JP2008221243A - Continuously casting method and apparatus for steel - Google Patents

Continuously casting method and apparatus for steel Download PDF

Info

Publication number
JP2008221243A
JP2008221243A JP2007059392A JP2007059392A JP2008221243A JP 2008221243 A JP2008221243 A JP 2008221243A JP 2007059392 A JP2007059392 A JP 2007059392A JP 2007059392 A JP2007059392 A JP 2007059392A JP 2008221243 A JP2008221243 A JP 2008221243A
Authority
JP
Japan
Prior art keywords
coil
mold
steel
continuous casting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059392A
Other languages
Japanese (ja)
Other versions
JP4983320B2 (en
Inventor
Yoichi Ito
陽一 伊藤
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007059392A priority Critical patent/JP4983320B2/en
Publication of JP2008221243A publication Critical patent/JP2008221243A/en
Application granted granted Critical
Publication of JP4983320B2 publication Critical patent/JP4983320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the flowing and temperature of a molten steel without causing any stagnation and interference point in a mold when the casting is performed by using an electromagnetic stirring device in a continuous casting apparatus often varied in a width, a thickness or a casting speed. <P>SOLUTION: When the steel is continuously cast by performing the casting while generating the circulating flow in the mold with the electromagnetic stirring device having a moving magnetic field coil, the casting is performed so that the axial center position L<SB>0</SB>of the coil 24 on the downstream side is set to lower position in the casting direction than the axial center position L<SB>2</SB>of the coil 22 on the upstream side in the stirring direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼の連続鋳造方法及び装置に係り、特に、電磁攪拌装置により鋳型内に旋回流を発生させる鋼の連続鋳造に用いるのに好適な、製品でのヘゲ・スリーバー等と呼ばれる気泡・介在物性の欠陥を安定して減少させることができる鋼の連続鋳造方法及び装置に関する。   The present invention relates to a steel continuous casting method and apparatus, and more particularly, a bubble called a hege / sleever or the like in a product suitable for use in continuous casting of steel in which a swirling flow is generated in a mold by an electromagnetic stirrer. -It is related with the continuous casting method and apparatus of steel which can reduce the defect of inclusion physical property stably.

連続鋳造において溶鋼が凝固する際に、溶鋼内に残存する気泡や介在物が排除できずに製品まで持ち込まれると、ヘゲ・スリーバー欠陥と呼ばれる欠陥が発生し、安定した品質を確保することが困難となる。   When the molten steel solidifies in continuous casting, if bubbles or inclusions remaining in the molten steel cannot be excluded and are brought into the product, defects called Hege-Sleeber defects occur, and stable quality can be ensured. It becomes difficult.

これに対して連続鋳造においては、鋳型(モールドとも称する)内の溶鋼流動を制御して、溶鋼中の気泡や介在物の凝固シェルへの捕捉防止や鋳型下部への侵入を防止する技術が、現在一般的に実施されている。   On the other hand, in continuous casting, a technique for controlling the flow of molten steel in a mold (also referred to as a mold) to prevent trapping of bubbles and inclusions in the molten steel into the solidified shell and preventing entry into the lower part of the mold, Currently in common practice.

ヘゲ・スリーバー欠陥等は、鋳型内の溶鋼流動において、流速の淀みが生じる箇所や温度が局所的に低下する箇所に起源を持ち易いことが知られており、この対策として鋳型内の凝固界面における溶鋼流動の鋳型長辺方向(鋳型幅方向)及び鋳造方向の均一化を目的に、交流磁界や静磁場を用いた電磁流動制御技術が提案されている。   It is known that hege and sliver defects are likely to originate in locations where stagnation of the flow velocity occurs or where the temperature decreases locally in the molten steel flow in the mold. In order to make the molten steel flow uniform in the mold long side direction (mold width direction) and the casting direction, an electromagnetic flow control technique using an alternating magnetic field or a static magnetic field has been proposed.

例えば、特許文献1には、浸漬ノズルの吐出口を浸漬ノズルの側方向から下向きに35度以上75度以下の範囲内の角度で開口すると共に、吐出口を電磁攪拌装置のコア下面よりも低い位置になるようにすることにより、浸漬ノズルから溶鋼が吐出されることによって生じる吐出流の影響を最小限に抑制して溶鋼を攪拌できるようにする連続鋳造方法が記載されている。   For example, in Patent Document 1, the discharge port of the immersion nozzle is opened downward from the side direction of the immersion nozzle at an angle in the range of 35 degrees or more and 75 degrees or less, and the discharge port is lower than the lower surface of the core of the electromagnetic stirring device. A continuous casting method is described in which the molten steel can be agitated while minimizing the influence of the discharge flow caused by discharging the molten steel from the immersion nozzle.

又、特許文献2には、連続鋳造設備における断面が長方形の鋳型の長辺側メニスカス(湯面とも称する)近傍に電磁攪拌装置を対向して設置し、前記電磁攪拌装置によって鋳型内溶鋼に幅方向の電磁攪拌流を付与すると共に、浸漬ノズルの吐出口における磁束密度が、電磁攪拌装置の最大磁束密度の50%以下である位置に浸漬ノズルの吐出口を設置して鋳造する連続鋳造方法が記載されている。   Further, in Patent Document 2, an electromagnetic stirrer is installed in the vicinity of a long side meniscus (also referred to as a molten metal surface) of a mold having a rectangular cross section in a continuous casting facility. A continuous casting method in which a magnetic flux density at the discharge port of the immersion nozzle is provided at a position where the magnetic flux density at the discharge port of the immersion nozzle is 50% or less of the maximum magnetic flux density of the electromagnetic stirring device and cast. Are listed.

又、特許文献3には、電磁攪拌装置を用いた鋼の連続鋳造方法において、溶鋼に浸漬した部分の浸漬ノズルの外壁と、鋳型の長辺側に形成された凝固シェルとの最小距離dが次式を満たすように鋳造する連続鋳造方法が記載されている。   Further, in Patent Document 3, in the continuous casting method of steel using an electromagnetic stirrer, the minimum distance d between the outer wall of the immersion nozzle immersed in the molten steel and the solidified shell formed on the long side of the mold is described. A continuous casting method for casting so as to satisfy the following formula is described.

d=(t−D)/2−18√(L/Vc)≧86√(f) …(1)
ここで、t:鋳型短辺壁長さ(mm)
D:浸漬ノズル外径(mm)
L:浸漬ノズルと凝固シェルとの距離が最小となる部位までのメニスカスから
の距離(m)
Vc:鋳造速度(m/分)
f:電磁攪拌コイルの周波数(Hz)
d = (t−D) / 2-18√ (L / Vc) ≧ 86√ (f) (1)
Where t: mold short side wall length (mm)
D: Outer nozzle outer diameter (mm)
L: From the meniscus to the part where the distance between the immersion nozzle and the solidified shell is minimized
Distance (m)
Vc: Casting speed (m / min)
f: Frequency of electromagnetic stirring coil (Hz)

又、特許文献4には、平断面が長方形で、長短辺壁の長さ比(a/b)が3以上の鋳型に、浸漬ノズルを介して溶鋼を吐出する溶鋼の連続鋳造において、前記浸漬ノズルとして、その外径に対する鋳型の短辺壁長さの比(b/d)が3以下で、溶鋼の吐出口が中心軸対称で一対設けられたものを用い、且つ、前記吐出口から次式を満足する方向に、溶鋼を連続的に吐出させるようにしたものが記載されている。   Patent Document 4 discloses that in the continuous casting of molten steel in which molten steel is discharged through a dipping nozzle into a mold having a rectangular cross section and a length ratio (a / b) of long and short side walls of 3 or more. The nozzle has a ratio of the short side wall length of the mold to its outer diameter (b / d) of 3 or less, and a pair of molten steel discharge ports provided symmetrically with respect to the central axis. It is described that the molten steel is continuously discharged in a direction satisfying the equation.

0<θ<θ
ここで、θ:溶鋼の吐出方向と浸漬ノズルの中心軸から鋳型の短辺壁面に下ろした垂線
とのなす角度
θ:浸漬ノズルの中心軸から鋳型の短辺壁面に下ろした垂線と鋳型の平断面
での対角線とのなす角度
0 <θ <θ M
Where θ: perpendicular to the short side wall of the mold from the discharge direction of the molten steel and the central axis of the immersion nozzle
Angle made with
θ M : perpendicular line from the central axis of the immersion nozzle to the short side wall of the mold and the flat section of the mold
The angle between the diagonal line

しかしながら、連続鋳造の操業は、鋳造速度、鋳片幅、鋳片厚み等が絶えず変化するのが一般的であり、上記の方法では、ある一定条件の鋳造に対しては有効な場合も存在するものの、問題を完全に解決するには至っていない。   However, in continuous casting operations, the casting speed, slab width, slab thickness, etc. are generally constantly changing, and the above method may be effective for casting under certain conditions. However, the problem has not been solved completely.

又、上記の技術に加えて電磁攪拌装置を用いて幅方向に旋回流を付加する連続鋳造方法において、鋳型長辺方向に2分割以上のコイルを有し、その攪拌力や印加電流に差をつけることで、旋回流と浸漬ノズルからの反転流の干渉を低減しようとする技術も提案されている。   In addition to the above technique, in a continuous casting method in which a swirl flow is added in the width direction using an electromagnetic stirrer, the mold has two or more coils in the long side direction of the mold, and the difference in stirring force and applied current is In addition, a technique for reducing interference between the swirling flow and the reverse flow from the immersion nozzle has been proposed.

例えば、特許文献5には、電磁攪拌機構を持つ鋳造鋳型の基準面の銅板厚みを実測して、銅板厚みに対応して前記電磁攪拌機構の発生するローレンツ力が最大となる電源の動作周波数を求め、該動作周波数の電流を電磁攪拌コイルに供給することを特徴とする金属の連続鋳造方法が記載されている。   For example, in Patent Document 5, a copper plate thickness of a reference surface of a casting mold having an electromagnetic stirring mechanism is measured, and an operating frequency of a power source at which the Lorentz force generated by the electromagnetic stirring mechanism is maximized corresponding to the copper plate thickness is set. A method for continuously casting a metal characterized in that a current having the operating frequency is supplied to an electromagnetic stirring coil is described.

又、特許文献6には、矩形をした連続鋳造用鋳型内で、向かい合った長辺に沿って相対する方向に電磁力を加える溶鋼の電磁攪拌方法において、溶鋼の流れを一方の短辺から長辺に沿って内側に向かわせる初期の加速段階のローレンツ力F1と、溶鋼の流れを前記内側から他方の短辺に向かわせる後期の加速段階のローレンツ力F2の比F2/F1を、0.15〜0.5の範囲に制御し、溶鋼の流速を20〜60cm/秒に確保することを特徴とする溶鋼の攪拌方法が記載されている。   Further, in Patent Document 6, in a molten steel electromagnetic stirring method in which electromagnetic force is applied in a rectangular continuous casting mold in an opposing direction along opposite long sides, the flow of molten steel is extended from one short side to a long side. The ratio F2 / F1 of the Lorentz force F1 in the initial acceleration stage that is directed inward along the side and the Lorentz force F2 in the late acceleration stage that directs the flow of molten steel from the inside toward the other short side is 0.15. There is described a method for stirring molten steel, characterized in that it is controlled in the range of ~ 0.5 and the flow rate of molten steel is ensured to 20 to 60 cm / sec.

又、特許文献7には、金属スラブの連続鋳造において、モールドの横断面中央部に設けた浸漬ノズルからモールド内に溶湯を注入しつつ、メニスカス面内の2つのモールド長辺に沿って設けた電磁攪拌コイルにより、溶湯をメニスカス面内で流動させる方法であって、2つのモールド長辺に沿う電磁攪拌推力を互いに逆向きにし、且つ、浸漬ノズルからモールドに向かう向きの電磁攪拌推力を、モールド短辺から浸漬ノズルに向かう向きの電磁攪拌推力よりも大きくすることにより、メニスカス面内の溶湯に一様な回転流を与えることを特徴とする連続鋳造におけるモールド内溶湯流動方法が記載されている。   Further, in Patent Document 7, in continuous casting of a metal slab, the molten metal is injected into the mold from an immersion nozzle provided in the center of the cross section of the mold, and provided along the two long sides of the meniscus surface. In this method, the molten metal is caused to flow in the meniscus plane with an electromagnetic stirring coil, the electromagnetic stirring thrusts along the two long sides of the mold are opposite to each other, and the electromagnetic stirring thrust in the direction from the immersion nozzle toward the mold is applied to the mold. A method for flowing a molten metal in a mold in continuous casting is described in which a uniform rotational flow is applied to the molten metal in the meniscus surface by increasing the electromagnetic stirring thrust in the direction from the short side toward the immersion nozzle. .

又、特許文献8には、電磁力の発生装置である電磁石が、鋳型に溶融金属を注入するノズルの流出口と実質上同一レベルに、鋳型の対向2長辺に沿って配置され、該レベルで2長辺に水平循環駆動される溶融金属の各長辺に沿う流動の起点側鋳型短編から長辺に沿って1/4長辺幅点における鋳型長辺方向に沿う水平方向の溶融金属水平速度である起点側速度Vsが、各長辺に沿う流動の終点側鋳型短辺から鋳型長辺に沿って1/4長辺幅点における鋳型長辺方向に沿う水平方向の溶融金属水平速度である終点側速度Veに対して、Vs≧Veとなる電磁力を溶融金属に与えることを特徴とする溶融金属の流動装置が記載され、更に、第1長辺と第2長編に沿う前記水平流の各起点側に配置した電磁石の励磁電流Iに対する各終点側に配置した電磁石の励磁電流Iの比α=I/Iが、0≦α≦0.5である溶融金属の流動制御装置が記載されている。 In Patent Document 8, an electromagnet, which is an electromagnetic force generator, is arranged along the two opposite long sides of the mold at substantially the same level as the nozzle outlet for injecting molten metal into the mold. Horizontal molten metal in the horizontal direction along the long side of the mold at the 1/4 long side width point along the long side from the casting short side of the casting mold along the long side of the molten metal that is driven by horizontal circulation in the two long sides The starting side velocity Vs, which is the velocity, is the molten metal horizontal velocity in the horizontal direction along the mold long side direction at the quarter long side width point from the short end side mold side of the flow along the long side to the long side of the mold. A molten metal flow device is described in which an electromagnetic force Vs ≧ Ve is applied to a molten metal for a certain end-side speed Ve, and the horizontal flow along the first long side and the second long piece is further described. Arranged on each end side with respect to exciting current I 1 of the electromagnet arranged on each starting point side of A molten metal flow control device is described in which the ratio α = I 2 / I 1 of the excitation current I 2 of the electromagnet is 0 ≦ α ≦ 0.5.

特許文献5乃至8の技術は、内容が異なるものの、幅方向の流速を均一化することを目的とする点で共通する。   The techniques of Patent Documents 5 to 8 are common in that the contents are different, but the purpose is to equalize the flow velocity in the width direction.

特開2004−42062号公報JP 2004-42062 A 特開2001−47201号公報Japanese Patent Laid-Open No. 2001-47201 特開2006−192441号公報JP 2006-192441 A 特開2000−263199号公報JP 2000-263199 A 特許第2978356号公報Japanese Patent No. 2978356 特許第3129942号公報Japanese Patent No. 3129942 特許第2948443号公報Japanese Patent No. 2948443 特許第3577389号公報Japanese Patent No. 3577389

しかしながら、同一平面上で水平旋回タイプの攪拌を行なう上では程度の改善は可能であるが、旋回流と反転流の干渉による流動の淀みを完全に回避することは不可能であり、問題が残っていた。   However, although it is possible to improve the degree of horizontal swirling type stirring on the same plane, it is impossible to completely avoid the stagnation of the flow due to the interference between the swirling flow and the reversal flow. It was.

本発明は、前記従来の問題点を解決するべくなされたもので、幅・厚み、鋳造速度が絶えず変化するような連続鋳造設備において、鋳型内の電磁攪拌装置を用いて鋳造するにあたり、鋳型内に淀みや干渉点のない安定した溶鋼流動、溶鋼温度を達成することを目的とする。   The present invention has been made to solve the above-mentioned conventional problems. In a continuous casting facility in which the width / thickness and the casting speed are constantly changed, when casting using an electromagnetic stirring device in the mold, The objective is to achieve stable molten steel flow and molten steel temperature without any stagnation or interference.

本発明の請求項1に係る発明は、移動磁界コイルを有する電磁攪拌装置により鋳型内に旋回流を発生させて鋳造を行なう鋼の連続鋳造に際して、攪拌方向の下流側のコイルの軸心位置を、攪拌方向の上流側のコイルの軸心位置よりも、鋳造方向に対し低い位置に設置して鋳造することを特徴とする鋼の連続鋳造方法である。   In the invention according to claim 1 of the present invention, the position of the axial center of the coil on the downstream side in the stirring direction is determined during continuous casting of steel in which a swirling flow is generated in a mold by an electromagnetic stirring device having a moving magnetic field coil. The continuous casting method of steel, characterized in that the steel is cast by being installed at a position lower than the axial center position of the coil on the upstream side in the stirring direction with respect to the casting direction.

又、請求項2に係る発明は、請求項1において、上流側のコイルの軸心位置Lと下流側のコイルの軸心位置Lの差Lが、次式を満足するように設定することにより、表面品質に特に優れたスラブの製造を可能とすることを特徴とする鋼の連続鋳造方法である。 The invention according to claim 2 is set so that the difference L 1 between the axial center position L 2 of the upstream coil and the axial center position L 0 of the downstream coil satisfies the following expression. By doing this, it is possible to produce a slab that is particularly excellent in surface quality.

=0.8×L〜1.2×L(mm) …(2)
=2×10×(TP/W/2×cosθ)0.8
−400×L−2000×(D−0.3)−1000×W0.5(mm) …(3)
(但し、L<0の場合はL=0とする)
ここで、L:旋回流下流側の移動磁界コイルのコイル軸心〜湯面間の距離(m)
:旋回流上流側の移動磁界コイルのコイル軸心〜湯面間の距離(m)
TP:スループット(トン/分)
W:鋳片幅(m)
θ:下向きノズル角度(°)
D:鋳片厚み(m)
L 1 = 0.8 × L 0 to 1.2 × L 0 (mm) (2)
L 0 = 2 × 10 6 × (TP / W / 2 × cos θ) 0.8
−400 × L 2 −2000 × (D−0.3) −1000 × W 0.5 (mm) (3)
(However, if L 0 <0, L 0 = 0)
Here, L 0 : distance (m) between the coil axis and the molten metal surface of the moving magnetic field coil on the downstream side of the swirl flow
L 2 : Distance between the coil axis of the moving magnetic field coil on the upstream side of the swirl flow and the molten metal surface (m)
TP: Throughput (ton / min)
W: slab width (m)
θ: Downward nozzle angle (°)
D: slab thickness (m)

又、請求項3に係る発明は、前記移動磁界コイルが、鋳型長辺の方向に分割されていることを特徴とする請求項1又は2に記載の鋼の連続鋳造方法である。   The invention according to claim 3 is the steel continuous casting method according to claim 1 or 2, wherein the moving magnetic field coil is divided in the direction of the long side of the mold.

又、請求項4に係る発明は、前記移動磁界コイルが、鋳型長辺に対して傾けられていることを特徴とする請求項1又は2に記載の鋼の連続鋳造方法である。   The invention according to claim 4 is the steel continuous casting method according to claim 1 or 2, wherein the moving magnetic field coil is inclined with respect to the long side of the mold.

又、請求項5に係る発明は、移動磁界コイルを有する電磁攪拌装置により鋳型内に旋回流を発生させて鋳造を行なう鋼の連続鋳造装置において、攪拌方向の下流側のコイルの軸心位置が、攪拌方向の上流側のコイルの軸心位置よりも、鋳造方向に対し低い位置に設置されていることを特徴とする鋼の連続鋳造装置である。   According to a fifth aspect of the present invention, there is provided a continuous casting apparatus for steel in which a swirling flow is generated in a mold by an electromagnetic stirring device having a moving magnetic field coil, and the axial center position of the coil on the downstream side in the stirring direction is The continuous casting apparatus for steel is characterized in that it is installed at a position lower than the axial center position of the coil on the upstream side in the stirring direction with respect to the casting direction.

本発明は、図1に示すように、鋳型10の長辺方向(図の左右方向)に2分割されたコイル22、24を有する電磁攪拌装置を用いる場合でも、コイルの軸心位置を同一高さ平面上ではなく、旋回流の下流側に相当するコイル位置を下方とすることで、旋回流と反転流の干渉による流動の停滞域を解消することを必要条件とする。図において、12は浸漬ノズルである。   In the present invention, as shown in FIG. 1, even when an electromagnetic stirrer having coils 22 and 24 divided into two in the long side direction (left and right direction in the figure) of the mold 10 is used, the axial center position of the coil is kept at the same height. It is a necessary condition that the stagnation region of the flow due to the interference between the swirl flow and the reversal flow is eliminated by setting the coil position corresponding to the downstream side of the swirl flow downward rather than on the vertical plane. In the figure, 12 is an immersion nozzle.

図2は、図1に示したような、鋳型長辺方向に2分割された電磁攪拌コイル22、24を用いた場合の鋳型内模式図を示す。図2(a)に示すように、鋳型短辺の反転流と水平旋回流が干渉することにより、湯面に流動停滞域が生じ、介在物や気泡除去に支障を来たすことが広く知られている。これに対して、図2(b)に示すように、水平旋回流の下流側のコイル24の攪拌推力(ローレンツ力)を低下させることにより、干渉範囲を改善させることは可能であるが、位置や領域が変化するのみで、完全には干渉を回避できないという問題が生じる。   FIG. 2 is a schematic diagram in the mold when the electromagnetic stirring coils 22 and 24 divided into two in the mold long side direction as shown in FIG. 1 are used. As shown in FIG. 2 (a), it is widely known that a flow stagnation region occurs on the molten metal surface due to interference between the reversal flow of the short side of the mold and the horizontal swirling flow, which hinders the removal of inclusions and bubbles. Yes. On the other hand, as shown in FIG. 2 (b), it is possible to improve the interference range by reducing the stirring thrust (Lorentz force) of the coil 24 on the downstream side of the horizontal swirl flow. There is a problem that interference cannot be completely avoided only by changing the area.

そこで本発明者等は、この問題を解決するために、鋳型長辺方向に2分割されたコイルの軸心の鋳造方向の位置を、旋回流の上流側と下流側のコイルで同一高さとしないことを特徴とする。   Therefore, in order to solve this problem, the present inventors do not set the positions in the casting direction of the axial center of the coil divided into two in the mold long side direction to the same height in the upstream and downstream coils of the swirl flow. It is characterized by that.

従来技術では、鋳片幅、鋳片厚み、鋳造速度等が実操業中に変化すると、鋳型内の電磁攪拌による旋回流とノズル吐出流に起因する流れの間に複雑な干渉が生じるため、コイル段階でヘゲ・スリーバー欠陥の全く無い安定した製品を製造することは困難であったが、本発明法を適用することで、上記条件毎に最適なノズル形状に変更する必要が無くなり、高生産性と高品質の両立が可能となる。   In the prior art, when the slab width, slab thickness, casting speed, etc. change during actual operation, complicated interference occurs between the swirling flow caused by electromagnetic stirring in the mold and the flow caused by the nozzle discharge flow. Although it was difficult to produce a stable product with no hege and sliver defects at the stage, by applying the method of the present invention, it is not necessary to change to the optimum nozzle shape for each of the above conditions, and high production Compatibility with high quality.

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明の第1実施形態を図3により説明する。図3は、第1実施形態の対象とする電磁攪拌用コイルと鋳型の位置関係を鋳型側から見た図を示すものであり、鋳型10の長辺方向に対して、電磁攪拌により旋回流を付与するためのコイルの内、下流側のコイル24の軸心位置を、上流側のコイル22に比較してメニスカスからの位置が低くなるように設置したものである。   First, a first embodiment of the present invention will be described with reference to FIG. FIG. 3 is a view of the positional relationship between the electromagnetic stirring coil and the mold, which is the object of the first embodiment, viewed from the mold side. A swirling flow is generated by electromagnetic stirring with respect to the long side direction of the mold 10. Among the coils to be applied, the axial center position of the downstream coil 24 is set so that the position from the meniscus is lower than that of the upstream coil 22.

上流側のコイル22に比較して下流側のコイル24の位置をメニスカスから低くするのは、以下の理由による。通常、連続鋳造においては、1ストランドの単位時間当たりの溶鋼の鋳造量を表わすスループットTPが3トン/分以上になると、下向きの2孔タイプの浸漬ノズルを使用するのが一般的であり、浸漬ノズルを通過した溶鋼は、鋳型短辺に衝突して反転流を形成する。   The reason why the position of the downstream coil 24 is lowered from the meniscus as compared with the upstream coil 22 is as follows. Normally, in continuous casting, when the throughput TP representing the casting amount of molten steel per unit time of one strand is 3 tons / min or more, it is common to use a downward two-hole type immersion nozzle. The molten steel that has passed through the nozzle collides with the short side of the mold to form a reverse flow.

連続鋳造では、浸漬ノズル12からの溶鋼により持ち込まれた気泡や介在物を、半製品となるスラブに持ち込むと製品欠陥の原因となるため、極力凝固シェルに捕捉されないように鋳型から除去することが重要であり、その一手段として移動磁界を用いた電磁攪拌装置が、スラブ・ブルーム等の連続鋳造において一般的に利用されている。電磁攪拌装置により、メニスカス部分に10〜40cm/秒の旋回流速が付与されると、介在物や気泡は凝固シェルに捕捉されるのが防止される洗浄効果が期待される。   In continuous casting, if bubbles or inclusions brought in by molten steel from the immersion nozzle 12 are brought into a slab, which is a semi-finished product, it may cause product defects. Therefore, the continuous casting may be removed from the mold so as not to be captured by the solidified shell. An electromagnetic stirrer that uses a moving magnetic field as one means is generally used in continuous casting of slabs and blooms. When a swirling flow velocity of 10 to 40 cm / sec is applied to the meniscus portion by an electromagnetic stirring device, a cleaning effect is expected in which inclusions and bubbles are prevented from being trapped by the solidified shell.

しかしながら、旋回流の下流側では、反転流と旋回流が衝突・干渉することにより凝固界面に有効な流速が付与されない場合は、その箇所が起点となって介在物や気泡が捕捉されることとなり、製品でのヘゲ・スリーバー欠陥の発生が問題となる。   However, on the downstream side of the swirling flow, if an effective flow velocity is not given to the solidification interface due to collision and interference between the reversing flow and the swirling flow, inclusions and bubbles are trapped starting from that location. The occurrence of hege and sliver defects in products is a problem.

本発明者等は、低融点金属を用いたモデル実験や数値計算を駆使して上記の旋回流と反転流の干渉を抑制するのに有効な手段を検討した。その結果、鋳型長辺方向で2分割されたコイルの攪拌推力(ローレンツ力)を単純に下流側を弱くするのみでは、メニスカス部の干渉箇所を完全に解消することは困難であることを究明した。   The present inventors studied effective means for suppressing the interference between the swirling flow and the reversal flow by making full use of model experiments and numerical calculations using a low melting point metal. As a result, it was found that it is difficult to completely eliminate the interference part of the meniscus by simply weakening the stirring thrust (Lorentz force) of the coil divided into two in the mold long side direction on the downstream side. .

旋回流と反転流の干渉を回避するには、旋回流下流側に位置するコイル24の位置を鋳造方向に下げることにより回避することが有効である。又、旋回流下流側のコイル24を上流側のコイル22に対して低下させる量は、反転流の強度に応じて変化させるのが、より良い。   In order to avoid interference between the swirling flow and the reversing flow, it is effective to avoid by lowering the position of the coil 24 located on the downstream side of the swirling flow in the casting direction. Further, it is better that the amount by which the coil 24 on the downstream side of the swirl flow is lowered relative to the coil 22 on the upstream side is changed according to the strength of the reverse flow.

鋳型メニスカス近傍の凝固界面における反転流の流速や位置を決定付ける要因について、本発明者等が調査を行なった結果、スループットTP、スラブ幅W、ノズル吐出角度(下向き)θ、鋳型厚みDが大きく影響していることが判明した。   As a result of investigation by the present inventors on the factors that determine the flow velocity and position of the reversal flow at the solidification interface near the mold meniscus, the throughput TP, slab width W, nozzle discharge angle (downward) θ, and mold thickness D are large. It turns out that it is affecting.

上流側のコイル22の軸心部のメニスカスからの距離Lとしたとき、反転流が旋回流と干渉しないための下流側のコイル24の軸心部のメニスカスからの距離をLとすると、上記の影響因子を用いて経験的に次式で表記できることが判明した。 When the distance L 2 from the meniscus of the axial portion of the upstream side of the coil 22, the reversing flow is the distance from the meniscus of the axial portion of the downstream side of the coil 24 to not interfere with the swirling flow and L 0, Using the above influencing factors, it has been empirically found that the following equation can be used.

=0.8×L−1.2×L(mm) …(2)
=2×10×(TP/W/2×cosθ)0.8
−400×L−2000×(D−0.3)−1000×W0.5(mm) …(3)
(但し、L<0の場合はL=0とする)
L 1 = 0.8 × L 0 −1.2 × L 0 (mm) (2)
L 0 = 2 × 10 6 × (TP / W / 2 × cos θ) 0.8
−400 × L 2 −2000 × (D−0.3) −1000 × W 0.5 (mm) (3)
(However, if L 0 <0, L 0 = 0)

但し、スループットTPは、次式で算出される。   However, the throughput TP is calculated by the following equation.

TP=VR×D×W×ρFe …(4)
ここで、VR:引抜速度(m/分)
ρFe:溶鋼密度(kg/m3
TP = VR × D × W × ρFe (4)
Where VR: drawing speed (m / min)
ρFe: Molten steel density (kg / m 3 )

上記の式は、以下の考え方に基づき算出されたものである。   The above formula is calculated based on the following concept.

反転流が大きい場合は、Lを大きくする必要があり、反転流の大きさを表わす項は(TP/W/2×cosθ)0.8であるため、この項の係数は正の値となる。 When the reverse flow is large, L 1 needs to be increased, and the term representing the magnitude of the reverse flow is (TP / W / 2 × cos θ) 0.8 , so the coefficient of this term is a positive value.

又、上流側のコイル22の軸心位置Lが大きい場合は、上流側コイル22が深い位置にあり、下流側コイル24は反転流の影響をあまり受けないため、上流側よりそれほど下方に位置させる必要が無く、この項の係数は負となる。 Further, if the axis position L 2 on the upstream side of the coil 22 is large, it is in a deep position upstream coil 22, since the downstream coil 24 is not significantly affected by reversing flow, so positioned below the upstream There is no need to make this, and the coefficient of this term is negative.

又、鋳型厚みDが大きい場合は、反転流が凝固界面付近まで届かないため、影響が小さく、鋳型厚みDが300mm以上では凝固界面に反転流が殆んど到達しなくなる。従って、Dが大きいほど、上流側と下流側のコイルの距離に差をつける必要がなくなるため、この項の係数も負となる。   Further, when the mold thickness D is large, the reversal flow does not reach the vicinity of the solidification interface, so the influence is small, and when the mold thickness D is 300 mm or more, the reversal flow hardly reaches the solidification interface. Therefore, as D is larger, there is no need to make a difference in the distance between the upstream and downstream coils, so the coefficient of this term becomes negative.

最後の鋳片幅WのW0.5の値は、旋回流の加速区間に対応するものであり、この値が大きいほど、上流側のコイル22で流速が加速されるため、下流の旋回流が短辺近くで下方に潜り込もうとする傾向が顕著となる。従って、コイル位置を下方に下げる必要が無くなるため、この項の係数も負となる。 The value of W 0.5 of the last slab width W corresponds to the acceleration section of the swirl flow, and the larger this value, the faster the flow velocity is accelerated by the upstream coil 22, so the swirl flow downstream is shorter. The tendency to dive down near the side becomes prominent. Accordingly, since it is not necessary to lower the coil position downward, the coefficient of this term is also negative.

以上の係数は、これらの傾向について、本発明者等が、数値計算あるいはラボや実機のテストから経験的に導いた値である。   The above coefficients are values that the inventors of the present invention have empirically derived from these numerical calculations or laboratory or actual machine tests.

上流側コイル22よりも下流側コイル24の軸心位置Lを距離Lだけ低下させると、旋回流と反転流の干渉が殆んど解消され、流動の停滞に起因する表面欠陥の発生が回避できる。 When the axial position L 0 of the downstream coil 24 is lowered by the distance L 1 relative to the upstream coil 22, the interference between the swirl flow and the reverse flow is almost eliminated, and the occurrence of surface defects due to the stagnation of the flow occurs. Can be avoided.

表面欠陥に対して極めて要求仕様の厳しい鋼種に対しては、0.8×L〜1.2×Lの距離に、下流側のコイルを上流側のコイルに比べて低く設定できると、品質改善効果が大きいことが判明している。 For steel types with extremely strict specifications for surface defects, if the downstream coil can be set lower than the upstream coil at a distance of 0.8 × L 1 to 1.2 × L 1 , It has been found that the quality improvement effect is great.

なお、上記の軸心位置の設定は、操業中にコイル軸心位置を自動で変更できるように駆動系を設けることで操業条件の変化にオンラインで可能となる。   The axial center position can be set online by changing the operating conditions by providing a drive system so that the coil axial position can be automatically changed during operation.

又、図4に示す第2実施形態のように、鋳型長辺方向に対して、コイル軸心が傾き角度を有するように移動磁界コイル20を設置することによっても、同様の効果が得られることも確認している。この場合には、鋳型長辺方向に分割されていないコイル20を使用することも可能となる。   Further, as in the second embodiment shown in FIG. 4, the same effect can be obtained by installing the moving magnetic field coil 20 so that the coil axis has an inclination angle with respect to the mold long side direction. Also confirmed. In this case, it is possible to use the coil 20 that is not divided in the mold long side direction.

以下、本発明を示す一実施例について示す。   Hereinafter, an embodiment showing the present invention will be described.

本発明者等は、鋳型厚みが200mm〜300mm、鋳片幅が1000mm〜2000mmのスラブを、スラブ連続鋳造機で鋳造した。溶鋼成分は一般的な極低炭素鋼である。   The present inventors cast a slab having a mold thickness of 200 mm to 300 mm and a slab width of 1000 mm to 2000 mm with a slab continuous casting machine. The molten steel component is a general very low carbon steel.

浸漬ノズルは2孔で、吐出角度が下向き25度もしくは35度のものを用い、浸漬深さは250mm一定とした。鋳造速度は、定常速度部で1.2〜2.2m/分の条件とした。   The immersion nozzle has 2 holes, the discharge angle is downward 25 degrees or 35 degrees, and the immersion depth is constant at 250 mm. The casting speed was 1.2 to 2.2 m / min in the steady speed part.

電磁攪拌コイルは、周波数2Hz、印加電流750A一定で使用した。   The electromagnetic stirring coil was used at a frequency of 2 Hz and a constant applied current of 750A.

コイルにおけるヘゲ・スリーバー欠陥を目視検査にて実施し、コイル1本当たりの欠陥個数が1.2×10-3個/m2以上の場合は×、4×10-4個/m2〜8×10-4個/m2以上の場合は△、0個/m2〜4×10-4個/m2の場合は○、0個/m2の場合は◎として評価した。 When the number of defects per coil is 1.2 × 10 −3 pieces / m 2 or more after carrying out a visual inspection for hege / slivers defects in the coil, the number is 4 × 10 −4 pieces / m 2 The case of 8 × 10 −4 pieces / m 2 or more was evaluated as Δ, the case of 0 pieces / m 2 to 4 × 10 −4 pieces / m 2 was evaluated as ◯, and the case of 0 pieces / m 2 was evaluated as ◎.

表1に各実験条件並びに実験結果を示した。   Table 1 shows the experimental conditions and the experimental results.

Figure 2008221243
Figure 2008221243

本発明の条件においては、コイルにおけるヘゲ・スリーバー欠陥を完全に抑制できることが確認できた。   Under the conditions of the present invention, it was confirmed that hege / sliver defects in the coil could be completely suppressed.

電磁攪拌コイルを鋳型上面から見た概略図Schematic view of the electromagnetic stirring coil viewed from the top of the mold 電磁攪拌による旋回流とノズル吐出流からの反転流の干渉を表わす鋳型縦断面の概略図Schematic diagram of mold longitudinal section showing interference of swirling flow and reverse flow from nozzle discharge flow by electromagnetic stirring 本発明の第1実施形態におけるコイル設置位置を示す鋳型縦断面の概略図Schematic of mold longitudinal section showing coil installation position in the first embodiment of the present invention 鋳型長辺方向に分割されていない電磁攪拌コイルを使用する場合の本発明の第2実施形態におけるコイル設置位置を示す鋳型縦断面の概略図Schematic diagram of the mold longitudinal section showing the coil installation position in the second embodiment of the present invention when using an electromagnetic stirring coil that is not divided in the mold long side direction

符号の説明Explanation of symbols

10…鋳型
12…浸漬ノズル
20…移動磁界コイル
22…上流側コイル
24…下流側コイル
DESCRIPTION OF SYMBOLS 10 ... Mold 12 ... Immersion nozzle 20 ... Moving magnetic field coil 22 ... Upstream coil 24 ... Downstream coil

Claims (5)

移動磁界コイルを有する電磁攪拌装置により鋳型内に旋回流を発生させて鋳造を行なう鋼の連続鋳造に際して、
攪拌方向の下流側のコイルの軸心位置を、攪拌方向の上流側のコイルの軸心位置よりも、鋳造方向に対し低い位置に設置して鋳造することを特徴とする鋼の連続鋳造方法。
In continuous casting of steel, which performs casting by generating a swirl flow in a mold by an electromagnetic stirrer having a moving magnetic field coil,
A continuous casting method for steel, wherein the casting is performed by setting the axial center position of the coil on the downstream side in the stirring direction at a position lower than the axial position of the upstream coil in the stirring direction with respect to the casting direction.
請求項1において、上流側のコイルの軸心位置Lと下流側のコイルの軸心位置Lの差Lが、次式を満足するように設定することにより、表面品質に特に優れたスラブの製造を可能とすることを特徴とする鋼の連続鋳造方法。
=0.8×L〜1.2×L(mm)
=2×10×(TP/W/2×cosθ)0.8
−400×L−2000×(D−0.3)−1000×W0.5(mm)
(但し、L<0の場合はL=0とする)
ここで、L:旋回流下流側の移動磁界コイルのコイル軸心〜湯面間の距離(m)
:旋回流上流側の移動磁界コイルのコイル軸心〜湯面間の距離(m)
TP:スループット(トン/分)
W:鋳片幅(m)
θ:下向きノズル角度(°)
D:鋳片厚み(m)
In claim 1, the difference L 1 of the upstream side of the axis position L 2 and axis position L 0 of the downstream side of the coil of the coil, by setting so as to satisfy the following equation, particularly good surface quality A method for continuous casting of steel, characterized in that slabs can be manufactured.
L 1 = 0.8 × L 0 to 1.2 × L 0 (mm)
L 0 = 2 × 10 6 × (TP / W / 2 × cos θ) 0.8
−400 × L 2 −2000 × (D−0.3) −1000 × W 0.5 (mm)
(However, if L 0 <0, L 0 = 0)
Here, L 0 : distance (m) between the coil axis and the molten metal surface of the moving magnetic field coil on the downstream side of the swirl flow
L 2 : Distance between the coil axis of the moving magnetic field coil on the upstream side of the swirl flow and the molten metal surface (m)
TP: Throughput (ton / min)
W: slab width (m)
θ: Downward nozzle angle (°)
D: slab thickness (m)
前記移動磁界コイルが、鋳型長辺の方向に分割されていることを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。   The continuous casting method for steel according to claim 1 or 2, wherein the moving magnetic field coil is divided in the direction of the long side of the mold. 前記移動磁界コイルが、鋳型長辺に対して傾けられていることを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。   The continuous casting method for steel according to claim 1 or 2, wherein the moving magnetic field coil is inclined with respect to the long side of the mold. 移動磁界コイルを有する電磁攪拌装置により鋳型内に旋回流を発生させて鋳造を行なう鋼の連続鋳造装置において、
攪拌方向の下流側のコイルの軸心位置が、攪拌方向の上流側のコイルの軸心位置よりも、鋳造方向に対し低い位置に設置されていることを特徴とする鋼の連続鋳造装置。
In a continuous casting apparatus for steel that performs casting by generating a swirl flow in a mold by an electromagnetic stirring device having a moving magnetic field coil,
A continuous casting apparatus for steel, wherein the axial center position of the coil on the downstream side in the stirring direction is installed at a position lower than the axial center position of the coil on the upstream side in the stirring direction.
JP2007059392A 2007-03-09 2007-03-09 Method and apparatus for continuous casting of steel Active JP4983320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059392A JP4983320B2 (en) 2007-03-09 2007-03-09 Method and apparatus for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059392A JP4983320B2 (en) 2007-03-09 2007-03-09 Method and apparatus for continuous casting of steel

Publications (2)

Publication Number Publication Date
JP2008221243A true JP2008221243A (en) 2008-09-25
JP4983320B2 JP4983320B2 (en) 2012-07-25

Family

ID=39840441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059392A Active JP4983320B2 (en) 2007-03-09 2007-03-09 Method and apparatus for continuous casting of steel

Country Status (1)

Country Link
JP (1) JP4983320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117696653A (en) * 2023-12-25 2024-03-15 江门市棉湖铜业有限公司 Preparation process of antioxidant copper wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040654A (en) * 1983-08-12 1985-03-04 Mitsubishi Heavy Ind Ltd Electromagnetic stirrer in mold
JPH09150243A (en) * 1995-11-28 1997-06-10 Nkk Corp Continuous casting method
JPH10109146A (en) * 1996-10-05 1998-04-28 Nippon Steel Corp Method for continuously casting high oxygen steel
JPH11226710A (en) * 1998-02-19 1999-08-24 Nippon Steel Corp Electromagnetic stirring method in mold
JP3129942B2 (en) * 1995-08-02 2001-01-31 新日本製鐵株式会社 Stirring method of molten steel in continuous casting mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040654A (en) * 1983-08-12 1985-03-04 Mitsubishi Heavy Ind Ltd Electromagnetic stirrer in mold
JP3129942B2 (en) * 1995-08-02 2001-01-31 新日本製鐵株式会社 Stirring method of molten steel in continuous casting mold
JPH09150243A (en) * 1995-11-28 1997-06-10 Nkk Corp Continuous casting method
JPH10109146A (en) * 1996-10-05 1998-04-28 Nippon Steel Corp Method for continuously casting high oxygen steel
JPH11226710A (en) * 1998-02-19 1999-08-24 Nippon Steel Corp Electromagnetic stirring method in mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117696653A (en) * 2023-12-25 2024-03-15 江门市棉湖铜业有限公司 Preparation process of antioxidant copper wire
CN117696653B (en) * 2023-12-25 2024-05-07 江门市棉湖铜业有限公司 Preparation process of antioxidant copper wire

Also Published As

Publication number Publication date
JP4983320B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP6129435B1 (en) Continuous casting method
CN112074359B (en) Electromagnetic stirring device
JP2008279501A (en) Continuous casting device of slab and its continuous casting method
CN108025354B (en) Continuous casting method of slab
JP4983320B2 (en) Method and apparatus for continuous casting of steel
JP2008055431A (en) Method of continuous casting for steel
TWI693978B (en) Molding equipment
JP4912945B2 (en) Manufacturing method of continuous cast slab
JP4553639B2 (en) Continuous casting method
JP4407260B2 (en) Steel continuous casting method
JP5018144B2 (en) Steel continuous casting method
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JP4203167B2 (en) Continuous casting method for molten steel
JP6287901B2 (en) Steel continuous casting method
JP5710448B2 (en) Control method of electromagnetic stirring device in mold at the end of casting
JP4492333B2 (en) Steel continuous casting method
JP7265129B2 (en) Continuous casting method
JP2002028761A (en) Electromagnetic stirring method in mold for continuous casting
JP7247777B2 (en) Steel continuous casting method
JP4910357B2 (en) Steel continuous casting method
JP2022165468A (en) Method of continuously casting carbon-steel slab
JP2006255759A (en) Method for continuously casting steel
JP2007260727A (en) Method for continuously casting extra-low carbon steel slab
JPH10193056A (en) Method for removing inclusion in continuous casting tundish
JP2005238318A (en) Apparatus and method for continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250