JP5710448B2 - Control method of electromagnetic stirring device in mold at the end of casting - Google Patents

Control method of electromagnetic stirring device in mold at the end of casting Download PDF

Info

Publication number
JP5710448B2
JP5710448B2 JP2011241331A JP2011241331A JP5710448B2 JP 5710448 B2 JP5710448 B2 JP 5710448B2 JP 2011241331 A JP2011241331 A JP 2011241331A JP 2011241331 A JP2011241331 A JP 2011241331A JP 5710448 B2 JP5710448 B2 JP 5710448B2
Authority
JP
Japan
Prior art keywords
casting
deceleration
ratio
molten steel
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011241331A
Other languages
Japanese (ja)
Other versions
JP2013094835A (en
Inventor
優 石原
優 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011241331A priority Critical patent/JP5710448B2/en
Publication of JP2013094835A publication Critical patent/JP2013094835A/en
Application granted granted Critical
Publication of JP5710448B2 publication Critical patent/JP5710448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳型内電磁撹拌装置を用いた鋳造において、鋳造末期に印加強度を制御する方法に関する。   The present invention relates to a method for controlling applied strength at the end of casting in casting using an in-mold electromagnetic stirring device.

従来から、電磁力により鋳型内の溶鋼を撹拌させる鋳型内電磁撹拌装置を用いた鋳造が行われている。溶鋼を撹拌させることにより、凝固界面に捕捉される気泡またはアルミナ系介在物を洗い流し、鋳片品質を向上させるととともに、鋳型内の溶鋼温度の均一化及びメニスカス近傍の溶鋼温度の低下抑止が図られる。ここで、鋳造末期は、タンディッシュ内の溶鋼面上に浮上している介在物やスラグを巻込んで鋳造する可能性がある。そこで、特許文献1では、鋳造末期に、印加強度(磁束密度)を低下させ、撹拌力を弱めることにより、鋳型内での介在物やスラグの巻き込みを防止している。   Conventionally, casting using an in-mold electromagnetic stirrer that stirs molten steel in a mold by electromagnetic force has been performed. By stirring the molten steel, bubbles or alumina inclusions trapped at the solidification interface are washed away, improving the quality of the slab, and making the molten steel temperature uniform in the mold and suppressing the decrease in molten steel temperature near the meniscus. It is done. Here, at the end of casting, there is a possibility that inclusions and slag floating on the molten steel surface in the tundish are rolled up and cast. Therefore, in Patent Document 1, at the end of casting, the applied strength (magnetic flux density) is reduced and the stirring force is weakened to prevent inclusions and slag from being caught in the mold.

特開昭59−229266号公報JP 59-229266 A

ところで、タンディッシュ内の介在物やスラグが鋳型へ流出すると、溶鋼の清浄度が悪化し、介在物等が凝固界面に捕捉されやすくなる。介在物等が凝固界面から洗い流されることなく鋳片内に混入すると、鋳片の品質が低下してしまう。特に、鋳造末期は、タンディッシュから鋳型内へ介在物やスラグが流出し易い。このような時期に、特許文献1のように撹拌力を弱めてしまうと、介在物等の量が多いにもかかわらず、これらを洗浄する効果が弱いため、鋳片内に取り込まれる介在物等が多くなる。その結果、鋳造末期における鋳片の品質が低下する。   By the way, when inclusions and slag in the tundish flow out into the mold, the cleanliness of the molten steel deteriorates and inclusions and the like are easily trapped at the solidification interface. If inclusions or the like are mixed into the slab without being washed away from the solidification interface, the quality of the slab is degraded. In particular, at the end of casting, inclusions and slag tend to flow out from the tundish into the mold. At this time, if the stirring force is weakened as in Patent Document 1, the effect of cleaning these is weak despite the large amount of inclusions, etc., so that the inclusions taken into the slab etc. Will increase. As a result, the quality of the slab at the end of casting is deteriorated.

また、特許文献1のように鋳造末期に撹拌力を弱めると、メニスカス近傍の溶鋼温度の低下を抑えることができないため、鋳型内の溶鋼表面が凝固しやすい。その結果、ディッケルの生成や溶鋼中の気泡及び介在物の取り込みが生じ、鋳造末期における鋳片の品質低下を招く。   Further, if the stirring force is weakened at the end of casting as in Patent Document 1, a decrease in the molten steel temperature in the vicinity of the meniscus cannot be suppressed, so that the molten steel surface in the mold is easily solidified. As a result, the generation of dickel and the incorporation of bubbles and inclusions in the molten steel occur, leading to a deterioration in the quality of the slab at the end of casting.

そこで、本発明は、鋳造末期の鋳片の品質を向上させることができる方法を提供することを目的とする。   Then, an object of this invention is to provide the method which can improve the quality of the slab at the end of casting.

本発明は、鋳造速度が一定である定常域の後に鋳造速度を減速させる減速域において、前記定常域の印加強度Bに対する前記減速域の印加強度Bの比率Xが下記(1)式を満たすことを特徴とする鋳造末期における鋳型内電磁撹拌装置の制御方法である。
[(20/T)×t+100]≦X≦180・・・(1)
但し、Tは、鋳造速度の減速開始から鋳造終了までの時間[min.]
tは、鋳造速度の減速開始からの経過時間[min.]
tは、時間tにおける、定常域の印加強度Bに対する減速域の印加強度Bの比率[%]
According to the present invention, in the deceleration region in which the casting speed is reduced after the steady region where the casting speed is constant, the ratio X t of the applied intensity B d in the deceleration region to the applied strength B s in the steady region is expressed by the following equation (1). It is the control method of the electromagnetic stirring device in the mold at the end of casting, characterized by satisfying the above.
[(20 / T) × t + 100] ≦ X t ≦ 180 (1)
However, T is the time from the start of deceleration of the casting speed to the end of casting [min. ]
t is the elapsed time from the start of deceleration of the casting speed [min. ]
X t is the ratio of the applied intensity B d in the deceleration region to the applied intensity B s in the steady region at time t [%]

本発明によると、比率Xが所定の範囲内になるように、減速域の印加強度Bを制御することにより、鋳造末期において、凝固界面の洗浄効果を向上させることができるとともに、メニスカス近傍の溶鋼温度の低下を抑止できる。これにより、鋳片へのスラグの混入及び気泡や介在物の取り込みを防止できるため、鋳造末期の鋳片の品質を向上させることができる。 According to the present invention, as the ratio X t is within a predetermined range, by controlling the applied intensity B d of the deceleration zone, in casting the end, it is possible to improve the cleaning effect of the solidification interface, the meniscus near The decrease in molten steel temperature can be suppressed. Thereby, since mixing of slag into a slab and uptake | capture of a bubble and an inclusion can be prevented, the quality of the slab at the end of casting can be improved.

本発明によると、鋳造末期において、鋳片へのスラグの混入及び溶鋼中の気泡や介在物の取り込みを防止できるため、鋳造末期の鋳片の品質を向上させることができる。   According to the present invention, it is possible to prevent the slag from being mixed into the slab and the introduction of bubbles and inclusions in the molten steel at the end of casting, so that the quality of the slab at the end of casting can be improved.

(a)は本実施形態の連続鋳造機の一部の構成を示す断面模式図であり、(b)は(a)のIB−IB線に沿った断面図である。(A) is a cross-sectional schematic diagram which shows the structure of a part of continuous casting machine of this embodiment, (b) is sectional drawing along the IB-IB line of (a). (a)は鋳造速度と鋳造時間との関係を示す図であり、(b)は比率Xと鋳造時間との関係を示す図である。(A) is a figure which shows the relationship between casting speed and casting time, (b) is a figure which shows the relationship between ratio Xt and casting time. 比率Xと時間割合t/Tとの関係を示す図である。It is a figure which shows the relationship between ratio Xt and time ratio t / T. 実験条件(鋳造速度と鋳造時間との関係)を示す図である。It is a figure which shows experimental conditions (relationship between a casting speed and casting time). 実験条件(鋳型の平面図)を示す図である。It is a figure which shows experimental conditions (plan view of a casting_mold | template). 実験結果(実施例)を示す図である。It is a figure which shows an experimental result (Example). 実験結果(実施例)を示す図である。It is a figure which shows an experimental result (Example). 実験結果(実施例)を示す図である。It is a figure which shows an experimental result (Example). 実験結果(実施例)を示す図である。It is a figure which shows an experimental result (Example). 実験結果(比較例)を示す図である。It is a figure which shows an experimental result (comparative example). 実験結果(比較例)を示す図である。It is a figure which shows an experimental result (comparative example). 実験結果(比較例)を示す図である。It is a figure which shows an experimental result (comparative example).

以下、本発明の好適な実施形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1に示すように、連続鋳造機100は、取鍋から供給される溶鋼を収容するタンディッシュ1と、タンディッシュ1の底部に取り付けられた浸漬ノズル2と、浸漬ノズル2の下部が配置された鋳型3と、鋳型3の外側に配置された鋳型内電磁撹拌装置4とを備えている。また、鋳型3内の溶鋼5上にモールドパウダー6が浮遊している。図1(b)に示すように、鋳型3は、平面視において略矩形状に形成されている。   As shown in FIG. 1, the continuous casting machine 100 includes a tundish 1 that accommodates molten steel supplied from a ladle, an immersion nozzle 2 attached to the bottom of the tundish 1, and a lower portion of the immersion nozzle 2. The mold 3 and an in-mold electromagnetic stirring device 4 disposed outside the mold 3 are provided. Further, the mold powder 6 is floating on the molten steel 5 in the mold 3. As shown in FIG.1 (b), the casting_mold | template 3 is formed in the substantially rectangular shape in planar view.

鋳型内電磁撹拌装置4は、鋳型3を挟んで互いに反対側に配置された1対のモータ4a,4bを有する。図1(b)に示すように、モータ4a,4bは、鋳型3の長辺に沿って設けられている。鋳型3内の溶鋼5は、主に、鋳型内電磁撹拌装置4により発生した電磁力と、浸漬ノズル2からの吐出流とによって流動する。図1(b)に示す矢印は、溶鋼5の流れ(一例)を示している。   The in-mold electromagnetic stirring device 4 has a pair of motors 4a and 4b disposed on opposite sides of the mold 3 with respect to each other. As shown in FIG. 1B, the motors 4 a and 4 b are provided along the long side of the mold 3. The molten steel 5 in the mold 3 flows mainly by the electromagnetic force generated by the in-mold electromagnetic stirring device 4 and the discharge flow from the immersion nozzle 2. The arrow shown in FIG.1 (b) has shown the flow (an example) of the molten steel 5. FIG.

ところで、鋳造開始後、鋳造速度が操業上の所定の速度に達すると、この速度を維持した後、鋳造末期に減速する(図2(a)参照)。本実施形態では、鋳造速度が所定の速度に維持されている時期を「定常域s」と呼び、その後、鋳造速度を減速した時期を「減速域d」と呼ぶ。「減速域d」は、減速開始(「定常域s」終了時)から鋳造終了までであり、タンディッシュ1内の溶鋼量が規定量以下となった時点から減速を開始する。なお、図2,3では、鋳造初期を省略している。   By the way, when the casting speed reaches a predetermined operational speed after the start of casting, the speed is maintained and then decelerated at the end of casting (see FIG. 2A). In the present embodiment, the time when the casting speed is maintained at a predetermined speed is referred to as “steady region s”, and the time when the casting speed is subsequently reduced is referred to as “deceleration region d”. The “deceleration zone d” is from the start of deceleration (at the end of the “steady zone s”) to the end of casting, and starts deceleration when the amount of molten steel in the tundish 1 becomes equal to or less than the specified amount. 2 and 3, the initial casting is omitted.

そして、本実施形態では、図2(b)に示すように、「減速域d」において、比率Xが所定の範囲内になるように、鋳型内電磁撹拌装置4の印加強度Bを制御して、溶鋼5の撹拌力を増大させることにより、凝固界面の洗浄効果を向上させるとともに、溶鋼5の温度低下を抑止する。ここで、比率Xとは、定常域sの印加強度Bに対する減速域dの印加強度Bの比率である。以下では、「減速域d」の印加強度Bの制御方法について、図3を参照しつつ、詳細に説明する。 In the present embodiment, as shown in FIG. 2 (b), in the "deceleration zone d", so that the ratio X t is within a predetermined range, controls the application intensity B d in-mold electromagnetic stirring device 4 Then, by increasing the stirring force of the molten steel 5, the effect of cleaning the solidification interface is improved and the temperature drop of the molten steel 5 is suppressed. Here, the ratio X t, is the ratio of the applied intensity B d of the reduction zone d with respect to the applied intensity B s of constant region s. Hereinafter, a method for controlling the application intensity B d in the “deceleration region d” will be described in detail with reference to FIG.

(比率Xの下限)
図1(a)において、鋳型3内の溶鋼5の撹拌力が小さい場合、凝固界面の洗浄力が弱いため、凝固界面に捕捉される介在物(スラグ)や気泡を十分に洗い流すことができない(図1(a)の凝固シェル7に付着した介在物や気泡8参照)。また、溶鋼5に供給される熱量が少ないため、溶鋼5の表面が凝固しやすい。ここで、上記「介在物」とは、取鍋から鋳型3へ流出したスラグや溶鋼5中の酸化物等を示す。また、「気泡」とは、溶鋼5中から浮上したものであり、浸漬ノズル2や浸漬ノズル2の上部に連結した上ノズルから吹き込まれるArガスによるものである。
(Lower limit of the ratio X t)
In FIG. 1 (a), when the stirring force of the molten steel 5 in the mold 3 is small, the detergency of the solidification interface is weak, so that inclusions (slag) and bubbles trapped at the solidification interface cannot be sufficiently washed away ( The inclusions and bubbles 8 attached to the solidified shell 7 in FIG. Further, since the amount of heat supplied to the molten steel 5 is small, the surface of the molten steel 5 is easily solidified. Here, the “inclusions” refer to slag flowing out from the ladle into the mold 3, oxides in the molten steel 5, and the like. The “bubbles” are floating from the molten steel 5 and are caused by Ar gas blown from the upper nozzle connected to the upper part of the immersion nozzle 2 or the immersion nozzle 2.

そこで、「減速域d」の『「定常域sの印加強度B」に対する「減速域dの印加強度B」の比率X』[%]が下記(A)式を満たすようにする。
[(20/T)×t+100]≦X・・・(A)
ここで、Tは、減速開始から鋳造終了までの時間(減速域dの時間)[min.]であり、タンディッシュ内に残存した溶鋼量等から算出される。
また、tは、減速開始からの経過時間[min.]であり、0≦t≦Tである。
さらに、Xtは、時間tにおける、「定常域sの印加強度B」に対する「減速域dの印加強度B」の比率[%]であり、下記(B)式で表される。
t=(B/B)×100・・・(B)
Therefore, "deceleration zone d" in "" ratio X t of the "applied intensity B d of the reduction zone d" with respect to the applied intensity B s "of constant region s" [%] is to satisfy the following equation (A).
[(20 / T) × t + 100] ≦ X t (A)
Here, T is the time from the start of deceleration to the end of casting (time of the deceleration region d) [min. It is calculated from the amount of molten steel remaining in the tundish.
T is the elapsed time from the start of deceleration [min. And 0 ≦ t ≦ T.
Furthermore, X t is the time t, is the ratio of the "applied intensity B d of the reduction zone d" to "applied intensity B s of constant region s" [%] is represented by the following formula (B).
X t = (B d / B s ) × 100 (B)

上記(A)式において、Xの下限(X=(20/T)×t+100)は、図3に示すように、減速開始から鋳造終了まで比率Xを漸増させるとともに、鋳造終了時の比率Xを減速開始時の比率Xより20%増大させたものである。 In the above formula (A), the lower limit of X t (X t = (20 / T) × t + 100) , as shown in FIG. 3, with gradual increase of the ratio X t from the deceleration start to finish casting, during the casting End the ratio X t in which increased 20% from the deceleration start time of the ratio X t.

(比率Xの上限)
図1(a)において、鋳型3内の溶鋼5の撹拌力が大きすぎる場合、溶鋼表面が大きく変動し、溶鋼5上のモールドパウダー6が溶鋼5内に巻き込まれる。そこで、「減速域d」の『「定常域sの印加強度B」に対する「減速域dの印加強度B」の比率X』[%]が下記(C)式を満たすようにする。
≦180・・・(C)
(The upper limit of the ratio X t)
In FIG. 1A, when the stirring force of the molten steel 5 in the mold 3 is too large, the surface of the molten steel greatly fluctuates, and the mold powder 6 on the molten steel 5 is caught in the molten steel 5. Therefore, "deceleration zone d" in "" ratio X t of the "applied intensity B d of the reduction zone d" with respect to the applied intensity B s "of constant region s" [%] is to satisfy the following equation (C).
X t ≦ 180 (C)

上記(C)式において、Xの上限(X=180)は、図3に示すように、減速開始から鋳造終了までの全域で比率Xが180%である場合を示す。 In the above formula (C), the upper limit of X t (X t = 180), as shown in FIG. 3 shows the case where the ratio X t across from deceleration start to the end casting is 180%.

以上から、鋳造末期の「減速域d」において、『「定常域sの印加強度B」に対する「減速域dの印加強度B」の比率X』[%]が下記(1)式を満たすように、減速域dの印加強度Bを制御する(図3参照)。図3では、下記(1)式を満たす領域を、領域Rとしている。
[(20/T)×t+100]≦X≦180・・・(1)
From the above, in the “deceleration region d” at the end of casting, “the ratio X t of “ applied intensity B d of deceleration region d ”to“ applied intensity B s of steady region s ”” [%] is expressed by the following equation (1). The application intensity B d of the deceleration region d is controlled so as to satisfy (see FIG. 3). In FIG. 3, a region that satisfies the following expression (1) is a region R.
[(20 / T) × t + 100] ≦ X t ≦ 180 (1)

ここで、本実施形態の操業条件を説明する。なお、下記の条件は一例であり、変更可能なものである。
・定常域sの鋳造速度(図2(a)に示すV
0.60[m/min.]以上2.3[m/min.]以下
・モールドパウダー
粘度:0.05Pa・s以上0.24Pa・s以下
・浸漬ノズル
吐出孔の角度が15°以上35°以下である2孔式ノズル
・溶鋼過熱度
10℃以上30℃以下
溶鋼過熱度は、「タンディッシュ内の溶鋼温度(測定温度)−凝固温度」から求められる。ここで、タンディッシュ内の溶鋼温度(測定温度)は、タンディッシュ内の底部に形成された注入孔の直上において、溶鋼表面から100mm以上200mm以下の深さまでバッチ測温棒を浸漬させて測定した温度である。
・鋼種
炭素含有量が0.01[mass%]以上1.05[mass%]以下
酸素含有量が0.0003[mass%]以上0.0010[mass%]以下
ここで、上記「酸素含有量」とは、鋼中に溶存した酸素の量(フリー酸素量)であり、介在物中の酸素量を含んでいない。したがって、上記「酸素含有量」は、フリー酸素量と介在物中の酸素量とを含めたトータル酸素量と異なる。
Here, the operation conditions of this embodiment will be described. Note that the following conditions are examples and can be changed.
Casting speed in the steady region s (V c shown in FIG. 2 (a))
0.60 [m / min. ] 2.3 [m / min.] ] Below ・ Mold powder
Viscosity: 0.05 Pa · s to 0.24 Pa · s ・ Immersion nozzle
2-hole nozzle with discharge hole angle of 15 ° to 35 °
10 degreeC or more and 30 degrees C or less A molten steel superheat degree is calculated | required from "the molten steel temperature (measurement temperature) in a tundish-solidification temperature". Here, the molten steel temperature (measurement temperature) in the tundish was measured by immersing a batch temperature measuring rod from the molten steel surface to a depth of 100 mm or more and 200 mm or less immediately above the injection hole formed in the bottom of the tundish. Temperature.
-Steel type Carbon content is 0.01 [mass%] or more and 1.05 [mass%] or less Oxygen content is 0.0003 [mass%] or more and 0.0010 [mass%] or less Here, the above-mentioned “oxygen content” "Is the amount of oxygen dissolved in the steel (the amount of free oxygen) and does not include the amount of oxygen in the inclusions. Therefore, the “oxygen content” is different from the total oxygen amount including the free oxygen amount and the oxygen amount in the inclusions.

また、本実施形態の鋳型内電磁撹拌装置4の制御方法は、下記の連続鋳造機等を用いた連続鋳造に適用することができる。
・(厚み)230mm×(幅)800mm以上1800mm以下のスラブを鋳造可能なスラブ連続鋳造機
・(厚み)380mm×(幅)600mmのブルームを鋳造可能なブルーム連続鋳造機
Moreover, the control method of the in-mold electromagnetic stirring apparatus 4 of this embodiment can be applied to continuous casting using the following continuous casting machine or the like.
・ Slab continuous casting machine capable of casting slabs of (thickness) 230 mm × (width) 800 mm to 1800 mm ・ Bloom continuous casting machine capable of casting bloom of (thickness) 380 mm × (width) 600 mm

以上に述べたように、本実施形態では、比率Xが上記(A)式を満たすように、減速域dの印加強度Bを制御することにより、溶鋼5の撹拌力を確保できる。これにより、凝固界面の洗浄効果を向上させることができるため、凝固界面に付着した介在物や気泡を十分に洗い流すことができる。よって、これらが鋳片に混入することを防止できる。また、溶鋼5へ十分な熱量を供給できるため、メニスカス近傍の溶鋼5の温度低下を抑止できる。これにより、溶鋼5表面の凝固を防止できるため、ディッケルの生成や溶鋼中の気泡及び介在物の取り込みを防止できる。 As described above, in this embodiment, so that the ratio X t satisfies the above formula (A), by controlling the applied intensity B d of the reduction zone d, it can be secured agitation force of the molten steel 5. Thereby, since the washing | cleaning effect of a solidification interface can be improved, the inclusion and bubble which adhered to the solidification interface can be washed away sufficiently. Therefore, these can be prevented from being mixed into the slab. Moreover, since sufficient heat quantity can be supplied to the molten steel 5, the temperature fall of the molten steel 5 of the meniscus vicinity can be suppressed. Thereby, since solidification of the surface of the molten steel 5 can be prevented, it is possible to prevent generation of dickel and intake of bubbles and inclusions in the molten steel.

また、比率Xが上記(C)式を満たすように、減速域dの印加強度Bを制御することにより、溶鋼5の湯面変動を抑えることができるため、モールドパウダー6の巻き込みを防止できる。 The prevention, so that the ratio X t satisfies the above formula (C), by controlling the applied intensity B d of the reduction zone d, it is possible to suppress the melt surface variations of the molten steel 5, the entrainment of mold powder 6 it can.

このように、鋳造末期の減速域dにおいて、比率Xが(1)式を満たすように、減速域dの印加強度Bを制御することにより、鋳造末期における、凝固界面の洗浄効果を向上させることができるとともに、メニスカス近傍の溶鋼5の温度低下を防止できる。よって、鋳片に介在物や気泡が混入することを防止できるため、鋳造末期における鋳片の品質を向上させることができる。 Thus, improved in the deceleration range d of the cast end, so as to satisfy the ratio X t is a (1), by controlling the applied intensity B d of the reduction zone d, the casting end, the cleaning effect of the solidification interface And the temperature drop of the molten steel 5 in the vicinity of the meniscus can be prevented. Therefore, since inclusions and bubbles can be prevented from being mixed into the slab, the quality of the slab at the end of casting can be improved.

次に、本発明の実施例及び比較例を説明する。   Next, examples and comparative examples of the present invention will be described.

(実施例(実験番号1〜16),比較例(実験番号17〜28))
「減速域d」の『「定常域sの印加強度B」に対する「減速域dの印加強度B」の比率X』[%]を変えたときの鋳型内でのディッケルの生成の有無及び鋳片の欠陥の有無を調べた。
(Example (Experiment Nos. 1 to 16), Comparative Example (Experiment Nos. 17 to 28))
Whether generation of deckle in the mold of "ratio X t of the" applied intensity B d of "deceleration zone d with respect to the applied intensity B s" of constant region s'"[%] when changing the" deceleration zone d " And the presence or absence of defects in the slab was examined.

表1には、実験条件と評価結果とを示しており、実験条件として、時間tにおける比率Xの一例を示している。また、図4,5には、実験条件を示し、図6〜12には、評価結果(比率Xと鋳造末期の時間割合t/Tとの関係)を示している。ここで、図6〜12の「鋳造末期」は「減速域d」を示す。なお、図10の「上限」は(1)式の上限(X=180)であり、図10〜12の「下限」は(1)式の下限(X=(20/T)×t+100)である。また、図6〜12では、鋳造初期及び定常域sを省略している。 Table 1 shows the evaluation results and experimental conditions, as the experimental conditions, shows an example of a ratio X t at time t. 4 and 5 show the experimental conditions, and FIGS. 6 to 12 show the evaluation results (relationship between the ratio Xt and the time ratio t / T at the end of casting). Here, “the end of casting” in FIGS. 6 to 12 indicates “deceleration range d”. The “upper limit” in FIG. 10 is the upper limit (X t = 180) of the formula (1), and the “lower limit” in FIGS. 10 to 12 is the lower limit (X t = (20 / T) × t + 100 of the formula (1). ). Moreover, in FIGS. 6-12, the casting initial stage and the steady region s are abbreviate | omitted.

以下に、表1に示す実験条件及び評価結果を説明する。なお、表1に示す鋳型上部内寸の短辺Dは鋳片の厚みに相当し、長辺Wは鋳片の幅に相当する(図5参照)。また、本実施例及び比較例では、本実施形態で例示した操業条件(モールドパウダー、浸漬ノズル及び連続鋳造機等)と同じ条件で操業した。   The experimental conditions and evaluation results shown in Table 1 will be described below. In addition, the short side D of the mold upper inner dimension shown in Table 1 corresponds to the thickness of the slab, and the long side W corresponds to the width of the slab (see FIG. 5). Moreover, in the present Example and the comparative example, it operate | moved on the same conditions as the operation conditions (Mold powder, an immersion nozzle, a continuous casting machine, etc.) illustrated by this embodiment.

[実験条件]
<減速域dの鋳造速度>
減速域dの鋳造速度を、図4に示す下記の4つのパターンで変化させた。
パターン1:減速域dで鋳造速度を階段状に3回減速する。
パターン2:減速域dで鋳造速度を階段状に4回減速する。
パターン3:減速域dで鋳造速度を階段状に5回減速する。
パターン4:減速域dの全域で鋳造速度を漸減させる。
表1の「減速パターン」の欄には、図4に示すパターン番号を示している。なお、図4では、主に減速域dの鋳造速度を示し、鋳造初期及び定常域sの一部を省略している。
また、表1の「減速度(平均減速量)」の欄には、減速域dにおける単位時間当たりの平均減速量を示している(下記式参照)。

Figure 0005710448
<減速域dの時間T(減速開始から鋳造終了までの時間)>
減速開始時にタンディッシュ内に残存した溶鋼量から時間Tを算出した。本実施例及び比較例では、溶鋼量が50ton以下になってから減速を開始した。図4に示すT,T,T,Tは、それぞれ、減速パターン1,2,3,4の時間Tである。また、図4では、パターン3,4の減速開始時が同時である場合を図示しているが、本実施例及び比較例にはパターン3,4の減速開始時が同時でない場合も含まれる。同様に、図3では、パターン1〜3(4)の減速開始時がそれぞれ異なる場合を図示しているが、本実施例及び比較例にはパターン1〜4の減速開始時が同時である場合も含まれる。
<磁束密度>
鋳型内のメニスカス位置(溶鋼表面)で測定した複数の磁束密度の平均磁束密度を算出した。図5に示すように、鋳型の対向する2つの長辺からそれぞれ10mm離れた位置において、鋳型の一方の短辺から1/4W,1/2W,3/4Wだけ離れた位置(合計6箇所)で磁束密度を測定した。表1には、これらの平均磁束密度を示している。 [Experimental conditions]
<Casting speed in deceleration area d>
The casting speed in the deceleration region d was changed in the following four patterns shown in FIG.
Pattern 1: The casting speed is reduced stepwise three times in the deceleration range d.
Pattern 2: The casting speed is decelerated four times stepwise in the deceleration region d.
Pattern 3: The casting speed is decelerated five times stepwise in the deceleration region d.
Pattern 4: The casting speed is gradually reduced over the entire deceleration area d.
In the column of “Deceleration pattern” in Table 1, the pattern numbers shown in FIG. 4 are shown. In FIG. 4, the casting speed in the deceleration region d is mainly shown, and a part of the casting initial stage and the steady region s is omitted.
The column of “Deceleration (average deceleration amount)” in Table 1 shows the average deceleration amount per unit time in the deceleration range d (see the following formula).
Figure 0005710448
<Time T of deceleration area d (time from the start of deceleration to the end of casting)>
Time T was calculated from the amount of molten steel remaining in the tundish at the start of deceleration. In this example and comparative example, deceleration was started after the amount of molten steel became 50 ton or less. T 1 , T 2 , T 3 , and T 4 shown in FIG. 4 are times T of the deceleration patterns 1 , 2 , 3 , and 4 , respectively. FIG. 4 illustrates the case where the deceleration start times of the patterns 3 and 4 are simultaneous, but the present embodiment and the comparative example also include the case where the deceleration start times of the patterns 3 and 4 are not simultaneous. Similarly, FIG. 3 illustrates a case where the deceleration start times of patterns 1 to 3 (4) are different from each other, but in this embodiment and the comparative example, the deceleration start times of patterns 1 to 4 are simultaneous. Is also included.
<Magnetic flux density>
An average magnetic flux density of a plurality of magnetic flux densities measured at the meniscus position (molten steel surface) in the mold was calculated. As shown in FIG. 5, at a position 10 mm away from two opposing long sides of the mold, positions separated by 1/4 W, 1/2 W, 3/4 W from one short side of the mold (total of 6 locations) The magnetic flux density was measured. Table 1 shows these average magnetic flux densities.

[評価結果]
<ディッケルの生成>
溶鋼上にディッケルが生成している場合、鋳型内の溶鋼に検知棒を挿入すると、ディッケルによる反力(荷重)が検知棒に作用する。そこで、本実施例及び比較例では、減速域dにおいて、鉄線からなる検知棒を鋳型内の溶鋼に挿入し、抵抗なく検知棒を溶鋼内に挿入できたとき、溶鋼上にディッケルが生成していないと評価して、表1,2に「○」を示した。ここで、抵抗なく検知棒を溶鋼内に挿入できたときとは、ディッケルによる反力(荷重)が0.2kgf未満のときである。一方、検知棒を鋳型内の溶鋼に挿入し、0.2kgf以上の荷重を受けたときは、溶鋼上にディッケルが生成していると評価して、表1,2に「×」を示した。また、上記では、検知棒の挿入位置を、鋳型の短辺から1/2Wだけ離れた位置とした。なお、上述したディッケルの生成の評価は、特開平2−41740号公報に記載されたディッケル生成状況検出装置を用いた方法を参考にして行っている。
<表皮下欠陥の発生>
鋳片表層部におけるピンホール欠陥やモールドパウダー及び介在物等による欠陥の有無を調べた。鋳片表面をガス溶削(スカーフ)により表面処理(手入れ)し、鋳片表面から深さ1mm以上の欠陥が発生していなかったときに、製品不良が発生しないと評価して、表1に「○」を示した。一方、鋳片表面から深さ1mm以上の欠陥が発生していたときは、上記欠陥により、その後の圧延工程でヘゲ等の製品不良が発生すると評価して、表1に「×」を示した(出典:Steel Times(incorporating IRON & STEEL), APRIL 1989, VOL217, NO 4 ,p.180,図1)。
[Evaluation results]
<Generate Dickel>
When the deckle is generated on the molten steel, when the detection rod is inserted into the molten steel in the mold, a reaction force (load) due to the deckle acts on the detection rod. Therefore, in this embodiment and the comparative example, when the detection rod made of iron wire is inserted into the molten steel in the mold in the deceleration region d and the detection rod can be inserted into the molten steel without resistance, deckle is generated on the molten steel. In other words, “◯” is shown in Tables 1 and 2. Here, the time when the detection rod can be inserted into the molten steel without resistance is when the reaction force (load) by the deckle is less than 0.2 kgf. On the other hand, when the detection rod was inserted into the molten steel in the mold and received a load of 0.2 kgf or more, it was evaluated that Dickel was generated on the molten steel, and Tables 1 and 2 indicate “x”. . In the above description, the insertion position of the detection rod is set to a position separated by ½ W from the short side of the mold. Note that the above-described evaluation of the generation of the deckle is performed with reference to a method using the deckle generation state detection apparatus described in JP-A-2-41740.
<Occurrence of epidermal defect>
The presence or absence of pinhole defects in the slab surface layer, defects due to mold powder, inclusions, etc. was examined. The surface of the slab was surface-treated (cared for) by gas cutting (scarf), and when no defects having a depth of 1 mm or more were generated from the surface of the slab, it was evaluated that no product defect occurred. “○” is shown. On the other hand, when a defect having a depth of 1 mm or more has occurred from the surface of the slab, it is evaluated that a product defect such as a baldness occurs in the subsequent rolling process due to the defect, and “x” is shown in Table 1. (Source: Steel Times (incorporating IRON & STEEL), APRIL 1989, VOL217, NO 4, p. 180, FIG. 1).

Figure 0005710448
Figure 0005710448

表1及び図5〜11から、実施例(実験番号1〜16)では、減速域dの全域で比率Xが(1)式を満たす領域Rの範囲内にあり(図3参照)、このとき、ディッケルの生成を防止できるとともに、製品不良の発生を防止できることがわかった。一方、比較例(実験番号17〜28)では、減速域dで比率Xが、(1)式を満たさず領域Rの範囲外にあり、ディッケルの生成や製品不良の発生が生じることがわかった。 From Table 1 and FIGS. 5-11, in Example (experiment number 1-16), ratio Xt exists in the range of the area | region R which satisfy | fills (1) Formula in the whole deceleration area | region d (refer FIG. 3). At the same time, it was found that it was possible to prevent the generation of deckle and the occurrence of product defects. On the other hand, in Comparative Example (Test No. 17 to 28), the ratio X t deceleration region d, (1) is outside the range of the region R does not satisfy the equation, it found that the generation of product failure of deckle occurs It was.

比較例の実験番号17,18では、比率Xが(1)式の上限を超え(X>180[%])、溶鋼の撹拌力が大きかったため、溶鋼上のモールドパウダーが溶鋼内に巻き込まれて表皮下欠陥が生じたと考えられる。 In Experiment numbers 17 and 18 of the comparative example, greater than the ratio X t is the upper limit of the (1) formula (X t> 180 [%] ), for agitation force of the molten steel was large, the mold powder on the molten steel caught in the molten steel It is thought that the epidermal defect occurred.

また、比較例の実験番号19〜28では、比率Xtが(1)式の下限より小さい場合があり(X<(20/T)×t+100)、溶鋼の撹拌力が小さかった。そのため、メニスカス近傍の溶鋼温度の低下を抑止できず、ディッケルが生成したと考えられる。また、凝固界面に付着した介在物や気泡を十分に洗い流すことができなかったため、凝固シェルに介在物や気泡が捕捉され、表皮下欠陥が生じたと考えられる。 Further, in Experiment No. 19 to 28 of the comparative example, the ratio Xt is (1) may formulas smaller than the lower limit of (X t <(20 / T ) × t + 100), stirring force of molten steel was small. For this reason, it is considered that the decrease in the molten steel temperature in the vicinity of the meniscus could not be suppressed, and Dickel was generated. Further, it was considered that inclusions and bubbles adhering to the solidification interface could not be sufficiently washed away, and inclusions and bubbles were trapped in the solidification shell, resulting in epidermal defects.

ここで、比率Xの下限について、実験番号1(実施例)と実験番号19(比較例)とを比較して説明する。 Here, the lower limit of the ratio X t, is described by comparing the Test No. 1 (Example) and Experiment No. 19 (comparative example).

実験番号1では、減速開始から鋳造終了まで比率Xを漸増させ、鋳造終了時の比率Xを鋳造開始時の比率Xより20%増大させたところ(X=(20/T)×t+100[%])、本発明の効果が得られた。これに対して、実験番号19では、減速開始から鋳造終了まで比率Xを漸増させ、鋳造終了時の比率Xを鋳造開始時の比率Xより10%増大させたところ(X=(10/T)×t+100[%])、本発明の効果が得られなかった。したがって、比率Xの下限をX=(20/T)×t+100とすることにより、本発明の効果が得られることがわかった。 In Experiment No. 1, gradually increasing the ratio X t from the deceleration start to finish casting, the ratio X t during the casting completion was increased 20% than the ratio X t at the start of casting (X t = (20 / T ) × t + 100 [%]), the effect of the present invention was obtained. In contrast, in Experiment No. 19, gradually increasing the ratio X t from the deceleration start to finish casting, the ratio X t during the casting completion was increased by 10% than the ratio X t at the start of casting (X t = ( 10 / T) × t + 100 [%]), the effect of the present invention was not obtained. Therefore, by setting the lower limit of the ratio X t and X t = (20 / T) × t + 100, it was found that the effect of the present invention can be obtained.

次に、比率Xの上限について、実験番号16(実施例)と実験番号18(比較例)とを比較して説明する。 Next, the upper limit of the ratio X t, is described by comparing the experimental number 16 (Example) and Experiment No. 18 (comparative example).

実験番号16では、減速域dの全域で比率Xを180[%]にしたところ(X=180)、本発明の効果が得られた。これに対して、実験番号18では、減速域dの全域で比率Xを186[%]にしたところ(X=186)、本発明の効果が得られなかった。したがって、比率Xの上限を180[%]とすることにより、本発明の効果が得られることがわかった。 In Experiment No. 16, when the ratio Xt was set to 180 [%] in the entire deceleration range d ( Xt = 180), the effect of the present invention was obtained. On the other hand, in Experiment No. 18, when the ratio X t was set to 186 [%] in the entire deceleration range d (X t = 186), the effect of the present invention was not obtained. Therefore, by setting the upper limit of the ratio X t and 180 [%], it was found that the effect of the present invention can be obtained.

以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態及び実施例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能なものである。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments and examples, and various modifications are possible as long as they are described in the claims.

例えば、図2(b)に比率Xと鋳造時間との関係の一例を示したが、比率Xと鋳造時間との関係は、比率Xが(1)式を満たす限り変更可能である。また、本実施形態及び実施例(図2(b)及び図6〜12)では、減速域dの全域で、比率Xが増加する場合や比率Xが一定である場合について説明したが、比率Xは、上記に示す場合に限られない。例えば、減速域dの途中まで比率Xを増加させ、その後、比率Xを減少させてもよい。また、減速域dの途中まで比率Xを一定に維持し、その後、比率Xを減少させてもよい。 For example, FIG. 2B shows an example of the relationship between the ratio Xt and the casting time, but the relationship between the ratio Xt and the casting time can be changed as long as the ratio Xt satisfies the expression (1). . Further, in the present embodiment and the embodiment (FIG. 2 (b) and FIG. 6-12), across the velocity reduction zone d, but when and ratios X t the ratio X t is increased been described is a constant, The ratio Xt is not limited to the case described above. For example, the ratio Xt may be increased to the middle of the deceleration range d, and then the ratio Xt may be decreased. Alternatively, the ratio Xt may be kept constant until the middle of the deceleration range d, and then the ratio Xt may be decreased.

また、図2(a)及び図4では、減速域dの全域で鋳造速度を漸減させる場合を示し、図4では、減速域dで鋳造速度を階段状に3〜5回減速する場合について示したが、減速域dの鋳造速度は図2(a)及び図4に示すものに限られない。例えば、減速域dの途中まで鋳造速度を漸減させ、その後、鋳造速度を一定にしてもよい。また、減速域dにおいて、鋳造速度を階段状に1回又は2回だけ減速させてもよい。   2A and 4 show a case where the casting speed is gradually reduced over the entire deceleration area d, and FIG. 4 shows a case where the casting speed is reduced stepwise 3 to 5 times in the deceleration area d. However, the casting speed in the deceleration area d is not limited to that shown in FIGS. For example, the casting speed may be gradually reduced to the middle of the deceleration region d, and then the casting speed may be made constant. Further, in the deceleration area d, the casting speed may be reduced only once or twice stepwise.

さらに、鋳造初期の鋳造速度及び印加強度や、定常域sの鋳造速度及び印加強度は、減速域dのXが(1)式を満たす限り変更可能である。 Furthermore, the casting speed and the applied intensity of the casting speed of the casting early and applying strength and, constant region s can be changed as long as it meets X t deceleration region d is the (1) formula.

また、本発明の鋳型内電磁撹拌装置の制御方法は、鋳片の形状や鋼種に制限されず、様々な形状の鋳片(スラブ、ブルーム、ビレット等)や様々な鋼種の鋳造に適用することができる。   In addition, the method for controlling the electromagnetic stirring device in the mold according to the present invention is not limited to the shape of the slab and the steel type, but can be applied to casting of various shapes of slab (slab, bloom, billet, etc.) and various steel types. Can do.

本発明を利用すれば、鋳造末期の鋳片の品質を向上させることができる。   If the present invention is used, the quality of the slab at the end of casting can be improved.

1 タンディッシュ
2 浸漬ノズル
3 鋳型
4 鋳型内電磁撹拌装置
4a,4b モータ
5 溶鋼
6 モールドパウダー
7 凝固シェル
d 減速域
s 定常域
DESCRIPTION OF SYMBOLS 1 Tundish 2 Immersion nozzle 3 Mold 4 Electromagnetic stirring apparatus 4a, 4b Motor 5 Molten steel 6 Mold powder 7 Solidified shell d Deceleration zone s Steady zone

Claims (1)

鋳造速度が一定である定常域の後に鋳造速度を減速させる減速域において、
前記定常域の印加強度Bに対する前記減速域の印加強度Bの比率Xが下記(1)式を満たすことを特徴とする、鋳造末期における鋳型内電磁撹拌装置の制御方法。
[(20/T)×t+100]≦X≦180・・・(1)
但し、Tは、鋳造速度の減速開始から鋳造終了までの時間[min.]
tは、鋳造速度の減速開始からの経過時間[min.]
tは、時間tにおける、定常域の印加強度Bに対する減速域の印加強度Bの比率[%]
In the deceleration area where the casting speed is reduced after the steady area where the casting speed is constant,
The ratio X t of the applied intensity B d of the reduction zone for applying the intensity B s of the constant region is characterized by satisfying the following formula (1), the control method in the mold electromagnetic stirrer device in the cast end.
[(20 / T) × t + 100] ≦ X t ≦ 180 (1)
However, T is the time from the start of deceleration of the casting speed to the end of casting [min. ]
t is the elapsed time from the start of deceleration of the casting speed [min. ]
X t is the ratio of the applied intensity B d in the deceleration region to the applied intensity B s in the steady region at time t [%]
JP2011241331A 2011-11-02 2011-11-02 Control method of electromagnetic stirring device in mold at the end of casting Expired - Fee Related JP5710448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241331A JP5710448B2 (en) 2011-11-02 2011-11-02 Control method of electromagnetic stirring device in mold at the end of casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241331A JP5710448B2 (en) 2011-11-02 2011-11-02 Control method of electromagnetic stirring device in mold at the end of casting

Publications (2)

Publication Number Publication Date
JP2013094835A JP2013094835A (en) 2013-05-20
JP5710448B2 true JP5710448B2 (en) 2015-04-30

Family

ID=48617353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241331A Expired - Fee Related JP5710448B2 (en) 2011-11-02 2011-11-02 Control method of electromagnetic stirring device in mold at the end of casting

Country Status (1)

Country Link
JP (1) JP5710448B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884730A (en) * 2017-12-15 2018-04-06 芜湖新兴铸管有限责任公司 Freezing end-point magnetic stirrer electromagnetic intensity measurement apparatus and its measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229266A (en) * 1983-06-10 1984-12-22 Kobe Steel Ltd Method for electromagnetic stirring in mold for continuous casting

Also Published As

Publication number Publication date
JP2013094835A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
KR102490142B1 (en) continuous casting
JP2007090424A (en) Tundish for continuous casting
JP5710448B2 (en) Control method of electromagnetic stirring device in mold at the end of casting
JP4912945B2 (en) Manufacturing method of continuous cast slab
JP4203167B2 (en) Continuous casting method for molten steel
JP2008000810A (en) Method for continuously casting high carbon steel using immersion nozzle with gate type pouring basin
JP4553639B2 (en) Continuous casting method
JP2007331003A (en) Continuous casting method for low carbon steel, using immersion nozzle with weir-type reservoir
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP4492333B2 (en) Steel continuous casting method
JP4983320B2 (en) Method and apparatus for continuous casting of steel
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP7269480B2 (en) Continuous casting method
JP7234837B2 (en) Continuous casting method
JP4902276B2 (en) Continuous casting method of high carbon steel using dipping nozzle with dimple
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JPH11254103A (en) Production of clean continuously cast slab
JP2006255759A (en) Method for continuously casting steel
JP4432263B2 (en) Steel continuous casting method
JP6287901B2 (en) Steel continuous casting method
JP4595351B2 (en) Steel continuous casting method
JPH11320054A (en) Continuous caster and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141030

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R150 Certificate of patent or registration of utility model

Ref document number: 5710448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees