JP3116742B2 - Continuous casting apparatus and continuous casting method - Google Patents

Continuous casting apparatus and continuous casting method

Info

Publication number
JP3116742B2
JP3116742B2 JP06214513A JP21451394A JP3116742B2 JP 3116742 B2 JP3116742 B2 JP 3116742B2 JP 06214513 A JP06214513 A JP 06214513A JP 21451394 A JP21451394 A JP 21451394A JP 3116742 B2 JP3116742 B2 JP 3116742B2
Authority
JP
Japan
Prior art keywords
mold
molten steel
continuous casting
flow
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06214513A
Other languages
Japanese (ja)
Other versions
JPH0871717A (en
Inventor
英夫 水上
敬治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06214513A priority Critical patent/JP3116742B2/en
Publication of JPH0871717A publication Critical patent/JPH0871717A/en
Application granted granted Critical
Publication of JP3116742B2 publication Critical patent/JP3116742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造鋳型内溶鋼の
溶鋼表面近傍の流動を均一化し、鋳片の品質向上を可能
とする連続鋳造装置と鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting apparatus and a casting method capable of making the flow of molten steel in a continuous casting mold near the surface of molten steel uniform and improving the quality of a slab.

【0002】[0002]

【従来の技術】鋼の連続鋳造において鋳片の品質を向上
させるためには、鋳型内の溶鋼流動を適切に抑制し、連
続鋳造用パウダーの溶鋼中への巻き込み発生の抑制、初
期凝固シェルへの介在物補足の防止および凝固シェル厚
みの均一化を図る必要がある。
2. Description of the Related Art In order to improve the quality of a slab in continuous casting of steel, it is necessary to appropriately suppress the flow of molten steel in a mold, to suppress the occurrence of entrainment of powder for continuous casting into molten steel, and to improve the initial solidification shell. It is necessary to prevent inclusion of inclusions and to make the thickness of the solidified shell uniform.

【0003】連続鋳造用パウダーは鋳型と鋳片との間の
潤滑剤として用いられるものであるが、このパウダーが
過剰な溶鋼流動により溶鋼中に巻き込まれるとノロ噛み
疵などが発生し、鋳片の品質を劣化させる。また、湯面
の変動は、潤滑剤として鋳型と鋳片との間に流れ込むパ
ウダー量を局所的に変動させ、凝固シェル厚みの不均一
の原因となる。
[0003] The powder for continuous casting is used as a lubricant between a mold and a slab. When the powder is entrained in molten steel due to excessive flow of molten steel, a slag bite or the like is generated, and the slab is cast. Degrades the quality of Fluctuations in the molten metal level locally change the amount of powder flowing as a lubricant between the mold and the slab, causing uneven thickness of the solidified shell.

【0004】一方、鋳型内の溶鋼流動に淀みが発生する
と、その部分の溶鋼温度が低下して局所的に凝固シェル
の成長が速くなり、シェル厚みが不均一となる。この結
果、鋳片に作用する応力に相違が生じ、縦割れ疵などが
発生する。
[0004] On the other hand, when stagnation occurs in the flow of molten steel in the mold, the temperature of the molten steel in that portion is lowered, the growth of the solidified shell is locally accelerated, and the shell thickness becomes uneven. As a result, a difference occurs in the stress acting on the slab, and a vertical crack is generated.

【0005】このような鋳片の欠陥が鋳型内溶鋼の流動
現象と深く関連していることをさらに詳細に説明する。
すなわち、鋳型内に溶鋼を注入するため溶鋼内に浸漬し
た耐火物製ノズルを用いるが、この浸漬ノズルからの吐
出流により、鋳型内の溶鋼流動が不規則となり、流速も
一定でなくなる。このため、溶鋼表面(以下、湯面とい
う)は波立つとともに上下に変動し、このため鋳型内で
湯面温度が均一でなくなり、湯面上に存在する溶融状態
のパウダー層の一部の厚みが小さくなるか、またはこの
溶融パウダー層そのものがなくなる部分が生ずる。
[0005] It will be explained in more detail that such defects of the slab are deeply related to the flow phenomenon of the molten steel in the mold.
That is, a refractory nozzle immersed in the molten steel is used to inject the molten steel into the mold, but due to the discharge flow from the immersion nozzle, the flow of the molten steel in the mold becomes irregular, and the flow velocity is not constant. As a result, the surface of the molten steel (hereinafter referred to as the molten metal surface) is wavy and fluctuates up and down, so that the molten metal surface temperature is not uniform in the mold and the thickness of a part of the molten powder layer existing on the molten metal surface is reduced. Or a portion where the molten powder layer itself disappears occurs.

【0006】この結果、溶融パウダー層の上に存在する
未溶融のパウダーが溶鋼と接し、溶鋼中へ巻き込まれて
補足される頻度が高まり、ノロ噛み疵となる。また、湯
面が変動すると鋳片と鋳型との間に流入する溶融パウダ
ー量が局所的に変わり、溶鋼から鋳型への伝熱量が均一
とならず、このため凝固シェル厚みが不均一となり、縦
割れ疵の発生に至る。
[0006] As a result, the unmelted powder present on the molten powder layer comes into contact with the molten steel, and the frequency of being caught and trapped in the molten steel increases, resulting in slagging flaws. In addition, when the molten metal level fluctuates, the amount of molten powder flowing between the slab and the mold locally changes, and the amount of heat transferred from the molten steel to the mold is not uniform. This leads to cracks.

【0007】上記のような従来の連続鋳造の場合の状況
を図3に基づいて説明する。
The situation of the conventional continuous casting as described above will be described with reference to FIG.

【0008】図3は、従来の連続鋳造における鋳型内の
溶鋼流動を模式的に示す縦断面図である。鋳型1内に浸
漬ノズル2から溶鋼3が注入されると、鋳型1の鋳型短
辺壁1a 側に衝突した溶鋼流は、湯面方向に向かう上昇
流と鋳型1の下方に向かう下降流とに分かれる。上昇流
は、鋳型短辺壁1a 近傍の湯面を図示するように盛り上
げるとともに湯面の変動を引き起こす。このため、溶融
パウダー層9の厚みは図示するように湯面の盛り上がり
位置で小さくなり、湯面の下降位置で大きくなる。生産
性向上のために鋳造速度を大きくすると浸漬ノズル2か
らの吐出流速が大きくなり、溶鋼3の上昇流速度も増大
する。このため、湯面の盛り上がり量が増加し、湯面の
波立ちや上下の変動も大きくなる。このような現象によ
り、未溶融のパウダーの溶鋼中へ巻き込み、および凝固
シェル4の厚みに変動や不均一がもたらされ、ノロ噛み
または縦割れなどの鋳片の品質上の問題が発生すること
になるのである。
FIG. 3 is a longitudinal sectional view schematically showing the flow of molten steel in a mold in the conventional continuous casting. When the molten steel 3 is injected from the immersion nozzle 2 into the mold 1, the molten steel flow colliding with the mold short side wall 1 a side of the mold 1 becomes an upward flow toward the molten metal surface and a downward flow toward the lower side of the mold 1. Split. The upward flow raises the level of the molten metal near the short side wall 1a of the mold as shown in FIG. For this reason, the thickness of the molten powder layer 9 becomes smaller at the rising position of the molten metal surface and becomes larger at the falling position of the molten metal surface as shown in the figure. When the casting speed is increased to improve the productivity, the discharge flow velocity from the immersion nozzle 2 increases, and the upward flow velocity of the molten steel 3 also increases. For this reason, the amount of swelling of the molten metal surface increases, and the undulation and vertical fluctuation of the molten metal surface also increase. Due to such a phenomenon, unmelted powder is rolled into molten steel, and the thickness of the solidified shell 4 fluctuates or becomes non-uniform. It becomes.

【0009】鋳片の品質を向上させる方法として、特開
平5−55220 号公報に静磁場を用いる連続鋳造方法とそ
の鋳型が示されている。この方法は、鋳型の対向側壁の
各背面に設けた上下各一対の磁極間で静磁場を発生さ
せ、一方の磁極間で生じる静磁場の強度をもう一方のそ
れよりも小さくまたは大きくして、浸漬ノズルから鋳型
内に供給される溶鋼流に制動を加えるものである。これ
により、浸漬ノズルからの吐出流が鋳型の短辺壁と衝突
する際に発生する上昇流および下降流に制動を加えるこ
とができ、上記下降流による介在物の溶鋼中へ深い巻き
込み、あるいは湯面変動や温度の不均一が抑制される結
果、連続鋳造用パウダーの溶解が阻害されることがない
ことから、品質の良好な鋳片を高能率で製造することが
できるとしている。
As a method for improving the quality of a slab, Japanese Patent Application Laid-Open No. 5-55220 discloses a continuous casting method using a static magnetic field and a mold thereof. In this method, a static magnetic field is generated between each pair of upper and lower magnetic poles provided on each back surface of the opposite side wall of the mold, and the intensity of the static magnetic field generated between one magnetic pole is made smaller or larger than that of the other, The damping is applied to the molten steel flow supplied from the immersion nozzle into the mold. Thereby, braking can be applied to the upward flow and the downward flow generated when the discharge flow from the immersion nozzle collides with the short side wall of the mold, and the above-described downward flow causes deep inclusion of the inclusion into the molten steel or hot water. As a result of suppressing the surface fluctuation and the non-uniformity of the temperature, the melting of the powder for continuous casting is not hindered, so that it is possible to produce a high quality cast slab with high efficiency.

【0010】[0010]

【発明が解決しようとする課題】しかし、上記発明の方
法には、次のような問題がある。すなわち、鋳型内の溶
鋼流に静磁場が印加されると溶鋼流の方向と逆向きに力
が働くため、静磁場印加領域の溶鋼流速は低下するが、
静磁場の印加領域外で静磁場印加領域の方向へ流れる溶
鋼には制動力が働かないため、溶鋼流は静磁場のない方
向に向きを変えようとし、浸漬ノズルからの吐出流が鋳
型の上下に設置された磁極による静磁場で狭み込まれ、
この間で溶鋼流が停滞することになる。
However, the method of the present invention has the following problems. That is, when a static magnetic field is applied to the molten steel flow in the mold, a force acts in the direction opposite to the direction of the molten steel flow, so the molten steel flow velocity in the static magnetic field application region decreases,
Since the braking force does not act on the molten steel flowing outside the static magnetic field application area in the direction of the static magnetic field application area, the molten steel flow attempts to change its direction to the direction without the static magnetic field, and the discharge flow from the immersion nozzle moves up and down the mold. Narrowed by the static magnetic field of the magnetic poles installed in
During this time, the molten steel flow stagnates.

【0011】鋳造速度が一定の場合、浸漬ノズルからの
吐出流も一定であるから、静磁場で挟み込まれた溶鋼流
の停滞領域に吐出流が侵入するので、この領域の溶鋼流
は変動が大きく、極めて不安定となる。このため、浸漬
ノズルからの吐出流によって介在物が溶鋼中に巻き込ま
れて凝固シェルに補足され、あるいは湯面が激しく変動
することになるため、パウダーが溶鋼中に巻き込まれ、
鋳片欠陥が発生する。
When the casting speed is constant, the discharge flow from the immersion nozzle is also constant, so that the discharge flow enters the stagnant region of the molten steel flow sandwiched by the static magnetic field. Becomes extremely unstable. Because of this, inclusions are caught in the molten steel by the discharge flow from the immersion nozzle and are caught by the solidified shell, or the molten metal surface fluctuates sharply, so that the powder is caught in the molten steel,
A slab defect occurs.

【0012】本発明は、上記の課題を解決するためにな
されたものであり、本発明の目的は鋳型内湯面全体に溶
鋼流を分散し、溶鋼流に停滞域を発生させることなく湯
面変動を抑制し、品質の優れた鋳片を製造することがで
きる連続鋳造装置と鋳造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to disperse a molten steel flow over the entire surface of a molten metal in a mold so that the molten steel flow can be changed without causing a stagnation area. It is an object of the present invention to provide a continuous casting apparatus and a casting method capable of producing a cast slab of excellent quality while suppressing the occurrence of slabs.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、次の
(1)の連続鋳造装置および(2) のこの装置を用いる方法
にある。
The gist of the present invention is as follows.
There is a continuous casting apparatus of (1) and a method using this apparatus of (2).

【0014】(1)水平断面が矩形の連続鋳造用鋳型の両
方の長辺壁の外側に各1個の電磁石を対向させた連続鋳
造装置であって、電磁石は複数の鉄芯とそれらを取り巻
く1個のコイルとからなり、複数の鉄芯と鋳型壁外面と
の間隔は鉄芯毎に各々独立して調整可能であり、複数の
鉄芯の設置位置が鋳型内溶鋼表面相当レベルと浸漬ノズ
ルの鋳型内溶鋼への浸漬深さ相当レベルとの間であるこ
とを特徴とする連続鋳造装置。
(1) A continuous casting apparatus in which one electromagnet is opposed to both long side walls of a continuous casting mold having a rectangular horizontal cross section. The electromagnet surrounds a plurality of iron cores. Consisting of one coil, the distance between the plurality of iron cores and the outer surface of the mold wall can be adjusted independently for each iron core, and the installation positions of the plurality of iron cores are equivalent to the level of the molten steel surface in the mold and the immersion nozzle. A continuous casting apparatus characterized by being at a level equivalent to the depth of immersion in molten steel in a mold.

【0015】(2)上記(1) の装置を用いて、鋳型長辺壁
中央部の鉄芯と鋳型壁外面との間隔を大きくすることに
より、鋳型長辺壁中央部における鋳型内の磁場強度を小
さくして鋳造することを特徴とする連続鋳造方法。
(2) By using the apparatus of (1) above, by increasing the distance between the iron core at the center of the long side wall of the mold and the outer surface of the mold wall, the magnetic field intensity in the mold at the center of the long side wall of the mold is increased. Continuous casting method characterized in that casting is performed with a small size.

【0016】[0016]

【作用】本発明の連続鋳造装置を図1および図2に基づ
いて説明する。図1は鋳型長辺壁側から見た側面を模式
的に示す一部側面および一部縦断面図、図2はこれを上
方から見た平面図である。
The continuous casting apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a partial side view and a partial vertical cross-sectional view schematically showing a side face viewed from a long side wall of a mold, and FIG. 2 is a plan view of the side view from above.

【0017】連続鋳造用鋳型1の中心に浸漬ノズル2が
一定の浸漬深さとなるように固定され、この浸漬ノズル
2から溶鋼3が鋳型1内に注入される。鋳型1内から凝
固シェル4が成長する。なお、溶鋼3の表面、すなわち
湯面上には図示しないパウダーが投入される。
An immersion nozzle 2 is fixed to the center of the continuous casting mold 1 so as to have a constant immersion depth, and molten steel 3 is injected into the mold 1 from the immersion nozzle 2. A solidified shell 4 grows from inside the mold 1. In addition, powder (not shown) is put on the surface of the molten steel 3, that is, on the molten metal surface.

【0018】図2に示す鋳型1の両方の鋳型長辺壁1b
側の外側において、図1に示すように鋳型内の湯面相当
レベルと浸漬ノズル2の浸漬深さ相当レベルとの範囲内
で、図2に示すように鋳型長辺壁1b の外側の幅方向
に、複数の鉄芯5とこれらの複数の鉄芯全体を取り巻く
1個のコイル6を備えた1対の電磁石が対向して設けら
れる。
Both long mold side walls 1b of the mold 1 shown in FIG.
1, the width direction outside the long side wall 1b of the mold as shown in FIG. 2 within the range between the level corresponding to the molten metal surface in the mold and the level equivalent to the immersion depth of the immersion nozzle 2 as shown in FIG. In addition, a pair of electromagnets each including a plurality of iron cores 5 and a single coil 6 surrounding the plurality of iron cores are provided to face each other.

【0019】電磁石の各々の鉄芯5は、鉄芯5と長辺壁
1b の外表面との間隔dを、それぞれ独立に変化させる
ことができる機構を有している。この機構としては、例
えば次のような方法を用いるのがよい。
Each iron core 5 of the electromagnet has a mechanism capable of independently changing the distance d between the iron core 5 and the outer surface of the long side wall 1b. As this mechanism, for example, the following method is preferably used.

【0020】電磁石の各鉄芯5に油圧シリンダー7を接
続し、油圧シリンダー7の本体は鋳型1を支えるフレー
ム8に固定する。油圧を調節し、各油圧シリンダーロッ
ドの長さを独立に変化させることにより、鉄芯5と鋳型
長辺壁1b の外面との間隔dを鉄芯5毎に変えることが
できる。ここでは、油圧シリンダー7を用いる例を示し
たが、この替わりにエアシリンダー、モータ駆動または
手動のウォームギヤなどを用いる間隔dの制御機構とし
てもよい。
A hydraulic cylinder 7 is connected to each iron core 5 of the electromagnet, and the main body of the hydraulic cylinder 7 is fixed to a frame 8 supporting the mold 1. By adjusting the oil pressure and independently changing the length of each hydraulic cylinder rod, the distance d between the iron core 5 and the outer surface of the mold long side wall 1b can be changed for each iron core 5. Here, an example in which the hydraulic cylinder 7 is used has been described, but a control mechanism of the interval d using an air cylinder, a motor drive, or a manual worm gear may be used instead.

【0021】このような機構により、コイル6に流す電
流が一定であっても、各々の間隔dを適切に制御して鋳
型1内で発生する磁場強度を鉄芯5の数に応じて局所的
に変化させることが可能となる。
With such a mechanism, even when the current flowing through the coil 6 is constant, the distance d is appropriately controlled to locally adjust the magnetic field intensity generated in the mold 1 in accordance with the number of iron cores 5. Can be changed.

【0022】図1に示すように、溶鋼3が浸漬ノズル2
から鋳型1内に注入されると鋳型短辺壁1a 側と衝突す
ることにより、湯面方向への上昇流と鋳型下方への下降
流に分かれる。上昇流は電磁石の鉄芯5で発生する静磁
場により制動力が加わり、湯面方向に分散される。すな
わち、湯面近傍に静磁場を印加し、浸漬ノズルからの溶
鋼の吐出量を一定とする場合には、上記の制動力により
鋳型短辺壁1a 側での衝突による上昇流は湯面全体に分
散される。このように上昇流が湯面全体に分散される
と、上昇流の流速が減少して湯面の盛り上がり量も減少
し、湯面変動が抑制されるとともに、溶鋼流の停滞領域
が解消されて湯面の低温領域がなくなり、湯面温度の低
下防止と温度および粘度の均一化とが達成される。
As shown in FIG. 1, molten steel 3 is immersed in nozzle 2
When it is injected into the mold 1 from the mold, it collides with the mold short side wall 1a side, and is separated into an upward flow toward the molten metal surface and a downward flow downward the mold. The upward flow is applied with a braking force by a static magnetic field generated by the iron core 5 of the electromagnet, and is dispersed in the direction of the molten metal surface. That is, when a static magnetic field is applied to the vicinity of the molten metal surface and the discharge amount of the molten steel from the immersion nozzle is kept constant, the upward flow due to the collision on the side of the mold short side wall 1a due to the braking force is applied to the entire molten metal surface. Distributed. When the ascending flow is dispersed over the entire surface of the molten metal in this way, the flow velocity of the ascending flow is reduced, the amount of rise of the molten surface is also reduced, the fluctuation of the molten surface is suppressed, and the stagnant region of the molten steel flow is eliminated. The low temperature region of the molten metal surface is eliminated, and the prevention of the decrease of the molten metal surface temperature and the uniformization of the temperature and the viscosity are achieved.

【0023】鉄芯5の鋳型1に対する高さ方向の位置
を、鋳型内の湯面相当レベルと浸漬ノズル2の浸漬深さ
相当レベルとの間と限定したのは、次の理由による。
The reason why the position of the iron core 5 in the height direction with respect to the mold 1 is limited between the level corresponding to the molten metal surface in the mold and the level corresponding to the immersion depth of the immersion nozzle 2 is as follows.

【0024】すなわち、溶鋼流に静磁場が印加されると
溶鋼流と逆向きに働く制動力の作用により、溶鋼流は静
磁場のない方向に向かう。このため、浸漬ノズル2から
の吐出流に直接静磁場を印加するのを避ける必要がある
からである。
That is, when a static magnetic field is applied to the molten steel flow, the flow of the molten steel flows in a direction where there is no static magnetic field due to the action of the braking force acting in the opposite direction to the molten steel flow. Therefore, it is necessary to avoid applying a static magnetic field directly to the discharge flow from the immersion nozzle 2.

【0025】このとき更に、浸漬ノズル2の近傍の鋳型
長辺壁1b の中央部において、鉄芯5と長辺壁1b の外
表面との間隔dを大きくすれば、この部分で磁場強度が
小さくなるように鋳型長辺壁1b すなわちスラブの幅方
向に磁場強度の分布を付与することができる。ここでい
う「浸漬ノズル2の近傍の鋳型長辺壁1b の中央部」と
は、例えば図2ではそれぞれ5個設けられている鉄芯5
の中央のものに相当する位置であり、浸漬ノズル2の位
置の近傍に当たる。望ましい「鋳型中央部」は、鋳型長
辺側壁1b の内のり長さに対して10〜30%の範囲であ
る。
At this time, if the distance d between the iron core 5 and the outer surface of the long side wall 1b is further increased at the center of the long side wall 1b near the immersion nozzle 2, the magnetic field intensity is reduced at this portion. As a result, the distribution of the magnetic field strength can be given to the long side wall 1b of the mold, that is, the width direction of the slab. The “central part of the mold long side wall 1b near the immersion nozzle 2” here means, for example, five iron cores 5 provided in FIG.
Of the immersion nozzle 2 near the center. The desirable "center of the mold" is in the range of 10 to 30% with respect to the inner length of the mold long side wall 1b.

【0026】この結果、鋳型中央部の湯面近傍での溶鋼
流速の低減を抑制し、浸漬ノズル近傍における溶鋼流速
を均一化させることができる。これにより、鋳型中央部
で発生しやすい温度の低い領域を容易に解消させること
が可能となる。
As a result, it is possible to suppress a decrease in the flow velocity of the molten steel in the vicinity of the molten metal surface at the center of the mold and to make the flow velocity of the molten steel in the vicinity of the immersion nozzle uniform. This makes it possible to easily eliminate a low-temperature region that tends to occur at the center of the mold.

【0027】本発明の連続鋳造装置では、鋳造速度が増
大した場合に、さらに次のような効果を得ることができ
る。すなわち、浸漬ノズルからの溶鋼の吐出速度は、鋳
造速度の増大とともに大きくなるため、鋳型短辺側と衝
突して発生する上昇流の速度も大きくなり、浸漬ノズル
方向の流速も大きくなる。このように湯面近傍の溶鋼流
速が鋳造速度に依存して変化することから、鋳造速度の
上昇に応じて電磁石で発生する磁場強度を変えて溶鋼流
の制御を一層強力に行う必要がある。このような必要性
がある場合においても、鋳型の両長辺壁の外側の適切な
高さ方向位置に複数の鉄芯と1個のコイルを有する電磁
石を対向させて設け、鉄芯と鋳型長辺壁外面との間隔d
を変えることで、発生する磁場強度を任意に、しかも容
易に変化させ、所望の溶鋼流の制御を得ることで、品質
の優れた鋳片を製造することが可能となる。
In the continuous casting apparatus of the present invention, the following effects can be further obtained when the casting speed is increased. That is, since the discharge speed of the molten steel from the immersion nozzle increases as the casting speed increases, the speed of the upward flow generated by colliding with the short side of the mold also increases, and the flow speed in the direction of the immersion nozzle also increases. As described above, since the molten steel flow velocity near the molten metal surface changes depending on the casting speed, it is necessary to control the molten steel flow more strongly by changing the strength of the magnetic field generated by the electromagnet according to the increase in the casting speed. Even in the case where there is such a need, an electromagnet having a plurality of iron cores and one coil is provided facing each other at an appropriate height position outside both long side walls of the mold, and the iron core and the mold length are provided. Distance d to the outer surface of the side wall
, The intensity of the generated magnetic field can be arbitrarily and easily changed, and a desired control of the molten steel flow can be obtained, thereby making it possible to produce a high quality cast slab.

【0028】図1および図2では、鉄芯5の数は片方で
5個の例を示しているが、望ましい個数の範囲は片方で
3〜7個である。鉄芯5の1個毎の望ましい磁場強度の
範囲は 500〜3000 Gauss、変化可能な間隔dの望ましい
範囲は10〜300 mmである。磁場強度を変化させる場合
は、両端部の強度を100 とすると中央部の磁場強度は20
〜70%程度の範囲とし、両端部と中央部との間の鉄芯の
磁場強度はそれらの間の値とするのが望ましい。
FIGS. 1 and 2 show an example in which the number of iron cores 5 is five on one side, but a desirable number range is 3 to 7 on one side. The desirable range of the magnetic field strength for each iron core 5 is 500 to 3000 Gauss, and the desirable range of the variable distance d is 10 to 300 mm. When changing the magnetic field strength, if the strength at both ends is 100, the magnetic field strength at the center is 20
It is desirable that the magnetic field strength of the iron core between both ends and the center be a value between them.

【0029】[0029]

【実施例】図1に示す鉄芯数が各5個の構造の装置を用
いて、表1および表2に示す条件で中炭素鋼スラブの連
続鋳造試験を行い、スラブの表面および内部の欠陥発生
率を調査した。
EXAMPLE A continuous casting test of a medium carbon steel slab was conducted under the conditions shown in Tables 1 and 2 using an apparatus having five iron cores as shown in FIG. The incidence was investigated.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表示以外の鋳造条件は下記のとおりとし
た。
The casting conditions other than those indicated were as follows.

【0033】連続鋳造機種、ストランド数:1 鋳型幅(長辺側内のり長さ) :1250mm 鋳型厚み(短辺側内のり長さ):250mm タンディッシュ内溶鋼過熱度: 10〜40℃ 浸漬ノズル浸漬深さ:300mm コイル電流: 3000 A 表面欠陥の評価は目視観察により単位長さあたりの総割
れ長さを、内部欠陥の評価は鋳片を鋳造方向と垂直な方
向に切断し、目視観察で単位長さあたりの総長さを、そ
れぞれ測定して、静磁場を印加しない比較例の発生率を
1.0 とし、これを基準値とした。調査結果を表1に併せ
て示す。
Continuous casting machine, number of strands: 1 Mold width (Length on long side): 1250 mm Mold thickness (Length on short side): 250 mm Superheat degree of molten steel in tundish: 10 to 40 ° C Immersion nozzle immersion depth Length: 300mm Coil current: 3000A Surface defects are evaluated by visual observation for total crack length per unit length, and internal defects are evaluated by cutting a slab in a direction perpendicular to the casting direction and visually observing unit length. The total length per unit was measured, and the incidence of the comparative example without the application of a static magnetic field was calculated.
1.0, which was used as the reference value. The results of the survey are shown in Table 1.

【0034】表1に示すように、いずれの欠陥の発生率
も、静磁場を印加しない比較例に比べて、均一静磁場を
印加した場合、鋳型の幅方向中央部になるに従い磁場強
度を弱くした場合の順に良好になり、なかでも、中央部
鉄芯No.3に向かって、静磁場強度の低下比を大きくした
本発明例3が最も優れていることがわかる。
As shown in Table 1, when the uniform static magnetic field was applied, the magnetic field intensity became weaker toward the center in the width direction of the mold as compared with the comparative example in which the static magnetic field was not applied. In this case, it becomes better. In particular, Example 3 of the present invention, in which the reduction ratio of the static magnetic field intensity is increased toward the central iron core No. 3, is the most excellent.

【0035】[0035]

【発明の効果】本発明によれば、外部および内部の欠陥
の少ない連続鋳造スラブを得ることができる。
According to the present invention, a continuous cast slab having few external and internal defects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳型長辺壁側から見た本発明の連続鋳造装置の
側面を模式的に示す一部側面および一部縦断面図であ
る。
FIG. 1 is a partial side view and a partial longitudinal sectional view schematically showing a side surface of a continuous casting apparatus of the present invention as viewed from a long side wall of a mold.

【図2】図1を上方から見た平面図である。FIG. 2 is a plan view of FIG. 1 as viewed from above.

【図3】従来の連続鋳造における鋳型内の溶鋼流動を模
式的に示す縦断面図である。
FIG. 3 is a longitudinal sectional view schematically showing the flow of molten steel in a mold in conventional continuous casting.

【符号の説明】[Explanation of symbols]

1:鋳型、1a :鋳型短辺壁、1b :鋳型長辺壁、2:
浸漬ノズル、3:溶鋼、4:凝固シェル、 5:鉄芯、
6:コイル、7:油圧シリンダー、
8:フレーム、 9:溶融パウダー層
1: Mold, 1a: Mold short side wall, 1b: Mold long side wall, 2:
Immersion nozzle, 3: molten steel, 4: solidified shell, 5: iron core,
6: coil, 7: hydraulic cylinder,
8: frame, 9: molten powder layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−603(JP,A) 特開 平4−344858(JP,A) 特開 平2−284750(JP,A) 特開 平1−289550(JP,A) 特開 昭60−72652(JP,A) 特開 平8−19842(JP,A) 特開 平6−297093(JP,A) 特開 平7−9094(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/115 B22D 11/04 311 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-603 (JP, A) JP-A-4-344858 (JP, A) JP-A-2-284750 (JP, A) JP-A-1- 289550 (JP, A) JP-A-60-72652 (JP, A) JP-A-8-19842 (JP, A) JP-A-6-297093 (JP, A) JP-A-7-9094 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B22D 11/115 B22D 11/04 311

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水平断面が矩形の連続鋳造用鋳型の両方の
長辺壁の外側に各1個の電磁石を対向させた連続鋳造装
置であって、電磁石は複数の鉄芯とそれらを取り巻く1
個のコイルとからなり、複数の鉄芯と鋳型壁外面との間
隔は鉄芯毎に各々独立して調整可能であり、複数の鉄芯
の設置位置が鋳型内溶鋼表面相当レベルと浸漬ノズルの
鋳型内溶鋼への浸漬深さ相当レベルとの間であることを
特徴とする連続鋳造装置。
1. A continuous casting apparatus in which one electromagnet is opposed to both long side walls of a continuous casting mold having a rectangular horizontal cross section, wherein the electromagnet includes a plurality of iron cores and a plurality of iron cores.
The distance between the multiple iron cores and the outer surface of the mold wall can be adjusted independently for each iron core, and the installation positions of the multiple iron cores are equivalent to the level of the molten steel surface in the mold and the immersion nozzle. A continuous casting apparatus characterized by being at a level equivalent to a immersion depth in molten steel in a mold.
【請求項2】請求項1記載の装置を用いて、鋳型長辺壁
中央部の鉄芯と鋳型壁外面との間隔を大きくすることに
より、鋳型長辺壁中央部における鋳型内の磁場強度を小
さくして鋳造することを特徴とする連続鋳造方法。
2. The apparatus according to claim 1, wherein the distance between the iron core at the center of the mold long side wall and the outer surface of the mold wall is increased to reduce the magnetic field intensity in the mold at the center of the mold long side wall. A continuous casting method characterized by casting in a small size.
JP06214513A 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method Expired - Fee Related JP3116742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06214513A JP3116742B2 (en) 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06214513A JP3116742B2 (en) 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method

Publications (2)

Publication Number Publication Date
JPH0871717A JPH0871717A (en) 1996-03-19
JP3116742B2 true JP3116742B2 (en) 2000-12-11

Family

ID=16656973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06214513A Expired - Fee Related JP3116742B2 (en) 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method

Country Status (1)

Country Link
JP (1) JP3116742B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221275A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Apparatus and method of continuous casting
JP2010221276A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Continuous casting apparatus and continuous casting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659329B2 (en) * 2001-02-19 2005-06-15 住友金属工業株式会社 Molten steel flow control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221275A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Apparatus and method of continuous casting
JP2010221276A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Continuous casting apparatus and continuous casting method

Also Published As

Publication number Publication date
JPH0871717A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
KR930002836B1 (en) Method and apparatus for continuous casting
JP3316108B2 (en) Steel continuous casting method
JP3116742B2 (en) Continuous casting apparatus and continuous casting method
JPH0819842A (en) Method and device for continuous casting
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
JP3380412B2 (en) Mold for continuous casting of molten steel
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP2001087846A (en) Continuous casting method of steel slab and continuous casting device
JP3336224B2 (en) Mold for continuous casting of molten steel
JP3257546B2 (en) Steel continuous casting method
JP3310884B2 (en) Electromagnetic casting of steel
JPH08229649A (en) Continuous casting apparatus and method thereof
JP2991073B2 (en) Wide thin slab casting method
JP3149821B2 (en) Continuous casting method
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPH0671400A (en) Device for controlling flow of molten steel in continuous casting mold
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP4910357B2 (en) Steel continuous casting method
JP3186649B2 (en) Continuous casting method of molten metal
JP2024047886A (en) Mold for continuous casting and manufacturing method of the same
JP3147824B2 (en) Continuous casting method
JP3643460B2 (en) Continuous casting mold and continuous casting method
US20090255642A1 (en) Stirrer
JPH1110285A (en) Mold for continuous casting and continuous casting method
JP3100497B2 (en) Continuous casting of thin slabs

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees