JP3399627B2 - Flow control method of molten steel in mold by DC magnetic field - Google Patents

Flow control method of molten steel in mold by DC magnetic field

Info

Publication number
JP3399627B2
JP3399627B2 JP08684094A JP8684094A JP3399627B2 JP 3399627 B2 JP3399627 B2 JP 3399627B2 JP 08684094 A JP08684094 A JP 08684094A JP 8684094 A JP8684094 A JP 8684094A JP 3399627 B2 JP3399627 B2 JP 3399627B2
Authority
JP
Japan
Prior art keywords
mold
molten steel
magnetic field
flow
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP08684094A
Other languages
Japanese (ja)
Other versions
JPH07290219A (en
Inventor
寛 原田
健彦 藤
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13898020&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3399627(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08684094A priority Critical patent/JP3399627B2/en
Publication of JPH07290219A publication Critical patent/JPH07290219A/en
Application granted granted Critical
Publication of JP3399627B2 publication Critical patent/JP3399627B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、鋼の連続鋳造方法にお
いて、鋳型に直流磁場を付与して、この鋳型内溶鋼の流
動を制御する直流磁界による鋳型内溶鋼の流動制御方法
に関するものである。 【0002】 【従来の技術】従来から、例えば鋼の連続鋳造の分野で
は、鋳型内の溶鋼の流動が連続鋳造の操業性、鋳片の品
質に大きく影響することが知られている。 【0003】即ち、注入ノズルから鋳型内に注入された
溶鋼の流れは、溶鋼中に介在するスラグ系あるいは脱酸
酸化物系介在物をストランドプールの下方の奥深くまで
持ち込むため、この介在物の持ち込まれる深さが深い
程、介在物が凝固殻に捕捉され易くなり、、鋳片欠陥を
引き起こすため、この溶鋼の下降流の侵入の深さはでき
る限り浅くすることが望ましい。一方、溶鋼表面におい
ては、高速鋳造の場合のようにメニスカスでの溶鋼流速
が早い場合には、溶鋼表面にあるパウダーが溶鋼内に巻
き込まれ、溶鋼中の介在物の増加に加え、溶鋼面のレベ
ル変動が大きくなり凝固殻の安定生成ができないため、
鋳片の品質低下とともに、鋳造の操業性の低下は避けら
れない。 【0004】また、低速鋳造の場合のようにメニスカス
での流速が遅い場合には、溶鋼表面でデッケルが形成さ
れ、鋳造操業に支障を来たしたり、介在物や気泡が凝固
殻に捕捉され、清浄で安定した凝固殻の生成ができない
ため、鋳造の操業性の低下とともに鋳片の品質低下は避
けられない。このような観点から、高速鋳造の場合も低
速鋳造の場合も、注入ノズルから鋳型に注入された、溶
鋼の流動パターンを好ましい状態にして一定にする制御
が求められている。 【0005】このような鋳型内溶鋼の流動のパターンを
ノズルの形状や深さを調整することで制御することは困
難なため、従来から直流磁界を用いて鋳型内溶鋼の流動
を制御する方法が提案されている。例えば、特公平2−
20349号公報は直流磁界を用いて鋳型内溶鋼の流動
を制御する方法に関する。この方法は、浸漬ノズルaか
ら吐出される溶鋼sの主たる流路の一部に直流磁界を作
用させることで、溶鋼の主流smを減速させ、ストラン
ドプールp奥深くに侵入する下降流を制御するととも
に、主流を小さい流れso、st等に分割して、プール
p内部での溶鋼の撹拌を狙ったものである。 【0006】しかしながら、この方法では、鋳型mの幅
方向の一部に直流磁界を形成するため(図5)、浸漬ノ
ズルaからの吐出流がブレーキ帯を迂回する場合が生じ
る。すなわち、ブレーキの弱い箇所からプールp下部へ
と向かう流れ(下向流)siが生じ、介在物をプールp
奥深くに持ち込むだけではなく、この現象が安定しない
ため、鋳型内流れも不安定になり、プールp上部での撹
拌が安定しないという問題があった。このため、鋳片品
質を向上させる技術とはなり得なかった。 【0007】また、特開平2−284750号公報は、
鋳型幅方向全域に直流磁界を加える方法であり、この技
術によってブレーキ帯よりも下方の流れは制動できるも
のの、制動を加えたい場所に直流磁界を加えるものであ
って、メニスカス流速をも制動する場合には、図6
(a),(b),図7にそれぞれ示すように、鋳型m全
体に直流磁界を加えなければならなかったり、2段の直
流磁界を加える必要があった。また、浸漬ノズルの吐出
孔より下方に直流磁界を加える方法もこの公報の中で開
示されているが、後述するように直流磁界を加える部位
の凝固シェル厚により、プール内流れの制御性が大きく
異なるものの、その点に関する記述はなく依然として、
不安定な技術であった。 【0008】この理由を浸漬ノズルaからの溶鋼の主流
が鋳型mの短辺ma,mbに衝突する位置よりも下方に
直流磁界を加える場合(図8)を例にとって説明する。
この場合、浸漬ノズルcからの吐出流が短辺maに衝突
した後、その下降流が直流磁場帯を横切る。その際に、
プール内で一方の短辺maから他方の短辺mbに向かう
電流が誘導されるため、バルクプール内では吐出流の下
方への侵入を抑制するローレンツ力が作用する。 【0009】しかしながら、短辺ma,mb近傍では電
流は溶鋼中に流れるものと凝固シェル内に流れるものと
分かれる。もし、大部分が溶鋼中に流れる場合、電流の
方向が3次元的に大きく変化する。このことはローレン
ツ力の作用する方向が3次元的に変化することを意味
し、短辺ma,mb近傍で下降流のブレーキが弱くなっ
てしまう。 【0010】その結果、図8(b)に示すように、溶鋼
の下降流がブレーキ力の弱い短辺ma,mb近傍におい
て、大きくなって不均一になるため、介在物をプールp
奥深く持ち込むだけでなく、この現象は安定せず、鋳型
内溶鋼の流れが不安定になる。 【0011】 【発明が解決しようとする課題】本発明は、鋼の連続鋳
造に際し、鋳型の幅方向にほぼ均一な磁束密度分布を有
する直流磁界を厚み方向に加えて、鋳型内の溶鋼の流動
を制御する場合に、直流磁界を加える位置の最適化を目
指し、鋳型内溶鋼の流動パターンの安定化を図ることに
よって、得られる鋳片の品質を向上できる直流磁界によ
る鋳型内溶鋼の流動制御方法を提供する。 【0012】 【課題を解決するための手段】本発明は、鋳型の幅方向
にほぼ均一な磁束密度分布を有する直流磁界を鋳型の厚
み方向に付与し、鋳型内に注入された溶鋼の流動を制御
する直流磁界による鋳型内溶鋼の流動制御方法におい
て、前記直流磁界を鋳型内で生成される凝固シェルの厚
みが17〜40mmとなる領域の一部に加え、この直流磁
場帯を溶鋼流が横切る際に誘導される電流のリターンパ
スを凝固シェル内に形成させることで、溶鋼プール内で
は一方向の電流を誘導し、溶鋼の流動を制御することを
特徴とする直流磁界による鋳型内溶鋼の流動制御方法で
ある。 【0013】 【作用】本発明においては鋼の連続鋳造に際して、鋳型
内溶鋼の流動を制御するため、凝固シェル厚が17〜4
0mmになる領域の一部に、幅方向に均一な磁束分布を有
する直流磁界を厚み方向に加える。これによって、短辺
近傍で電流の流れる方向が3次元的に変化するのを避
け、溶鋼プール内では一方向の電流が誘導させるように
して、凝固シェルで誘導電流のリターンパスを形成す
る。その結果、鋳型内溶鋼の流動を効率的かつ効果的に
プラグフロー化することができ、得られる鋳片の品質を
向上、安定化させることができる。 【0014】本発明でいう直流磁界を加える位置とは、
電磁コイルの上端位置を意味する。なお、本発明は、特
にスラブ状の鋳片を連続鋳造する場合のように矩形鋳型
を有し、吐出口が鋳型短辺側を向いて下向きに傾斜して
いる注入ノズルを用いた連続鋳造方法に適用してより適
性の高いものである。 【0015】本発明者等は、鋼の連続鋳造に際して鋳型
に直流磁場を加え、鋳型内溶鋼の流動を効率的かつ効果
的にプラグフロー化して凝固シェルを安定生成させる最
適条件について、種々実験、検討を重ねた結果、直流磁
界を加える位置を変えると鋳片の品質も変化することを
知見した。 【0016】そこで、本発明者等は、この知見をより確
かなものにするために、直流磁界発生装置を配設した実
機の1/2サイズの水銀モデル実験機を用いて、凝固シ
ェル厚の変化を凝固シェルに相当する容器の厚みの変化
で置き換え、容器内に水銀を供給し、容器側壁近傍にお
ける水銀流速分布の変化を調べる実験を行った。図1
は、この実験で得られた容器厚と容器内側壁近傍の流速
指数との関係を示し、併せてプラグフローライン(理想
とする完全に均一な下降流)を示す。 【0017】ここで、側壁近傍の流速指数とは、下降流
速を(ノズルからの吐出量/プール水平断面積)で割っ
た値であり、これが1になれば完全に均一な下降流、即
ちラグフローラインが得られることを示す。これより、
容器厚と容器側壁近傍の流速指数との間に密接な関係が
あり、容器厚が薄い場合には側壁近傍の流速指数が大き
いが、容器厚をある一定の厚さ以上にすることで、側壁
近傍の流速指数をプラグフローに近づけられることがわ
かる。また、この現象についてプール内で誘導される電
流を測定したところ、容器厚が薄い場合には側壁近傍で
電流の方向が3次元的に変化するが、容器厚がある厚み
以上の場合には、側壁近傍での電流の方向の変化は見ら
れず、プール内には、一方の短辺から他方の短辺に向か
方向の電流が誘導されることがわかった。 【0018】次に、実際の連続鋳造において直流磁界を
加える位置をいろいろ変化させて実験したところ、鋳片
欠陥指数(磁粉探傷法によって調査した結果)と直流磁
界を加える部位の凝固シェル厚との間には図2に示すよ
うな関係がある。 【0019】このことから、直流磁界を加える位置を凝
固シェル厚が17mm以上の位置にした場合に鋳片欠陥が
減少することがわかった。しかし、生成された凝固シェ
ル厚が40mm以上の位置で直流磁界を加えた場合、凝固
シェルが鋳片全厚みの1/3以上進行しており、直流磁
界が鋳型内溶鋼の流動の制御に対して、顕著な作用力を
発揮しなくなり、その存在意義を失ってしまう。 【0020】本発明は、これらの知見に基づいて得られ
たものであり、連続鋳造方法において直流磁界を加えて
溶鋼の流動制御を行う場合に、直流磁界を加える位置を
生成される凝固シェル厚が17〜40mmの領域の一部に
特定することを特徴としている。 【0021】 【実施例】以下に本発明を溶鋼の連続鋳造方法において
適用した場合の実施例を実施装置例とともに説明する。 【0022】図3において、1は鋳型で、この鋳型内の
中心部には、タンディッシュ2から溶鋼sを注入する浸
漬ノズル3が配設されている。この浸漬ノズルは下端閉
鎖型のもので、その下端部において鋳型の短辺側1bに
向いて下向きに約45゜傾斜する一対の吐出口3a,3
bが設けられている。 【0023】そして、この浸漬ノズル3の下方の鋳型長
辺1a側の外周には、この鋳型内に直流磁磁界を加え鋳
型内溶鋼の流動パターンを制御する、電磁コイル4とそ
の外側に配設され一方の短辺側にウエブ部を有するコの
字型の鉄芯5からなる直流磁場発生装置6が上下方向に
位置調整可能に配設されている。 【0024】本発明においては、直流磁界発生装置6の
電磁コイル4を配設する位置(電磁コイルの上端を、鋳
型内溶鋼の凝固シェルの生成厚みが17〜40mmである
領域内の一部に特定することを特徴としており、この凝
固シェル厚み領域がいずれの位置にあるかを確認する必
要があるが、この位置の確認は、実測(例えば鋳型内サ
ルファー点かを行い、鋳片のサルファープリントから凝
固シェル厚の鋳造長さ方向変化を測定による方法によっ
て、予め求めることができる。この配設条件を満足させ
ないと、連続鋳造時に鋳型1内において溶鋼の流動パタ
ーンを効果的に制御できず、鋳型内における溶鋼の凝固
シェルの生成が不安定になり、鋳造の操業性が低下し鋳
片の品質が低下する。 【0025】 【実験例】この実験例は、図1に示したような構成を有
する連続鋳造装置を用いた連続鋳造方法において本発明
を適用した場合のものである。 【0026】鋳造条件 鋳造鋳片:幅 1120mm,厚さ 254mmの断面(水
平断面)のスラブ鋳片 材質:低炭アルミキルド鋼 鋳型:垂直部:2.4m 鋳造温度:1560〜1580℃ 鋳造速度:1.5m/min 溶鋼面レベル: 鋳型上端から下方へ100mmの位置 浸漬ノズルの吐出孔の上端位置: 鋳型上端から下方へ
300mmの位置 【0027】この実験例では、上記の鋳造条件から、鋳
型短辺における上下方向の生成凝固シェル厚分布を求
め、直流磁界発生装置における電磁コイルの上端を凝固
シェル厚が17mmの位置に位置させ、鋳型の厚み方向に
3000ガウスの磁束密度を有する直流磁界を加えなが
ら連続鋳造を行った。なお、電磁コイルは高さ200mm
のものを用いた。 【0028】この結果を、図4に直流磁界を加えない従
来例および直流磁界を本発明の範囲外の位置で加えた比
較例とともに示す。この図に示すように、本発明の実施
例においては、従来例および比較例に比し、鋳型内溶鋼
の流動を各段に安定化(均一化)することができる。 【0029】 【発明の効果】本発明においては鋼の連続鋳造に際し
て、鋳型内溶鋼の流動を制御するため、鋳型に加える直
流磁界を凝固シェル厚が17〜40mmの領域の一部に加
えることにより、溶鋼プール内では一方向の電流を誘導
し、凝固シェルで誘導電流のリターンパスを形成するた
め、鋳型内溶鋼の流動を効率的かつ効果的にプラグフロ
ー化することができ、得られる鋳片の品質を向上するこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel, in which a DC magnetic field is applied to a mold to control the flow of molten steel in the mold. The present invention relates to a flow control method for inner molten steel. [0002] Conventionally, for example, in the field of continuous casting of steel, it has been known that the flow of molten steel in a mold greatly affects the operability of continuous casting and the quality of slab. That is, the flow of molten steel injected into the mold from the injection nozzle brings slag-based or deoxidized oxide-based inclusions interposed in the molten steel deep below the strand pool. Inclusions are more likely to be trapped in the solidified shell and the slab defects occur as the depth of the molten steel increases, so it is desirable that the depth of penetration of the downward flow of the molten steel be as small as possible. On the other hand, on the molten steel surface, when the molten steel flow velocity at the meniscus is high, as in the case of high-speed casting, the powder on the molten steel surface is caught in the molten steel, and in addition to the increase in inclusions in the molten steel, the molten steel surface Since the level fluctuation becomes large and the solidified shell cannot be generated stably,
As the quality of the slab decreases, the operability of casting decreases. [0004] When the flow velocity at the meniscus is low, as in the case of low-speed casting, deckles are formed on the surface of molten steel, which hinders the casting operation, and inclusions and air bubbles are trapped in the solidified shell, resulting in cleaning. Therefore, it is inevitable that the quality of the slab is reduced as well as the operability of the casting. From such a viewpoint, in both the high-speed casting and the low-speed casting, there is a demand for controlling the flow pattern of the molten steel injected from the injection nozzle into the casting mold to a preferable state and to keep the flow pattern constant. Since it is difficult to control the flow pattern of the molten steel in the mold by adjusting the shape and depth of the nozzle, a method of controlling the flow of the molten steel in the mold using a DC magnetic field has conventionally been used. Proposed. For example,
No. 20349 relates to a method for controlling the flow of molten steel in a mold using a DC magnetic field. In this method, a direct current magnetic field is applied to a part of the main flow path of the molten steel s discharged from the immersion nozzle a, thereby decelerating the main flow sm of the molten steel, and controlling the descending flow entering deep into the strand pool p. , The main flow is divided into small flows so, st, etc., with the aim of stirring the molten steel inside the pool p. However, in this method, since a DC magnetic field is formed in a part of the width direction of the mold m (FIG. 5), the discharge flow from the immersion nozzle a may bypass the brake zone. That is, a flow (downward flow) si from the weak brake position to the lower part of the pool p is generated, and the inclusions are removed from the pool p.
In addition to being brought deep, this phenomenon is not stable, so that the flow in the mold becomes unstable, and there has been a problem that the stirring above the pool p is not stable. For this reason, it could not be a technique for improving cast slab quality. [0007] Also, Japanese Patent Application Laid-Open No. 2-284750 discloses that
In this method, a DC magnetic field is applied to the entire area in the mold width direction.This technology can brake the flow below the brake zone, but applies a DC magnetic field to the place where braking is desired, and also brakes the meniscus flow velocity. Figure 6
As shown in (a), (b) and FIG. 7, a DC magnetic field had to be applied to the entire mold m, or a two-stage DC magnetic field had to be applied. Further, although a method of applying a DC magnetic field below the discharge hole of the immersion nozzle is also disclosed in this publication, the controllability of the flow in the pool is increased by the solidified shell thickness of the portion to which the DC magnetic field is applied as described later. Although different, there is no statement on that point,
It was an unstable technology. The reason for this will be described by taking as an example a case where a DC magnetic field is applied below a position where the main flow of molten steel from the immersion nozzle a collides with the short sides ma and mb of the mold m (FIG. 8).
In this case, after the discharge flow from the immersion nozzle c collides with the short side ma, the descending flow crosses the DC magnetic field zone. At that time,
Since a current is induced from one short side ma to the other short side mb in the pool, a Lorentz force acts on the bulk pool to suppress the inflow of the discharge flow downward. However, in the vicinity of the short sides ma and mb, the current is divided into those flowing in the molten steel and those flowing in the solidified shell. If most of the current flows in the molten steel, the direction of the current changes greatly in three dimensions. This means that the direction in which the Lorentz force acts changes three-dimensionally, and the brake of the downflow becomes weak near the short sides ma and mb. As a result, as shown in FIG. 8B, the descending flow of the molten steel becomes large and non-uniform in the vicinity of the short sides ma and mb where the braking force is weak.
This phenomenon is not stable, and the flow of molten steel in the mold becomes unstable. SUMMARY OF THE INVENTION The present invention relates to a method for continuously casting steel by applying a DC magnetic field having a substantially uniform magnetic flux density distribution in a width direction of a mold in a thickness direction to continuously flow molten steel in the mold. A method of controlling the flow of molten steel in a mold by a DC magnetic field that can improve the quality of the obtained slab by stabilizing the flow pattern of the molten steel in the mold with the aim of optimizing the position where a DC magnetic field is applied when controlling I will provide a. According to the present invention, a DC magnetic field having a substantially uniform magnetic flux density distribution in the width direction of a mold is applied in the thickness direction of the mold, and the flow of molten steel injected into the mold is controlled. In the method for controlling the flow of molten steel in a mold by a DC magnetic field to be controlled, the DC magnetic field is applied to a part of a region where the thickness of a solidified shell generated in the mold is 17 to 40 mm, and the molten steel flow traverses this DC magnetic field zone. in Rukoto the return path of the induced current is formed on the solidified shell when, in a molten steel pool
Is a method for controlling the flow of molten steel in a mold by a direct current magnetic field, wherein a flow of molten steel is controlled by inducing a current in one direction . According to the present invention, the solidification shell thickness is 17 to 4 in order to control the flow of molten steel in the mold during continuous casting of steel.
A DC magnetic field having a uniform magnetic flux distribution in the width direction is applied in the thickness direction to a part of the region having a thickness of 0 mm. In this way, the direction in which the current flows in the vicinity of the short side is prevented from changing three-dimensionally, and a current in one direction is induced in the molten steel pool, thereby forming a return path of the induced current in the solidified shell. As a result, the flow of the molten steel in the mold can be efficiently and effectively made into a plug flow, and the quality of the obtained slab can be improved and stabilized. The position where the DC magnetic field is applied in the present invention is as follows.
It means the upper end position of the electromagnetic coil. In addition, the present invention is a continuous casting method using an injection nozzle having a rectangular mold as in the case of continuous casting of a slab-shaped cast piece, in which a discharge port is inclined downward toward the short side of the mold. It is more suitable to apply to. The present inventors have conducted various experiments on optimum conditions for applying a DC magnetic field to a mold during continuous casting of steel to efficiently and effectively plug flow the molten steel in the mold to stably produce a solidified shell. As a result of repeated studies, it was found that the quality of the slab also changes when the position where the DC magnetic field is applied is changed. In order to make this finding more reliable, the present inventors used a half-size mercury model experimental machine equipped with a DC magnetic field generator to reduce the solidified shell thickness. An experiment was conducted in which the change was replaced with a change in the thickness of the container corresponding to the solidified shell, mercury was supplied into the container, and a change in the mercury flow rate distribution near the container side wall was performed. FIG.
Shows the relationship between the vessel thickness obtained in this experiment and the velocity index near the inner wall of the vessel, and also shows a plug flow line (ideal, completely uniform downward flow). Here, the flow velocity index in the vicinity of the side wall is a value obtained by dividing the descending flow velocity by (discharge amount from nozzle / horizontal sectional area of the pool). Indicates that a flow line is obtained. Than this,
There is a close relationship between the vessel thickness and the flow velocity index near the container side wall, and when the container thickness is small, the flow velocity index near the side wall is large, but by setting the container thickness to a certain thickness or more, the side wall It can be seen that the flow velocity index in the vicinity can be approximated to the plug flow. In addition, when the current induced in the pool was measured for this phenomenon, the direction of the current changed three-dimensionally near the side wall when the container thickness was thin, but when the container thickness was more than a certain thickness, change of the direction of the current at the side wall near the not observed, in the pool, it was found that one direction of the current from one short side toward the other short side is induced. Next, an experiment was conducted by changing the position where a DC magnetic field was applied in actual continuous casting while changing the position at which the DC magnetic field was applied. There is a relationship as shown in FIG. From this, it was found that when the position where the DC magnetic field was applied was set to a position where the thickness of the solidified shell was 17 mm or more, slab defects were reduced. However, when a DC magnetic field is applied at a position where the thickness of the generated solidified shell is 40 mm or more, the solidified shell advances more than 1/3 of the total thickness of the slab, and the DC magnetic field controls the flow of molten steel in the mold. As a result, it does not exert a remarkable effect and loses its significance. The present invention has been obtained based on these findings. In the case of controlling the flow of molten steel by applying a DC magnetic field in a continuous casting method, the position at which the DC magnetic field is applied is determined by the thickness of the solidified shell. Are specified in a part of the area of 17 to 40 mm. An embodiment in which the present invention is applied to a continuous casting method of molten steel will be described below together with an example of an apparatus. In FIG. 3, reference numeral 1 denotes a mold, and a dipping nozzle 3 for injecting molten steel s from a tundish 2 is provided at a central portion in the mold. This immersion nozzle is of a closed bottom type, and a pair of discharge ports 3a, 3 inclined at about 45 ° downward at the lower end toward the short side 1b of the mold.
b is provided. On the outer periphery of the long side 1a of the mold below the immersion nozzle 3, an electromagnetic coil 4 for controlling the flow pattern of the molten steel in the mold by applying a DC magnetic field to the mold is provided. A DC magnetic field generator 6 comprising a U-shaped iron core 5 having a web portion on one short side is disposed so as to be vertically adjustable. In the present invention, the position where the electromagnetic coil 4 of the DC magnetic field generator 6 is disposed (the upper end of the electromagnetic coil is located at a part of the region where the thickness of the solidified shell of molten steel in the mold is 17 to 40 mm) It is necessary to confirm the position of this solidified shell thickness region. However, this position can be confirmed by actual measurement (for example, determining whether it is a sulfur point in a mold, The change in the solidification shell thickness in the casting length direction can be determined in advance by a method based on measurement.If this arrangement condition is not satisfied, the flow pattern of molten steel in the mold 1 during continuous casting cannot be effectively controlled, The formation of a solidified shell of molten steel in a mold becomes unstable, the operability of casting is reduced, and the quality of slabs is reduced. This is a case where the present invention is applied to a continuous casting method using a continuous casting apparatus having such a configuration: Casting conditions Cast slab: slab having a cross section (horizontal cross section) having a width of 1120 mm and a thickness of 254 mm Slab material: Low-carbon aluminum killed steel Mold: Vertical part: 2.4 m Casting temperature: 1560-1580 ° C Casting speed: 1.5 m / min Molten steel surface level: 100 mm downward from the top of the mold Top of the discharge hole of the immersion nozzle Position: A position 300 mm downward from the upper end of the mold In this experimental example, the thickness distribution of the generated solidified shell in the vertical direction on the short side of the mold was determined from the above casting conditions, and the upper end of the electromagnetic coil in the DC magnetic field generator was solidified. The shell was positioned at a position where the shell thickness was 17 mm, and continuous casting was performed while applying a DC magnetic field having a magnetic flux density of 3000 Gauss in the thickness direction of the mold. Magnetic coil height 200mm
Was used. The results are shown in FIG. 4 together with a conventional example in which no DC magnetic field is applied and a comparative example in which a DC magnetic field is applied at a position outside the scope of the present invention. As shown in this figure, in the embodiment of the present invention, the flow of the molten steel in the mold can be stabilized (uniform) in each stage as compared with the conventional example and the comparative example. According to the present invention, in order to control the flow of molten steel in a mold during continuous casting of steel, a DC magnetic field applied to the mold is applied to a part of the region having a solidified shell thickness of 17 to 40 mm. In the molten steel pool, a unidirectional current is induced, and a solidified shell forms a return path for the induced current, so that the flow of the molten steel in the mold can be efficiently and effectively plug-flowed, and the resulting slab is obtained. Quality can be improved.

【図面の簡単な説明】 【図1】水銀を用いたモデル実験から得られた直流磁界
を加えた容器近傍の流速指数と容器厚みとの関係を示す
説明図 【図2】実際の鋳造実験から得られた直流磁界を加えた
鋳型内の凝固シェル厚と鋳片欠陥指数との関係を示す説
明図 【図3】(a)図は、本発明を実施する連続鋳造設備例
を示す縦断面概要説明図 (b)図は(a)図のAa−Ab矢視断面概要説明図 【図4】(a)図は、本発明において直流磁界を加えた
鋳型内溶鋼の流動(下降流、上昇流)パターンを示す説
明図、(b)図は直流磁界を加えない従来の鋳型内溶鋼
の流動パターンを示す説明図、(c)図は直流磁界を加
えた鋳型内溶鋼の流動パターン(比較例)を示す説明図 【図5】従来から知られている、鋳型に直流磁界を加え
る連続鋳造設備例を示す縦断面説明図。 【図6】従来から知られている、鋳型に直流磁界を加え
る別の連続鋳造設備例を示し、(a)はその横断面説明
図、(b)図は縦断面説明図。 【図7】従来から知られている鋳型に直流磁界を加え
る、もう一つの連続鋳造設備例を示す縦断面説明図。 【図8】(a)図は、従来の鋳型に直流磁界を加える、
連続鋳造設備例を示す縦断面説明図。(b)図は、
(a)図の連続鋳造設備例における鋳型内溶鋼の流動パ
ターン例を示す説明図。 【符号の説明】 1 鋳型 1a 長辺 1b 短辺 2 タンディッシュ 3 浸漬ノズル 3a,3b 注入ノズルの吐出孔 4 電磁コイル 5 鉄心 6 直流磁場発生装置 7 直流電源 s 溶鋼 ss 凝固シェル sm 溶鋼の主流 so,st 分流 si 下向流 a 浸漬ノズル ad 磁極 c 電磁コイル f 鉄心 m 鋳型 ma,mb (鋳型)短辺 p プール po 溶鋼の主流衝突位置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a relationship between a flow velocity index near a vessel and a vessel thickness to which a DC magnetic field is applied obtained from a model experiment using mercury and a vessel thickness. FIG. FIG. 3 is an explanatory view showing the relationship between the thickness of a solidified shell in a mold to which a DC magnetic field is applied and a slab defect index. FIG. 3 (a) is a schematic longitudinal sectional view showing an example of a continuous casting facility for carrying out the present invention. FIG. 4 (b) is a schematic cross-sectional view taken along the line Aa-Ab of FIG. 4 (a). FIG. 4 (a) is a flow (downflow, upflow) of molten steel in a mold to which a DC magnetic field is applied in the present invention. ) Explanatory diagram showing the pattern, (b) is an explanatory diagram showing the flow pattern of the molten steel in the conventional mold to which no DC magnetic field is applied, and (c) is a flow pattern of the molten steel in the mold to which a DC magnetic field is applied (comparative example). FIG. 5 is an example of a conventionally known continuous casting facility for applying a DC magnetic field to a mold. FIG. FIGS. 6A and 6B show another example of a conventionally known continuous casting facility for applying a DC magnetic field to a mold, in which FIG. 6A is a cross-sectional view and FIG. FIG. 7 is an explanatory longitudinal sectional view showing another example of continuous casting equipment for applying a DC magnetic field to a conventionally known mold. FIG. 8 (a) shows a conventional mold in which a DC magnetic field is applied;
FIG. 3 is an explanatory longitudinal sectional view showing an example of a continuous casting facility. (B)
(A) Explanatory drawing which shows the example of the flow pattern of the molten steel in a mold in the continuous casting equipment example of a figure. [Description of Signs] 1 Mold 1a Long side 1b Short side 2 Tundish 3 Immersion nozzle 3a, 3b Discharge hole of injection nozzle 4 Electromagnetic coil 5 Iron core 6 DC magnetic field generator 7 DC power supply s Molten steel s Solidified shell sm Main stream of molten steel so , St Split flow si Downflow a Immersion nozzle ad Magnetic pole c Electromagnetic coil f Iron core m Mold ma, mb (mold) Short side p Pool po Mainstream collision position of molten steel

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−271035(JP,A) 特開 平2−117756(JP,A) 特開 平4−344858(JP,A) 特開 平5−96349(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/18 B22D 11/04 311 B22D 11/115 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-271035 (JP, A) JP-A-2-117756 (JP, A) JP-A-4-344858 (JP, A) JP-A-5- 96349 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/18 B22D 11/04 311 B22D 11/115

Claims (1)

(57)【特許請求の範囲】 【請求項1】 鋳型の幅方向にほぼ均一な磁束密度分布
を有する直流磁界を鋳型の厚み方向に付与し、鋳型内に
注入された溶鋼の流動を制御する直流磁界による鋳型内
溶鋼の流動制御方法において、前記直流磁界を鋳型内で
生成される凝固シェルの厚みが17〜40mmとなる領域
の一部に加え、この直流磁場帯を溶鋼流が横切る際に誘
導される電流のリターンパスを凝固シェル内に形成させ
ることで、溶鋼プール内では一方向の電流を誘導し、溶
鋼の流動を制御することを特徴とする直流磁界による鋳
型内溶鋼の流動制御方法。
(57) [Claim 1] A DC magnetic field having a substantially uniform magnetic flux density distribution in the width direction of the mold is applied in the thickness direction of the mold to control the flow of molten steel injected into the mold. In the flow control method of molten steel in a mold by a DC magnetic field, the DC magnetic field is added to a part of a region where the thickness of a solidified shell generated in the mold is 17 to 40 mm, and when the molten steel flow crosses the DC magnetic field zone, A return path for the induced current is formed in the solidified shell.
A method for controlling the flow of molten steel in a mold by a DC magnetic field, wherein a current in one direction is induced in the molten steel pool to control the flow of the molten steel.
JP08684094A 1994-04-25 1994-04-25 Flow control method of molten steel in mold by DC magnetic field Ceased JP3399627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08684094A JP3399627B2 (en) 1994-04-25 1994-04-25 Flow control method of molten steel in mold by DC magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08684094A JP3399627B2 (en) 1994-04-25 1994-04-25 Flow control method of molten steel in mold by DC magnetic field

Publications (2)

Publication Number Publication Date
JPH07290219A JPH07290219A (en) 1995-11-07
JP3399627B2 true JP3399627B2 (en) 2003-04-21

Family

ID=13898020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08684094A Ceased JP3399627B2 (en) 1994-04-25 1994-04-25 Flow control method of molten steel in mold by DC magnetic field

Country Status (1)

Country Link
JP (1) JP3399627B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832704A1 (en) 1996-09-19 1998-04-01 Hoogovens Staal B.V. Continuous casting machine

Also Published As

Publication number Publication date
JPH07290219A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
US5381857A (en) Apparatus and method for continuous casting
KR100618362B1 (en) Production method for continuous casting cast billet
JPH0320295B2 (en)
JPH0555220B2 (en)
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
EP0930946B1 (en) Continuous casting machine
JP4542631B2 (en) Method and apparatus for manufacturing slabs
JP3237177B2 (en) Continuous casting method
JPH0819842A (en) Method and device for continuous casting
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JP3408374B2 (en) Continuous casting method
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP3147824B2 (en) Continuous casting method
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JP2627136B2 (en) Continuous casting method of multilayer slab
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
KR100314847B1 (en) Flow control device using electromagnetic force during continuous casting
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JPH07308739A (en) Method for continuously casting duplex layer cast slab
JPH0347654A (en) Continuous casting method and mold for continuous casting used to method thereof
JPH0550187A (en) Method for continuously casting complex metal material
JP2000197951A (en) Apparatus for continuously casting steel using static magnetic field
JPH07148555A (en) Device for continuously casting molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030114

RVOP Cancellation by post-grant opposition