置に、磁界静
止型交流磁界を設け、1Hz未満の低周波交流を印加さ
せる方法が開示されている。これによれば、磁界の方向
と誘導電流の方向とが交互に180度変化するが、磁気
制動力の方向は変化することなく、溶鋼吐出流と逆方向
に働いて、直流磁場と同様に溶鋼流を制動できる。
Further, JP-A-1-150450 (hereinafter, referred to as
According to the prior art 2, instead of the DC magnetic field that always generates a unidirectional static induction current as in the prior art 1,
A method is disclosed in which a magnetic field static AC magnetic field is provided at a position 1.5 to 4 meters below the immersion nozzle to apply a low frequency AC of less than 1 Hz. According to this, the direction of the magnetic field and the direction of the induced current alternately change by 180 degrees, but the direction of the magnetic braking force does not change, and the direction acts in the direction opposite to the molten steel discharge flow, so that the molten steel becomes similar to the DC magnetic field. You can brake the flow.

【0008】この他に、低周波の交流磁場を用いた鋳型
内溶鋼流動制御方法として、0.1〜60Hz範囲の交
流を、鋳型幅方向に時間的に磁界が移動する移動磁場に
印加する技術(以下、先行技術3という)も数多く提案
(例えば特開昭63−212051号公報)され、実用
化されている。
In addition to this, as a method for controlling molten steel flow in a mold using a low frequency alternating magnetic field, a technique of applying an alternating current in the range of 0.1 to 60 Hz to a moving magnetic field in which the magnetic field temporally moves in the width direction of the mold. Many (hereinafter referred to as Prior Art 3) have also been proposed (for example, Japanese Patent Laid-Open No. 63-212051) and put into practical use.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、先行技
術1による方法では、溶鋼吐出流は全幅に亘って逆向き
の制動力を受けるから、浸漬ノズルからの溶鋼流は鋳造
方向に円滑に排出されず、一種の閉塞状態となる。この
ような状態で、かつ制動力が強すぎる場合、溶鋼流は鋳
型内湯面を暴れさせてしまい、モールドパウダーを巻き
込む虞がある。
However, in the method according to the prior art 1, since the molten steel discharge flow is subjected to the opposite braking force over the entire width, the molten steel flow from the immersion nozzle is not smoothly discharged in the casting direction. , A kind of blockage. In such a state and when the braking force is too strong, the molten steel flow may cause the molten metal surface in the mold to ramp up, and the mold powder may be caught.

【0010】また、片方の鋳型長辺側では磁極は同一で
あり、これが対極して配置されるから、鋳型短辺側にお
いて、溶鋼流は鋳型短辺に衝突した時点で下降流となっ
て、誘導電流の向きと溶鋼流の向きが下向き方向に平行
に向き合うため、磁気制動力が働かない。このため、鋳
型短辺に沿って下降流が集中して急激な溶鋼流となって
奥深く侵入してしまい、鋳片幅方向中心部の介在物性欠
陥は改善されるが、短辺近傍における介在物性欠陥が多
発する。
Since the magnetic poles are the same on the long side of one of the molds and are arranged opposite to each other, the molten steel flow on the short side of the mold becomes a descending flow when it collides with the short side of the mold. Since the direction of the induced current and the direction of the molten steel flow are parallel to the downward direction, the magnetic braking force does not work. For this reason, the downflow is concentrated along the short side of the mold to form a rapid molten steel flow, which penetrates deeply and the inclusion physical property defect in the widthwise center of the slab is improved, but the inclusion properties near the short side are improved. There are many defects.

【0011】先行技術2による交流磁界を印加させる方
法では、静的な誘導電流を発生させないから、鋳型短辺
に沿った下向きの溶鋼流の低減と、この下向流を助長す
ることがない。しかしながら、磁気制動力の絶対値は与
えられた磁束密度の最大値に比例した値からゼロまで変
化する。従って、低周波交流磁界の場合、制動された溶
鋼流に付与された慣性力を消失しない間に磁極が切り換
わるから、溶鋼流速はその周波数で変動する。この結
果、この溶鋼流速の変動が鋳型内湯面に及ぶ程の高速鋳
造では、モールドパウダーの巻き込みが生じて、介在物
性欠陥を招く。
In the method of applying the AC magnetic field according to the prior art 2, since a static induction current is not generated, the downward molten steel flow along the short side of the mold is not reduced and the downward flow is not promoted. However, the absolute value of the magnetic braking force changes from a value proportional to the maximum value of the given magnetic flux density to zero. Therefore, in the case of a low-frequency AC magnetic field, the magnetic poles are switched while the inertial force applied to the braked molten steel flow is not lost, so that the molten steel flow velocity fluctuates at that frequency. As a result, in the high-speed casting in which the fluctuation of the molten steel flow rate reaches the molten metal surface in the mold, the entrainment of the mold powder occurs and the inclusion physical property defect is caused.

【0012】先行技術3は、溶鋼撹拌技術を鋳型内溶鋼
流動制御に適用するものであるが、磁界の移動方向のみ
しか制動力が作用せず、溶鋼流に制動力を働かせて介在
物性欠陥を改善する溶鋼流動の制御方法としては不十分
である。更に、電磁力が強過ぎる場合、非定常な流れが
発生したり、移動磁場による随拌流を発生するため、浸
漬ノズルからの吐出流速と磁界強度のバランスがくずれ
るとパウダー巻き込みを助長して介在物性欠陥を招く。
In prior art 3, the molten steel stirring technique is applied to the molten steel flow control in the mold, but the braking force acts only in the moving direction of the magnetic field, and the braking force acts on the molten steel flow to cause inclusion property defects. It is insufficient as an improved method for controlling molten steel flow. Furthermore, if the electromagnetic force is too strong, an unsteady flow occurs or a stir flow is generated by the moving magnetic field, so if the balance of the discharge flow velocity from the immersion nozzle and the magnetic field strength is disturbed, powder entrainment is promoted and intervention occurs. It causes physical property defects.

【0013】本発明は、上記従来技術における問題点を
解決するために提案されたものであって、電磁力を作用
させて鋳型内の溶鋼流動を制御する連続鋳造方法におい
て、溶鋼流の閉塞状態が起こらず、鋳型短辺に沿って集
中する下降流を防止して、鋳片内の介在物性欠陥を低減
できる連続鋳造方法を提案するものである。加えて、周
波数による溶鋼流速の変動が鋳型内湯面に及ぶことのな
い、適切な周波数の交流磁界を印加する信頼性の高い連
続鋳造方法を提案する。
The present invention has been proposed to solve the above-mentioned problems in the prior art. In a continuous casting method in which electromagnetic force is applied to control the flow of molten steel in a mold, a closed state of molten steel flow is provided. Therefore, the present invention proposes a continuous casting method capable of preventing a downward flow concentrated along the shorter side of the mold and reducing inclusion physical defect in the slab. In addition, we propose a highly reliable continuous casting method that applies an AC magnetic field of an appropriate frequency, which does not affect the molten steel flow velocity due to frequency to the molten metal in the mold.

【0014】[0014]

【課題を解決するための手段】請求項1に係わる発明
は、長方形断面鋳型の鋳型長辺側に長辺の幅とほぼ等し
い電磁石を、その磁極を対向させて配置し、浸漬ノズル
より鋳型内に吐出される溶鋼流に、電磁力を作用させて
溶鋼流動を制御する連続鋳造方法において、鋳型長辺側
に配置される電磁石は、長辺幅方向の中央部で鋳造方向
に高低差を設けて磁極が配置されることを特徴とする連
続鋳造方法である。
The invention according to claim 1 is to dispose an electromagnet having a width of a long side on the long side of a rectangular cross-section mold, with its magnetic poles facing each other, and from the dipping nozzle to the inside of the mold. In a continuous casting method in which an electromagnetic force is applied to the molten steel flow discharged to control molten steel flow, an electromagnet arranged on the long side of the mold has a height difference in the casting direction at the center of the width direction of the long side. And a magnetic pole is arranged.

【0015】長方形断面鋳型の鋳型長辺側に長辺の幅と
ほぼ等しい電磁石を、その磁極を対向させて配置するか
ら、長辺全幅に亘って、鋳型厚み方向に磁界が形成され
る。また、浸漬ノズルより鋳型内に吐出される溶鋼流
に、電磁力を作用させて溶鋼流動を制御するため、電磁
石は浸漬ノズルの下方に配置される。
On the long side of the rectangular cross-section mold, electromagnets having a width substantially equal to the width of the long side are arranged with their magnetic poles facing each other, so that a magnetic field is formed in the thickness direction of the mold over the entire width of the long side. The electromagnet is arranged below the immersion nozzle in order to control the molten steel flow by applying an electromagnetic force to the molten steel flow discharged from the immersion nozzle into the mold.

【0016】この結果、溶鋼流が、この磁界内を通過す
ると、長辺全幅に亘って溶鋼吐出流と反対方向に磁気制
動力が働き、溶鋼吐出速度は減速されるから、溶鋼流の
侵入深さは減少して、鋳片内の介在物性欠陥は減少す
る。また、電磁石は長辺幅方向で全幅に配置されるか
ら、溶鋼吐出流の局部的な乱れが発生しない。
As a result, when the molten steel flow passes through this magnetic field, a magnetic braking force acts in the direction opposite to the molten steel discharge flow over the entire long side width, and the molten steel discharge speed is reduced. And the inclusion property defects in the slab are reduced. Further, since the electromagnets are arranged over the entire width in the width direction of the long side, local disturbance of the molten steel discharge flow does not occur.

【0017】この際に、鋳型長辺側に配置される電磁石
は、長辺幅方向の中央部で、鋳造方向に高低差を設けて
磁極が配置されるため、中央部の鋳造方向には、高低差
の大きさに応じて、磁界の形成されない領域、または磁
束密度の小さい領域(これを磁界の谷間という)が形成
される。
At this time, since the electromagnets arranged on the long side of the mold have magnetic poles arranged at a height difference in the casting direction at the center portion in the width direction of the long side, the electromagnets are arranged at the center portion in the casting direction. Depending on the size of the height difference, a region where no magnetic field is formed or a region where the magnetic flux density is low (this is called a valley of the magnetic field) is formed.

【0018】このような領域を通過する溶鋼流は制動を
受けることがないか、または小さな制動力を受けて通過
する(鋳造方向に排出する)から、長辺全幅に亘って電
磁石を配置した従来技術において発生する閉塞状態(溶
鋼流の行き詰まり現象)が解消されて、これによる鋳型
内湯面変動が防止される。
Since the molten steel flow passing through such an area is not subjected to braking or passes with a small braking force (is discharged in the casting direction), the conventional electromagnets are arranged over the entire width of the long side. The blockage state (stuck phenomenon of molten steel flow) that occurs in the technology is eliminated, and the fluctuation of the molten metal level in the mold due to this is prevented.

【0019】また、上述の領域を通過した方が抵抗が少
なく通過し易いから、静磁界を印加する場合や、磁界が
強過ぎる場合でも、前述した鋳型短辺に沿って集中する
急激な下降流の発生が起こりにくく、またこの下降流を
助長させることがない。
Further, since the resistance passing through the above-mentioned region is small and the resistance easily passes, even when a static magnetic field is applied or when the magnetic field is too strong, a sharp downward flow concentrated along the short side of the mold described above. Is less likely to occur, and this downward flow is not promoted.

【0020】更に、この領域を通過する溶鋼流は、一旦
制動を受けて減速されており、また排出方向はほぼ横方
向であるため、溶鋼流の侵入する深さは大幅に減少す
る。
Further, since the molten steel flow passing through this region is once braked and decelerated, and the discharge direction is substantially horizontal, the depth of penetration of the molten steel flow is greatly reduced.

【0021】請求項2に係わる発明は、前記磁極の高低
差を50mm以上、300mm以下とすることを特徴と
する連続鋳造方法である。
The invention according to claim 2 is the continuous casting method, wherein the height difference of the magnetic poles is 50 mm or more and 300 mm or less.

【0022】本発明者らは、鋳造方向に設けた電磁石の
磁極の高低差を変化させて鋳造試験を行い、高低差と鋳
片内の介在物性欠陥数との関係を調査した。この結果、
50mm以上、300mm以下の高低差を設けて配置す
ることにより、長辺全幅方向で、かつ高低差ゼロに配置
した従来技術に比較して、介在物性欠陥を1/2以下に
低減できることを確認した。
The present inventors conducted a casting test by changing the height difference of the magnetic poles of the electromagnets provided in the casting direction, and investigated the relationship between the height difference and the number of intervening physical property defects in the slab. As a result,
It was confirmed that by providing the height difference of 50 mm or more and 300 mm or less, the inclusion physical defect can be reduced to 1/2 or less as compared with the conventional technique in which the height difference is zero and the height difference is zero. .

【0023】高低差が50mm未満では、従来技術に比
較して、わずかであるが介在物性欠陥の低減効果は認め
られる。しかし、高低差がない場合と同様に、前述の閉
塞状態や、鋳型短辺に沿って急激な下降流が生じてしま
い、期待する程の低減効果は得られない。また、高低差
が300mmを越えると、ほとんどの溶鋼流は制動を受
けることがないか、制動力は小さく、制動力が効果的に
働かず、期待する程の低減効果は得られない。
When the difference in height is less than 50 mm, the effect of reducing the defects of inclusions is recognized as compared with the prior art, although it is slight. However, as in the case where there is no difference in height, the above-mentioned closed state or a rapid downward flow occurs along the shorter side of the mold, and the expected reduction effect cannot be obtained. When the height difference exceeds 300 mm, most of the molten steel flow is not braked, or the braking force is small and the braking force does not work effectively, and the expected reduction effect cannot be obtained.

【0024】請求項3に係わる発明は、電磁石の磁極に
高低差を設けて配置し、加えて電磁石に印加される電流
の周波数を1Hz以上の交流電流とし、磁界を磁界静止
型交流磁界とすることを特徴とする連続鋳造方法であ
る。
According to the third aspect of the invention, the magnetic poles of the electromagnet are arranged with a height difference, and in addition, the frequency of the current applied to the electromagnet is an alternating current of 1 Hz or more, and the magnetic field is a static magnetic field type alternating magnetic field. It is a continuous casting method characterized by the above.

【0025】本発明者らは、電磁石の磁極に高低差を設
けることに加えて、更に信頼性の高い連続鋳造方法を得
るため、直流静磁場方式に代えて磁界が鋳型長辺方向に
移動しない静止型の交流磁界を採用する。しかし、従来
技術における、1Hz未満の低周波の交流磁場方式に見
られた、鋳型内湯面変動を防止するため、この交流磁界
に印加する周波数を変化させて鋳造試験を実施し、鋳型
内湯面変動に与える影響を調査した。図1はその結果を
示す。
In order to obtain a more reliable continuous casting method in addition to providing height differences in the magnetic poles of the electromagnets, the inventors have replaced the DC static magnetic field method with the magnetic field not moving in the long side direction of the mold. Uses a static AC magnetic field. However, in order to prevent the fluctuation of the molten metal level in the mold, which is seen in the low-frequency AC magnetic field system of less than 1 Hz in the prior art, the casting test was performed by changing the frequency applied to this AC magnetic field, and the molten metal level fluctuation in the mold was carried out. Was investigated. FIG. 1 shows the result.

【0026】図1は鋳造厚220mm、鋳造幅1200
mmの鋳片で、高低差150mmを設けて、電磁石の上
側の磁極の上端を浸漬ノズル下端に一致させて配置し、
鋳造速度2.0m/min、磁束密度0.2テスラ(以
下、Tと記す)の鋳造条件で、印加される交流磁界の周
波数を0.5〜5Hzの範囲で変化させて、鋳型内湯面
変動量を渦流式距離計で測定したものである。
FIG. 1 shows a cast thickness of 220 mm and a cast width of 1200.
With a slab of mm, a height difference of 150 mm is provided, and the upper end of the upper magnetic pole of the electromagnet is arranged so as to match the lower end of the immersion nozzle.
Under the casting conditions of a casting speed of 2.0 m / min and a magnetic flux density of 0.2 Tesla (hereinafter referred to as T), the frequency of the applied AC magnetic field is changed within a range of 0.5 to 5 Hz to change the molten metal level in the mold. The amount is measured with an eddy current range finder.

【0027】図から明らかなように、周波数が1Hz未
満の場合、周波数が低くなる程、湯面変動量は急激に増
大し、2.5mm以上の大きな湯面変動量が観察された
が、1Hz以上では急激に湯面変動が低減した。この鋳
型短辺近傍の湯面変動はモールドパウダーの巻き込みを
助長させるものであり、周波数が1Hz以上となると介
在物が減少することは確認できた。
As is clear from the figure, when the frequency is less than 1 Hz, the lower the frequency, the more rapidly the level fluctuation amount increases, and a large level fluctuation amount of 2.5 mm or more was observed. With the above, the fluctuation of the molten metal level was drastically reduced. It was confirmed that the fluctuation of the molten metal surface in the vicinity of the short side of the mold promotes the inclusion of the mold powder, and that the inclusions decrease when the frequency is 1 Hz or higher.

【0028】これより、周波数が1Hz以上の磁界静止
型の交流磁界を印加することにより、磁気制動によって
発生する溶鋼流の変動による鋳型内湯面変動を防止でき
ることが明らかにされた。
From the above, it has been clarified that by applying a static magnetic field of a magnetic field static type having a frequency of 1 Hz or more, it is possible to prevent the fluctuation of the molten metal surface in the mold due to the fluctuation of the molten steel flow caused by the magnetic braking.

【0029】尚、磁界静止型交流磁界とは、リニアモー
タ等に使用される移動磁界ではなく、時間とともに磁極
は変化するが、磁界は時間とともに鋳型長辺または短辺
方向に移動することのない磁界をいい、磁極の高低差と
は、二つの磁極の中心位置の鋳造方向へ離れた距離をい
う。
The magnetic field static AC magnetic field is not a moving magnetic field used for a linear motor or the like, and the magnetic poles change with time, but the magnetic field does not move in the long side or short side direction of the mold with time. The magnetic field refers to the height difference between the magnetic poles, which is the distance between the center positions of the two magnetic poles in the casting direction.

【0030】[0030]

【発明の実施の形態】図2は、本発明に係わる鋳造方向
に磁極に高低差をつけた電磁石の配置方法の一実施形
態、及びこれによる溶鋼流動の制御状態を模式的に示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 schematically shows an embodiment of an electromagnet arranging method according to the present invention in which magnetic poles have height differences in the casting direction, and a control state of molten steel flow by the method.

【0031】図2(A)は鋳型周辺の概略平面図、図2
(B)は鋳型周辺の側面透視図を示し、1は鋳型長辺、
2は鋳型短辺、3は浸漬ノズル、4はモールドパウダー
層、5は鋳型内湯面、6はリターンヨーク、7は磁極、
8は励磁コイル、符号N、Sはそれぞれ磁極を示す。
FIG. 2A is a schematic plan view of the periphery of the mold, FIG.
(B) is a side perspective view around the mold, 1 is the long side of the mold,
2 is a short side of the mold, 3 is a dipping nozzle, 4 is a mold powder layer, 5 is a molten metal surface in the mold, 6 is a return yoke, 7 is a magnetic pole,
Reference numeral 8 indicates an exciting coil, and reference numerals N and S indicate magnetic poles.

【0032】図2(A)に示すように、鋳型ユニットは
長方形断面をしており、内部が水冷された銅板製の鋳型
長辺1(鋳型幅方向という)と鋳型短辺2(鋳型厚み方
向という)とから構成されている。
As shown in FIG. 2 (A), the mold unit has a rectangular cross section, and is made of a copper plate whose inside is water-cooled. The mold long side 1 (called the mold width direction) and the mold short side 2 (mold thickness direction). That said) and.

【0033】電磁石は、鋳型長辺1の外側には1対、鋳
型幅方向中央部では左右に磁極7が分割されており、合
計4個の磁極7が設けられる。
The electromagnet has a pair of magnetic poles 7 on the outside of the long side 1 of the mold, and a pair of magnetic poles 7 divided to the left and right at the center in the width direction of the mold. A total of four magnetic poles 7 are provided.

【0034】磁極7の鋳型幅方向の端部は、鋳型長辺1
の端部よりも外側まで配置される。また磁極7は鋳込み
方向でそれぞれ同一高さに対面して配置される。鋳型長
辺側の左右に分割された磁極7は、水平で鋳込み方向に
高低差を持った連続体をしたリターンヨーク6によって
連結され、1つの磁気回路が形成される。
The end of the magnetic pole 7 in the mold width direction is the long side 1 of the mold.
It is arranged to the outside of the end of. The magnetic poles 7 are arranged facing each other at the same height in the casting direction. The magnetic poles 7 divided into left and right on the long side of the mold are connected by a return yoke 6 which is horizontal and has a height difference in the casting direction to form one magnetic circuit.

【0035】励磁コイル8には、直流電流または交流電
流を流すことができるように電源が配線(いずれも図示
せず)される。直流または交流電流を流すことにより、
図2(A)に示すように、鋳型幅方向の磁極7間ではそ
れぞれ異なる磁極(N極、S極)が、鋳型厚み方向の対
面する磁極7間でも異なる磁極(N極、S極)が形成さ
れ、鋳型内の溶鋼に誘導電流が発生する。
In the exciting coil 8, a power source is wired (neither is shown) so that a direct current or an alternating current can flow. By passing a direct current or an alternating current,
As shown in FIG. 2 (A), different magnetic poles (N pole, S pole) are provided between the magnetic poles 7 in the mold width direction, and different magnetic poles (N pole, S pole) are also provided between the facing magnetic poles 7 in the mold thickness direction. As a result, an induced current is generated in the molten steel in the mold.

【0036】尚、直流電流を流すことにより、磁極が変
化しない静止型磁界が、交流電流を流すことにより、周
波数毎にそれぞれの磁極は180度変化するが、時間的
に磁界が鋳型長辺方向に移動しない磁界静止型の交流磁
界が形成される。尚、図2(B)内の点線は、直流また
は交流電流を流すことにより形成される磁場9a、9b
を示す。
A static magnetic field whose magnetic poles do not change when a DC current is passed, and each magnetic pole changes 180 degrees at each frequency when an AC current is passed, but the magnetic field changes temporally in the long side direction of the mold. A stationary AC magnetic field is formed that does not move to the magnetic field. The dotted lines in FIG. 2B indicate magnetic fields 9a and 9b formed by passing a direct current or an alternating current.
Is shown.

【0037】鋳型長辺1の概ね中央には浸漬ノズル3が
配置される。鋳型幅方向の磁極7は、浸漬ノズル3を挟
んで、鋳型幅方向に所定の間隔を、鋳込み方向に所定の
高低差(上部磁極7a、下部磁極7b)を設けて配置さ
れる。
An immersion nozzle 3 is arranged substantially at the center of the long side 1 of the mold. The magnetic poles 7 in the mold width direction are arranged with a predetermined gap in the mold width direction and a predetermined height difference (upper magnetic pole 7a, lower magnetic pole 7b) in the casting direction with the immersion nozzle 3 interposed therebetween.

【0038】本実施形態では、上部磁極7aの上端高さ
を浸漬ノズル3の下端に一致するように配置し、高低差
は鋳込み方向に0mm〜最大350mmの範囲で変化で
きるように設計されている。
In this embodiment, the height of the upper end of the upper magnetic pole 7a is arranged so as to coincide with the lower end of the dipping nozzle 3, and the height difference is designed to be variable in the casting direction in the range of 0 mm to a maximum of 350 mm. .

【0039】浸漬ノズル3は底部に湯溜部を有した形状
で、下向き角度を有する2個の吐出口を持っている。吐
出口から矢印の方向に溶鋼が吐出されると、溶鋼流は磁
場9a、9b内に侵入するが、溶鋼流と反対方向に磁気
制動力(ローレンツ力)を受ける。
The submerged nozzle 3 has a shape having a basin at the bottom and has two discharge ports having downward angles. When molten steel is discharged from the discharge port in the direction of the arrow, the molten steel flow enters the magnetic fields 9a and 9b, but receives a magnetic braking force (Lorentz force) in the direction opposite to the molten steel flow.

【0040】図2(B)では、磁気制動力を受けた溶鋼
流の経路を模式的に示す。太線は流量の多いメイン流
を、細線は流量の少ないサブ流を示す。図2(B)の左
側では上部の磁場9aと吐出口とが近接しているため、
吐出直後に溶鋼流に制動力が働くが吐出溶鋼流のエネル
ギーが大きく、上部の磁場9a内に入り込んだ後、制動
される。この際に、上部の磁場9aと下部の磁場9bと
の間が開いているため、メイン流はこの間を通過して排
出される。一方、サブ流は短辺に衝突した後、上昇する
が、同様に制動力を受けて減衰されているため、左側の
鋳型内湯面5を暴れさせることない。
FIG. 2 (B) schematically shows the path of the molten steel flow subjected to the magnetic braking force. The thick line shows the main flow with high flow rate, and the thin line shows the sub flow with low flow rate. On the left side of FIG. 2 (B), since the upper magnetic field 9a and the ejection port are close to each other,
A braking force acts on the molten steel flow immediately after discharge, but the energy of the discharged molten steel flow is large, and after entering the upper magnetic field 9a, it is braked. At this time, since the space between the upper magnetic field 9a and the lower magnetic field 9b is open, the main flow passes through this space and is discharged. On the other hand, the sub-flow rises after colliding with the short side, but likewise receives the braking force and is damped, so that the molten metal surface 5 in the mold on the left side does not run away.

【0041】図2(B)の右側では、下部の磁場9bと
吐出口とが離れているから、吐出流は減速されるため
に、下部の磁場9b内への 溶鋼流の侵入深さは左側に
比べて少ないが溶鋼流は十分制動される。そして、この
場合も上部の磁場9aと下部の磁場9bとの間が開いて
いるため、メイン流はこの間を通過して排出される。
On the right side of FIG. 2 (B), since the lower magnetic field 9b and the discharge port are separated from each other, the discharge flow is decelerated, so that the penetration depth of the molten steel flow into the lower magnetic field 9b is on the left side. It is less than that of, but the molten steel flow is sufficiently damped. In this case also, since the space between the upper magnetic field 9a and the lower magnetic field 9b is open, the main flow passes through this space and is discharged.

【0042】いずれの側でも、メイン流は上部の磁場9
aと下部の磁場9bとの間で形成される磁界の谷間を通
過するため、溶鋼流の閉塞状態は発生することがなく、
また直流磁場を形成する場合でも短辺に沿った下向流は
発生しにくい。またメイン流は制動を受けて減速されて
おり、横方向の溶鋼流であるため、鋳込み方向の侵入深
さは浅くなり、短辺近傍に介在物性欠陥は発生しにく
い。同時に磁界の谷間を通過するため、鋳型内湯面5を
暴れさせることがなく、パウダー性の介在物性欠陥も発
生しにくい。
On either side, the main flow is the upper magnetic field 9
Since it passes through the valley of the magnetic field formed between a and the lower magnetic field 9b, the molten steel flow is not blocked,
Further, even when a DC magnetic field is formed, a downward flow along the short side is unlikely to occur. Further, the main flow is braked and decelerated, and since it is a molten steel flow in the lateral direction, the penetration depth in the casting direction becomes shallow, and the inclusion physical property defect is unlikely to occur near the short side. At the same time, since it passes through the valley of the magnetic field, the molten metal surface 5 in the mold is not violated, and the powdery inclusion defect is unlikely to occur.

【0043】尚、電磁石の磁極の高低差、鋳型幅方向の
左右間隔は、鋳造速度、磁界の強さ、鋳造サイズ等の条
件によって、介在物性欠陥の少ない適切な値を選択すれ
ば良い。本実施形態では、鋳型幅方向の磁極7間(左右
に分割して配置される磁極7間)に浸漬ノズルを挟んで
所定の間隔を設けたが、鋳造速度が小さい場合や、高低
差が大きい場合では、この間隔をゼロとしても良い。こ
の場合、上部の磁場9aと下部の磁場9bとの間で水平
方向に磁界の谷間が形成され、溶鋼流は抵抗が少ないこ
の谷間を通過するから、同様の効果を得られる。
The height difference between the magnetic poles of the electromagnet and the horizontal distance in the mold width direction may be selected from appropriate values with few inclusion defects due to conditions such as casting speed, magnetic field strength, and casting size. In this embodiment, the immersion nozzle is sandwiched between the magnetic poles 7 in the mold width direction (between the magnetic poles 7 which are divided into right and left), but a predetermined interval is provided, but when the casting speed is low or the height difference is large. In some cases, this interval may be zero. In this case, a valley of the magnetic field is formed in the horizontal direction between the upper magnetic field 9a and the lower magnetic field 9b, and the molten steel flow passes through this valley having a low resistance, and therefore the same effect can be obtained.

【0044】また、鋳造速度が1.5m/minを越え
る高速鋳造の場合には、短辺に衝突した後、上昇するサ
ブ流により鋳型内湯面5を暴れさせることがある。この
ような場合、上記高低差に加えて、周波数1Hz以上の
磁界静止型交流磁界を形成するのが望ましい。
Further, in the case of high speed casting in which the casting speed exceeds 1.5 m / min, the molten metal surface 5 in the mold may be violent due to the rising sub-flow after colliding with the short side. In such a case, in addition to the above-mentioned height difference, it is desirable to form a magnetic field static AC magnetic field having a frequency of 1 Hz or higher.

【0045】[0045]

【実施例】本発明の効果を確認するため、垂直部2.5
mを有する垂直曲げ型連続鋳造機を使用し、図2のよう
に電磁石を鋳型周辺に配置し、鋳型内の溶鋼流動を制御
する試験を実施した。
EXAMPLE In order to confirm the effect of the present invention, the vertical portion 2.5
Using a vertical bending type continuous casting machine having m, an electromagnet was arranged around the mold as shown in FIG. 2, and a test for controlling molten steel flow in the mold was conducted.

【0046】(確認試験1:磁極の高低差の影響調査)
本試験では、低炭素アルミキルド鋼を用い、鋳造サイズ
は1200mm幅、220mm厚、鋳造速度は1.0m
/min、及び2.0m/minの2水準、磁束密度は
0.1T、及び0.2Tの2水準として、上部磁極の上
端を浸漬ノズル下端に一致させ、磁極の高低差は25m
m〜350mm範囲で、周波数は0.5Hzの一定とし
て行った。
(Confirmation test 1: Investigation of influence of height difference of magnetic poles)
In this test, low carbon aluminum killed steel is used, the casting size is 1200 mm width, 220 mm thickness, and the casting speed is 1.0 m.
/ Min and 2.0m / min, and two levels of magnetic flux density of 0.1T and 0.2T, the upper end of the upper magnetic pole is aligned with the lower end of the immersion nozzle, and the height difference of the magnetic pole is 25m.
The frequency was constant at 0.5 Hz in the range of m to 350 mm.

【0047】比較としての従来例では、磁極の高低差は
なく、直流磁場(周波数は0Hz)とし、磁極の上端を
浸漬ノズル下端から200mm下方に設置し、磁束密度
は0.2T一定の条件とした。
In the conventional example for comparison, there is no difference in height of the magnetic poles, a DC magnetic field (frequency is 0 Hz) is set, the upper end of the magnetic pole is set 200 mm below the lower end of the immersion nozzle, and the magnetic flux density is constant at 0.2T. did.

【0048】試験材の介在物調査方法は、最終製品であ
る冷間圧延コイル表面の単位面積当たりの介在物欠陥個
数をカウントした。品質評価方法は、従来例における介
在物欠陥個数を1.0として、実施例の介在物欠陥個数
を指数化して(これを介在物欠陥指数という)、評価し
た。
The method for investigating inclusions in the test material was to count the number of inclusion defects per unit area on the surface of the cold rolled coil which is the final product. In the quality evaluation method, the number of inclusion defects in the conventional example was set to 1.0, and the number of inclusion defects in the example was indexed (this is called an inclusion defect index) for evaluation.

【0049】図3は、このようにして測定した調査結果
を示す。図3に示すように、高低差50〜300mm範
囲では、介在物欠陥指数は0.5以下の良好な結果が得
られた。これに対し、高低差25mm、及び350mm
では、介在物欠陥指数は0.5を越える結果を得たが、
従来例に比べ、効果が認められた。鋳造速度の影響は、
磁極の高低差がおよそ200mm以下の範囲で、鋳造速
度2.0m/minに比べ鋳造速度1.0m/minの
方が、より低い介在物指数が得られたが、磁極の高低差
がおよそ250mm以上では、鋳造速度が2.0m/m
inの方が逆に良好な結果を得た。これより、鋳造速度
の上昇と共に磁極の高低差を大きくした方が品質には有
効であること、また鋳造速度に応じて適切な高低差が存
在することが判った。
FIG. 3 shows the survey results measured in this way. As shown in FIG. 3, in the height difference range of 50 to 300 mm, a good result that the inclusion defect index was 0.5 or less was obtained. On the other hand, the height difference is 25 mm and 350 mm
Then, the result of the inclusion defect index exceeded 0.5,
The effect was recognized as compared with the conventional example. The effect of casting speed is
A lower inclusion index was obtained at a casting speed of 1.0 m / min than at a casting speed of 2.0 m / min in the range where the height of the magnetic pole was about 200 mm or less, but the height difference of the magnetic pole was about 250 mm. With the above, the casting speed is 2.0 m / m.
On the contrary, the better results were obtained. From this, it was found that increasing the height difference of the magnetic poles with increasing casting speed is more effective for quality, and that there is an appropriate height difference depending on the casting speed.

【0050】磁束密度の影響は、0.1Tに比べ0.2
Tの方が、高低差25〜350mmの全範囲において、
より介在物欠陥指数の低い製品が得られた。
The influence of the magnetic flux density is 0.2 compared to 0.1T.
T has a height difference of 25 to 350 mm over the entire range,
A product having a lower inclusion defect index was obtained.

【0051】(確認試験2:周波数の影響調査)本試験
では、上部磁極と下部磁極の高低差を150mmとし、
印加磁場の周波数を、0Hz(直流磁場)、0.5H
z、1.0Hz、2.0Hz、5.0Hzの計5水準と
し、その他は確認試験1と同一の条件で試験を実施し
た。
(Confirmation test 2: Investigation of influence of frequency) In this test, the height difference between the upper magnetic pole and the lower magnetic pole was set to 150 mm,
The frequency of the applied magnetic field is 0Hz (DC magnetic field), 0.5H
A total of 5 levels of z, 1.0 Hz, 2.0 Hz, and 5.0 Hz were set, and the other conditions were the same as those of the confirmation test 1, and the test was performed.

【0052】従来例では、磁極の高低差はなく、直流磁
場(周波数は0Hz)とし、磁極の上端を浸漬ノズル下
端から200mm下方に設置し、磁束密度は0.2T一
定の条件とした。
In the conventional example, there was no height difference between the magnetic poles, a direct current magnetic field (frequency was 0 Hz), the upper end of the magnetic pole was set 200 mm below the lower end of the immersion nozzle, and the magnetic flux density was constant at 0.2T.

【0053】確認試験1と同様な方法で介在物指数を測
定し調査した。結果を図4に示す。図4に示すように、
5.0Hz以下の範囲において、介在物欠陥指数は0.
4以下の良好な結果が得られ、従来例に比べ大幅に低減
しており、良好な結果を得た。また、1.0Hz未満に
比べ、1.0Hz以上の周波数で、介在物欠陥指数は、
より低い結果が得られた。
The inclusion index was measured and investigated in the same manner as in the confirmation test 1. FIG. 4 shows the results. As shown in FIG.
In the range of 5.0 Hz or less, the inclusion defect index is 0.
A favorable result of 4 or less was obtained, which was significantly reduced as compared with the conventional example, and a favorable result was obtained. In addition, at a frequency of 1.0 Hz or higher, as compared with less than 1.0 Hz, the inclusion defect index is
Lower results were obtained.

【0054】[0054]

【発明の効果】本発明では、電磁石の磁極に高低差を設
けることにより、溶鋼流の閉塞状態、及び鋳型短辺に沿
って集中する下降流が防止され、鋳片内の介在物性欠陥
を低減できる。また高低差を50mm以上、300mm
以下と規制することにより、更に鋳片内の介在物性欠陥
を低減できる。
According to the present invention, the height difference of the magnetic poles of the electromagnet is provided to prevent the molten steel flow from being blocked and the downward flow concentrated along the shorter side of the mold, thereby reducing the inclusion property defects in the slab. it can. Also, the height difference is 50 mm or more, 300 mm
By restricting the following, inclusion property defects in the slab can be further reduced.

【0055】更に、高低差に加えて、1Hz以上の磁界
静止型交流磁界とすることにより、鋳型内湯面変動量が
減少して、更に低く鋳片内の介在物性欠陥を低減でき、
安定した信頼性の高い鋳片が製造できる。
Further, in addition to the height difference, by using a static AC magnetic field of 1 Hz or more, the fluctuation level of the molten metal in the mold is reduced, and the inclusion defect in the cast piece can be further reduced.
A stable and highly reliable slab can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】静止型の交流磁界を採用した場合の、周波数と
短辺近傍の湯面変動量との関係を調査した図である。
FIG. 1 is a diagram in which a relationship between a frequency and an amount of fluctuation of a molten metal surface in the vicinity of a short side is investigated when a static AC magnetic field is adopted.

【図2】本発明に係わる電磁石の配置方法の一実施形態
及び溶鋼流動の制御状態を模式的に示した図である。
FIG. 2 is a diagram schematically showing an embodiment of an electromagnet arranging method according to the present invention and a molten steel flow control state.

【図3】電磁石の磁極の高低差と介在物欠陥指数との関
係を調査した図である。
FIG. 3 is a diagram investigating the relationship between the height difference of the magnetic poles of the electromagnet and the inclusion defect index.

【図4】磁界の周波数と介在物欠陥指数との関係を調査
した図である。
FIG. 4 is a diagram investigating the relationship between the frequency of a magnetic field and the inclusion defect index.

【符号の説明】[Explanation of symbols]

1 鋳型長辺 2 鋳型短辺 3 浸漬ノズル 4 モールドパウダー層 5 鋳型内湯面 6 リターンヨーク 7 磁極 8 励磁コイル 1 Mold Long Side 2 Mold Short Side 3 Immersion Nozzle 4 Mold Powder Layer 5 Mold Surface 6 Return Yoke 7 Magnetic Pole 8 Excitation Coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 長方形断面鋳型の鋳型長辺側に長辺の幅
とほぼ等しい電磁石を、その磁極を対向させて配置し、
浸漬ノズルから鋳型内に吐出される溶鋼流に電磁力を作
用させて、溶鋼流動を制御する連続鋳造方法において、 鋳型長辺側に配置される電磁石は、鋳型長辺幅方向の中
央部で鋳造方向に高低差を設けて磁極が配置されること
を特徴とする連続鋳造方法。
1. A rectangular cross-section mold is provided with electromagnets on the long side of the mold, the width of which is approximately equal to the width of the long side, with their magnetic poles facing each other.
In a continuous casting method that controls the molten steel flow by applying an electromagnetic force to the molten steel flow discharged from the immersion nozzle into the mold, the electromagnet arranged on the long side of the mold is cast at the center in the width direction of the long side of the mold. A continuous casting method, wherein magnetic poles are arranged with a height difference in the direction.
【請求項2】 前記高低差を50mm以上、300mm
以下とすることを特徴とする請求項1に記載の連続鋳造
方法。
2. The height difference is 50 mm or more and 300 mm.
The continuous casting method according to claim 1, wherein:
【請求項3】 前記電磁石に印加される電圧の周波数を
1Hz以上の交流電流とし、磁界を磁界静止型交流磁界
とすることを特徴とする請求項1または請求項2に記載
の連続鋳造方法。
3. The continuous casting method according to claim 1, wherein the frequency of the voltage applied to the electromagnet is an alternating current of 1 Hz or higher, and the magnetic field is a static magnetic field of the magnetic field static type.
JP30897395A 1995-11-28 1995-11-28 Continuous casting method Withdrawn JPH09150243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30897395A JPH09150243A (en) 1995-11-28 1995-11-28 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30897395A JPH09150243A (en) 1995-11-28 1995-11-28 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH09150243A true JPH09150243A (en) 1997-06-10

Family

ID=17987450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30897395A Withdrawn JPH09150243A (en) 1995-11-28 1995-11-28 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH09150243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method
JP2008221243A (en) * 2007-03-09 2008-09-25 Jfe Steel Kk Continuously casting method and apparatus for steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method
JP2008221243A (en) * 2007-03-09 2008-09-25 Jfe Steel Kk Continuously casting method and apparatus for steel

Similar Documents

Publication Publication Date Title
JP4807462B2 (en) Steel continuous casting method
KR930002836B1 (en) Method and apparatus for continuous casting
US6712124B1 (en) Method and apparatus for continuous casting of metals
RU2539253C2 (en) Method and unit for regulation of flows of molten metal in crystalliser pan for continuous casting of thin flat slabs
JPH10305353A (en) Continuous molding of steel
JP5929872B2 (en) Steel continuous casting method
EP0445328B1 (en) Method for continuous casting of steel
JP3188273B2 (en) Control method of flow in mold by DC magnetic field
JPH09150243A (en) Continuous casting method
JP3125661B2 (en) Steel continuous casting method
JP4407260B2 (en) Steel continuous casting method
JP6036144B2 (en) Continuous casting method
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP2773154B2 (en) Steel continuous casting method
WO1994015739A1 (en) A.c. magnetic stirring modifier for continuous casting of metals
JPH09168847A (en) Method for continuously casting steel
JPH01271035A (en) Method for continuously casting steel
JP5146002B2 (en) Steel continuous casting method
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JP2010221275A (en) Apparatus and method of continuous casting
JPH0819840A (en) Continuous casting method
JP3147824B2 (en) Continuous casting method
JP2000158108A (en) Continuous steel casting method
JP3149821B2 (en) Continuous casting method
JPH10305358A (en) Continuous molding of steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204