WO2017047058A1 - Continuous casting method for slab casting piece - Google Patents

Continuous casting method for slab casting piece Download PDF

Info

Publication number
WO2017047058A1
WO2017047058A1 PCT/JP2016/004124 JP2016004124W WO2017047058A1 WO 2017047058 A1 WO2017047058 A1 WO 2017047058A1 JP 2016004124 W JP2016004124 W JP 2016004124W WO 2017047058 A1 WO2017047058 A1 WO 2017047058A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
mold
magnetic field
immersion nozzle
continuous casting
Prior art date
Application number
PCT/JP2016/004124
Other languages
French (fr)
Japanese (ja)
Inventor
章敏 松井
陽一 伊藤
三木 祐司
智紘 田中
満園 将行
亮祐 千代原
錦織 正規
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020187006856A priority Critical patent/KR102088117B1/en
Priority to EP16845932.9A priority patent/EP3332889B1/en
Priority to BR112018004704-0A priority patent/BR112018004704B1/en
Priority to JP2016568067A priority patent/JP6115690B1/en
Priority to CN201680052423.5A priority patent/CN108025354B/en
Publication of WO2017047058A1 publication Critical patent/WO2017047058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Definitions

  • Patent Document 1 attempts to control the flow of molten steel in a mold by adjusting the immersion depth and shape of the immersion nozzle discharge hole and the discharge direction from the immersion nozzle.
  • an inert gas such as argon or nitrogen is blown from the tundish outflow hole to the immersion nozzle discharge hole in order to suppress the adhesion of inclusions (mainly Al 2 O 3 ) to the inner wall of the immersion nozzle. It is.
  • the influence of such gas blowing on the behavior of the discharge jet is very large, and the molten steel throughput naturally has a great influence on the behavior of the discharge jet.
  • the flow control effect obtained cannot be increased simply by adjusting the design items of the immersion nozzle without controlling the gas injection amount and the molten steel throughput within an appropriate range. Is not considered applicable.
  • a pair of upper magnetic poles and a pair of lower magnetic poles opposed to each other across the mold long side are disposed on the back side of the mold long side, and the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole is
  • the discharge hole is positioned between the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole, and the molten steel flow is braked by applying a DC static magnetic field between the upper magnetic pole and the lower magnetic pole,
  • the discharge direction of the immersion nozzle is expressed by the formula (1) with respect to the reference plane.
  • a linear moving magnetic field generator having a moving direction of the magnetic field in the mold width direction is provided on the back side of the long side of the mold, and the short side of the mold is used to apply a braking force to the molten steel flow discharged from the immersion nozzle.
  • the flow control is performed by applying a moving magnetic field from the immersion nozzle side to the mold short side in order to apply a moving magnetic field from the immersion nozzle side to the immersion nozzle side, or to give an acceleration force to the molten steel flow.
  • the AC traveling magnetic field strength of 500 ⁇ 900Gs; range, the intensity of the DC static magnetic field applied from the upper pole of the (Gaussian 1Gs 10 -4 T)
  • the strength of the DC static magnetic field applied from the lower magnetic pole is set in the range of 3000-4500 Gs, and the strength of the AC moving magnetic field X (Gs) is continuously cast.
  • the ratio X / W (Gs / mm) to the width W (mm) is controlled to be 0.30 or more and less than 0.55, and the discharge direction of the immersion nozzle is set to the AC moving magnetic field with respect to the reference plane.
  • FIG. 2 is a schematic cross-sectional view showing a state of a discharge flow from an immersion nozzle in a continuous casting mold.
  • the immersion depth of the immersion nozzle 4 distance from the molten steel surface in the mold to the upper end of the discharge hole
  • the discharge angle of the molten steel from the horizontal direction of the discharge hole 5 is in the range of 15 to 35 °.
  • a high-quality slab slab can be manufactured without using an expensive electromagnetic fluid coil equipment.
  • the slab cast having a thickness in the range of 220 to 300 (mm) is targeted, and the continuous casting method according to the present embodiment can be applied to any slab having a thickness in the range.
  • FIG. 6 is a schematic cross-sectional view of a continuous casting mold different from that described above.
  • FIG. 7 is a schematic cross-sectional view of FIG. 6 viewed from vertically above.
  • the continuous casting mold 40 for slab slabs is a pair of linear molds opposed to the continuous casting mold 20 shown in FIG.
  • a moving magnetic field generator 42 is provided.
  • the moving direction of the magnetic field of the linear moving magnetic field generator 42 is the mold width direction.
  • the moving magnetic field is applied in the direction toward the surface and the flow in the mold is controlled by applying the acceleration force to the discharge flow 11, the direction from the immersion nozzle 4 toward the mold short side 3 as shown in FIG. A moving magnetic field is applied to.
  • Such a flow control method is characterized in that a braking force or an acceleration force can be applied to the discharge flow 11 so that the discharge flow 11 can always be controlled in an appropriate state. Since the flow is symmetric, it has been found that a region with a small flow velocity occurs in the part where the left and right flow interfere.
  • 17 is a low flow velocity region
  • 18 is The vortex flow 19 generated by the collision of the swirling flow 15 and the reverse flow 16 is a downward flow that flows downward in the vertical direction after the discharge flow 11 collides with the solidified shell on the short side of the mold.
  • the low flow velocity region 17 and the vortex 18 are shown only on one mold short side, but they also occur on the opposite mold short side. As shown in FIG.
  • the present inventors have intensively studied these solutions.
  • the defect of the steel product caused by the inclusions, bubbles, and mold powder is caused by the low flow velocity region 17 caused by the collision / interference between the swirling flow 15 caused by the AC moving magnetic field and the reverse flow 16 of the discharge flow 11.
  • the generation of the vortex 18 Even in the flow control method in which an alternating moving magnetic field is applied to apply a horizontal swirling flow 15, collision / interference between the swirling flow 15 and the reversing flow 16 can be prevented by inclining the discharge direction of the immersion nozzle 4 from the reference plane. I found that it can be avoided.
  • the inclination angle ⁇ it is preferable to reduce the inclination angle ⁇ . If the inclination angle ⁇ is too large, the flow rate of the molten steel in the vicinity of the solidified shell 9 becomes too high, and there is a concern that the growth of the solidified shell 9 is hindered, causing an operation inhibition such as a breakout. It is not preferable.
  • FIG. 12 is a schematic cross-sectional view of a continuous casting mold 1 different from the above, wherein reference numeral 1 is a continuous casting mold, 2 is a mold long side, 3 is a mold short side, 4 is an immersion nozzle, and 5 is an immersion nozzle. , 6 is an upper magnetic pole, 7 is a lower magnetic pole, 8 is molten steel, 9 is a solidified shell, 10 is a molten steel surface in the mold, and 11 is a discharge flow from an immersion nozzle.
  • reference numeral 1 is a continuous casting mold
  • 2 is a mold long side
  • 3 is a mold short side
  • 4 is an immersion nozzle
  • 5 is an immersion nozzle.
  • 6 is an upper magnetic pole
  • 7 is a lower magnetic pole
  • 8 is molten steel
  • 9 is a solidified shell
  • 10 is a molten steel surface in the mold
  • 11 is a discharge flow from an immersion nozzle.
  • FIG. 15 is a diagram schematically showing the molten steel flow rate in the mold under casting conditions in which the discharge direction from the immersion nozzle is perpendicular to the mold short side.
  • the inventors use a continuous casting mold 1 shown in FIG. 12, applying a DC static magnetic field and an AC moving magnetic field superimposed on the upper magnetic pole 6, applying a DC static magnetic field to the lower magnetic pole 7, and an immersion nozzle.
  • the state of flow in the mold under the casting conditions in which the discharge direction from the four discharge holes 5 was parallel to the long side surface of the mold and the discharge flow 11 was perpendicular to the short side 3 of the mold was investigated.
  • the flow velocity distribution in the mold under this casting condition is obtained by numerical calculation and flow velocity measurement by a test casting apparatus of 1/4 size of actual machine using a low melting point alloy (Bi-Pb-Sn-Cd alloy; melting point about 70 ° C). Confirmed repeatedly. As a result, as shown in FIG. 15, a low flow velocity region 17 in which the molten steel flow velocity becomes small is generated in the vicinity of the mold short side 3 in the width direction of the mold long side 2, which is the downstream region of the swirling flow 15 by the AC moving magnetic field. Confirmed to do. In FIG.
  • reference numeral 15 denotes a swirling flow that is formed by an AC moving magnetic field and rotates in one direction clockwise or counterclockwise in the molten steel surface 10 in the mold and the vicinity thereof, and 16 is a discharge flow 11 that is short of the mold.
  • 16 is a discharge flow 11 that is short of the mold.
  • 17 is a low flow velocity region
  • 18 is a swirl.
  • a vortex flow 19 generated by the collision of the flow 15 and the reversal flow 16 is a downward flow that flows downward in the vertical direction after the discharge flow 11 collides with the solidified shell on the short side of the mold.
  • the low flow velocity region 17 and the vortex 18 are shown only on one mold short side, but they also occur on the opposite mold short side.
  • the present inventors have found that a swirling flow 15 caused by an AC moving magnetic field and a reversal flow 16 after a short-side solidified shell collision of the discharge flow 11 from the discharge hole 5 collide in the vicinity of the mold short side. -It has been found that a low flow velocity region 17 is generated due to the interference, bubbles and inclusions are trapped in the low flow velocity region 17 and eventually become a defect of the steel product.
  • FIG. 16 is a schematic view of a state in which casting is performed by inclining the discharge direction of the immersion nozzle toward the upstream side of the swirling flow, as viewed from above.
  • the AC moving magnetic field strength of the upper magnetic pole 6 was in the range of 500 to 900 (Gs), and the upper part The strength of the DC static magnetic field of the magnetic pole 6 is in the range of 2000 to 3300 (Gs), the strength of the DC static magnetic field of the lower magnetic pole 7 is in the range of 3000 to 4500 (Gs), and the AC moving magnetic field strength X (Gs of the upper magnetic pole 6 is )
  • the ratio X / W (Gs / mm) of the width W (mm) of the continuously cast slab slab is controlled to be 0.30 or more and less than 0.55, as shown in FIG.
  • the ratio X / W is less than 0.30, the flow velocity of the swirling flow 15 is too small with respect to the width of the slab slab, so that a sufficient effect can be obtained even if the discharge direction of the immersion nozzle 4 is inclined. Can not. Further, when the ratio X / W is 0.55 or more, a sufficient flow velocity of the swirl flow 15 can be ensured with respect to the width of the slab slab, and adverse effects such as generation of a low flow velocity region 17 due to interference with the reverse flow 16 are obtained. Therefore, the effect of tilting the discharge direction of the immersion nozzle 4 is considered to be small.
  • the present inventors have conducted intensive studies and experiments, paying attention to the ratio X / W between the strength X (Gs) of the AC moving magnetic field and the width W (mm) of the slab slab to be cast. I found a relationship.
  • the long side surface of the mold passes through the center of the vertical axis of the immersion nozzle 4 It was found that the inclination angle ⁇ in the discharge direction with respect to the reference plane parallel to is preferably in the range of the following equation (8). This is because the AC moving magnetic field strength X is relatively small with respect to the width W of the slab slab. It is thought that it is necessary to avoid collision and interference.
  • the inclination angle ⁇ in the discharge direction of the immersion nozzle 4 may be set during continuous casting using an apparatus capable of changing the inclination angle ⁇ in the discharge direction in addition to setting before the start of continuous casting. Using this apparatus, each time the casting conditions are changed, such as changing the mold width during continuous casting, ⁇ and ⁇ are sequentially measured, and ⁇ expressed by the formula (1) or (3) to (9) A more preferable effect can be obtained by changing the discharge direction of the submerged nozzle 4 so that the inclination angle ⁇ satisfies the magnitude relationship between and ⁇ .
  • step S101: No the processing shown in FIG.
  • step S101: Yes the angle adjusting device measures the inclination angles ⁇ and ⁇ , and does the inclination angle ⁇ satisfy the expression (1)? It is determined whether or not (step S102).
  • step S102: Yes the angle adjusting device ends the processing illustrated in FIG.
  • step S103 the angle adjustment device resets the inclination angle ⁇ that satisfies the expression (1) (step S103).
  • the angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to obtain the reset inclination angle ⁇ (step S104), and ends the process shown in FIG.
  • FIG. 18 is a flowchart showing an example different from the above. Another process for changing the inclination angle ⁇ in the discharge direction of the immersion nozzle 4 will be described with reference to FIG.
  • the process shown in FIG. 18 includes a pair of upper magnetic pole 6 and a pair of lower magnetic pole 7 opposed to the back surface of the mold long side 2 across the mold long side in addition to the processing start conditions shown in FIG. Is disposed between the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole 6 and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7, and the strength of the static magnetic field Is started when it is 1500 Gs or more and less than 3500 Gs.
  • step S202 determines that the strength of the DC static magnetic field is not in the range of 1500 ⁇ Gs ⁇ 2500 but in the range of 2500 ⁇ Gs ⁇ 3500 (step S202: No)
  • step S206 determines whether the inclination angle ⁇ satisfies the equation (4).
  • step S206 Yes
  • the angle adjusting device ends the process illustrated in FIG.
  • the angle adjusting device determines whether or not the continuous casting device is in a steady casting (step S401). If the angle adjusting device determines that the continuous casting device is not in a steady casting state (step S401: No), the processing shown in FIG. When the continuous casting apparatus is in steady casting (step S401: Yes), the angle adjusting apparatus determines whether the ratio X / W is 0.30 or more and less than 0.45 (step S401: Yes). Step S402). When the angle adjustment device determines that the ratio X / W is not less than 0.30 and less than 0.45 (step S402: Yes), the angle adjustment device measures the inclination angles ⁇ and ⁇ , and the inclination angle ⁇ is expressed by equation (6). Is satisfied (step S403).
  • the angle adjusting device determines whether or not the continuous casting device is in steady casting (step S501). When the angle adjusting device determines that the continuous casting device is not in a steady casting (step S501: No), the processing shown in FIG. 21 is terminated.
  • the angle adjusting device determines whether the ratio X / W is equal to or greater than 0.30 and less than 0.45 when the continuous casting device is in the steady casting (step S501: Yes) (Ste S502).
  • the angle adjustment device determines that the ratio X / W is not less than 0.30 and less than 0.45 (step S502: Yes)
  • the angle adjustment device measures the inclination angles ⁇ and ⁇ , and the inclination angle ⁇ is expressed by equation (8). Is determined (step S503).
  • step S502 determines that the ratio X / W is not 0.30 or more and less than 0.45 but 0.45 or more and less than 0.55 (step S502: No)
  • step S506 determines whether the inclination angle ⁇ satisfies the expression (9) (step S506).
  • step S506 determines that the inclination angle ⁇ satisfies the expression (9) (step S506: Yes)
  • step S506: No the angle adjustment device resets the inclination angle ⁇ that satisfies the expression (9) (step S507).
  • the angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to have the reset inclination angle ⁇ (step S508), and ends the processing shown in FIG.
  • the angle adjusting device includes a pair of magnetic poles 52 on the back surface of the long side, and an AC moving magnetic field having a strength within the range of 300 to 1000 Gs is applied from the magnetic poles 52, and the strength of the AC moving magnetic field and the slab
  • the process of changing the inclination angle ⁇ in the discharge direction shown in FIG. 20 is executed. To do.
  • the angle adjusting device includes a pair of upper magnetic pole 6 and a pair of lower magnetic poles 7 which are opposed to each other with the long side of the mold interposed therebetween, and is applied from the upper magnetic pole 6.
  • the discharge hole is arranged between the position of the maximum value of the DC static magnetic field and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7, and the AC movement with a strength within the range of 500 to 900 Gs from the upper magnetic pole 6.
  • the angle adjustment device executes the process of changing the inclination angle ⁇ corresponding to the casting condition at every predetermined time, and the inclination angle ⁇ corresponds to the casting condition (1).
  • the discharge direction of the immersion nozzle 4 is changed so as to satisfy the expression.
  • the discharge direction of the immersion nozzle 4 is changed by the angle adjusting device so as to satisfy the equation. Therefore, it can prevent that the slab slab containing an inclusion continues being manufactured.
  • the cast slab slab is sequentially subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing treatment, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter.
  • Measured and discriminated steelmaking defects defects caused by inclusions in the slab cast) by the appearance of defects, SEM analysis, ICP analysis, etc., and 100 (m) length of the alloyed hot-dip galvanized steel sheet
  • product defect index The number of defects per unit (called “product defect index”) was evaluated.
  • Table 1 shows the examination results of casting conditions and product defect index in Examples 1 to 18 of the present invention and Comparative Examples 1 to 18.
  • the shape of the discharge hole of the immersion nozzle is a square having a side length of 70 (mm), and the inner diameter of the immersion nozzle is 70 (mm).
  • Argon gas was used as an inert gas blown from the immersion nozzle.
  • the ratio A / P between the molten steel throughput P and the argon gas flow rate A was set to be in the range of 2.0 to 3.5 (NL / ton). Casting was performed under the condition that an AC moving magnetic field was applied from the magnetic pole and the molten steel discharge flow was damped.
  • Examples 45 to 47 of the present invention “ ⁇ - ⁇ ” is set in the range of ⁇ 6 to 0 (°). In this case, the product defect index was slightly higher, 0.27 to 0.29 (pieces / 100 m). This is presumably due to the fact that the flow velocity was slightly applied to the molten steel flow, but these were also sufficiently good quality slabs.
  • “ ⁇ ” is set in the range of 8 to 10 (°). In this case, the product defect index was slightly high, 0.27 to 0.28 (pieces / 100 m). This is presumably due to the fact that the flow velocity is slightly increased in the molten steel flow and the entrainment of the mold powder is promoted, but these were also sufficiently good quality slabs.
  • the cross section of the slab was examined for these slabs, a portion where the shell growth thickness in the mold was slightly thin was found, but it did not hinder the operation stability.
  • the cast slab slab has a thickness of 260 (mm), a width of 1600 (mm), and a molten steel injection flow rate of 5.0 to 6.0 (ton / min).
  • the discharge angle of the discharge hole of the used two-hole immersion nozzle is 25 (°) downward, and the immersion depth of the immersion nozzle (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 (mm) or more and 300 ( mm).
  • the shape of the discharge hole of the immersion nozzle is a square having a side length of 70 (mm), and the inner diameter of the immersion nozzle is 70 (mm).
  • Argon gas was used as an inert gas blown from the immersion nozzle.
  • the ratio A / P between the molten steel throughput P and the argon gas flow rate A was set to be in the range of 2.0 to 3.5 (NL / ton).
  • the AC moving magnetic field strength is in the range of 300 to 1000 (Gs)
  • the cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter.
  • the defect appearance, SEM analysis, ICP analysis, etc. are used to discriminate steelmaking defects (defects caused by inclusions in the slab cast), and the alloyed hot-dip galvanized steel sheet is 100 (m) long.
  • the number of defects per product (called “product defect index”) was evaluated.
  • Table 4 shows the results of investigating the casting conditions and product defect index of Examples 50 to 71 of the present invention. Also in Table 4, the diagonal direction angle ⁇ was calculated by rounding off the second decimal place. The value of “ ⁇ ” is shown by rounding off the first decimal place.
  • the product defect index is 0.45 to 0.51 (pieces / 100 m) when the immersion nozzle discharge hole is directed to the short side without being inclined by the same flow control method. ).
  • the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45.
  • the product defect index is particularly low, 0.18 to 0.20 (pieces / 100 m). I understood it. That is, when the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, the inclination angle ⁇ (°) may be in the range of “ ⁇ 3” or more and “ ⁇ ” or less. It turned out to be preferable.
  • the slab cast cast has a thickness of 220 to 300 (mm), a casting width of 1000 to 2000 (mm), and a molten steel throughput of 3.0 to 8.0. It has also been confirmed separately that the same effects as those described in this example can be obtained. It has also been confirmed that the same tendency can be obtained when the molten steel discharge angle of the immersion nozzle is in the range of 15 to 35 (°).
  • the shape of the discharge hole of the immersion nozzle and the inner diameter of the immersion nozzle are not limited only to the conditions described in the present embodiment, and any one can be used as long as it is within the range that can be assumed by those skilled in the art. It does n’t matter.
  • the cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter.
  • the defect appearance, SEM analysis, ICP analysis, etc. are used to discriminate steelmaking defects (defects caused by inclusions in the slab cast), and the alloyed hot-dip galvanized steel sheet is 100 (m) long.
  • the number of defects per product (called “product defect index”) was evaluated.
  • Table 5 shows the examination results of the casting conditions and the product defect index in the inventive examples 72 to 79 and the comparative examples 38 to 46. In Table 5, the diagonal direction angle ⁇ and the inclination angle ⁇ were calculated by rounding off the second decimal place.
  • the strength of the AC moving magnetic field applied from the upper magnetic pole is 500 to 900 (Gs)
  • the strength of the DC static magnetic field applied from the upper magnetic pole is 2000 to 3300 (Gs)
  • Continuous casting was performed while controlling the strength of the DC static magnetic field within a range of 3000 to 4500 (Gs).
  • the strength of the DC static magnetic field applied from the upper magnetic pole and the lower magnetic pole is outside these ranges, confirm that the product defect index generally increases. Yes.
  • the product defect index is high even when the ratio X / W between the strength X of the AC magnetic field of the upper magnetic pole and the width W of the slab slab is less than 0.30. I have confirmed that.
  • Table 5 shows the diagonal direction angle ⁇ calculated by the thickness D of the cast slab and the width W of the slab, and the inclination angle ⁇ of the discharge flow at the time of casting.
  • the diagonal direction angle ⁇ was calculated by rounding off the second decimal place.
  • the discharge flow from the immersion nozzle is inclined toward the upstream side of the swirl flow formed by the AC moving magnetic field.
  • the product defect index was as low as 0.12 to 0.25 (pieces / 100 m), which was a favorable result.
  • the ratio X / W (Gs / mm) between the strength X of the AC magnetic field of the upper magnetic pole and the width W of the slab slab is 0.55 or more.
  • the product defect index was 0.30 to 0.32 (pieces / 100 m), which was slightly higher than those of Examples 72 to 79 of the present invention. This is considered to be due to the fact that the AC moving magnetic field strength X is too strong for the width W and the molten steel flow in the mold becomes somewhat unstable.
  • Example 5 a test for casting about 300 (ton) of aluminum killed molten steel was performed using a slab continuous casting machine having a continuous casting mold 1 having two upper and lower magnetic poles as shown in FIG. It was.
  • the slab slab to be cast has a thickness of 260 (mm), a width of 1600 to 1700 (mm), and a molten steel injection flow rate of 6.0 to 7.0 (ton / min).
  • the discharge angle of the discharge hole of the used two-hole immersion nozzle is 25 (°) downward, and the immersion depth of the immersion nozzle (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 (mm) or more and 300 ( mm).
  • the shape of the discharge hole of the immersion nozzle is a square having a side length of 80 (mm), and the inner diameter of the immersion nozzle is 80 (mm).
  • Argon gas was used as an inert gas blown from the immersion nozzle.
  • Example 6 the discharge direction from the immersion nozzle was inclined to the upstream side of the swirling flow formed by the AC moving magnetic field.
  • the strength of the AC moving magnetic field applied to the upper magnetic pole is 500 to 900 (Gs)
  • the strength of the DC static magnetic field applied to the upper magnetic pole is 2000 to 3300 (Gs)
  • the strength of the DC static magnetic field applied to the lower magnetic pole is 3000.
  • the ratio X / W (Gs / mm) between the AC moving magnetic field strength X and the width W of the cast slab slab and the inclination angle ⁇ of the discharge flow from the submerged nozzle are within the range of 4500 (Gs).
  • the casting was carried out while changing.
  • the cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter.
  • the defect appearance, SEM analysis, ICP analysis, etc. are used to discriminate steelmaking defects (defects caused by inclusions in the slab cast), and the alloyed hot-dip galvanized steel sheet is 100 (m) long.
  • the number of defects per product (called “product defect index”) was evaluated. Table 6 shows the results of investigating the casting conditions and product defect index in Examples 80 to 103 of the present invention.
  • FIG. 26 is a diagram showing the relationship between “ ⁇ ” and “product defect index” in Invention Examples 83 to 106, with the ratio X / W value of 0.45 as a boundary. .
  • the ratio X / W (Gs / mm) is set to 0.30 or more and less than 0.45.
  • the product defect index is particularly low at 0.13 to 0.15 (pieces / 100 m).
  • the inclination angle ⁇ (°) may be set within the range of “ ⁇ 2” or more and “ ⁇ + 5” or less. It turned out to be preferable.
  • Examples 95 to 106 of the present invention are conditions where the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, and at this time, “ ⁇ - ⁇ ” is ⁇ 5 to 2 (°) Within the range, the product defect index was found to be particularly low, 0.13 to 0.15 (pieces / 100 m). That is, when the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the inclination angle ⁇ (°) is preferably in the range of “ ⁇ 5” or more and “ ⁇ + 2” or less. I understood it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

Provided is a continuous casting method that can manufacture a high quality slab casting piece. In the continuous casting method, a submerged nozzle is disposed within a casting mold for continuous casting, and molten steel is supplied to the submerged nozzle for casting. The submerged nozzle has a pair of discharge holes disposed symmetrically with respect to the vertical axis thereof. The submersion depth is 180 mm or greater and less than 300 mm, the molten steel discharge angle is in a range of 15 - 35°, and the ratio A/P for blown-in inert gas flow rate A and molten steel throughput P is in a range of 2.0 - 3.5 NL/ton. The discharge direction of the submerged nozzle is inclined within the range of Equation (1) with respect to a reference plane parallel with a long side surface of the casting mold and passing through the vertical axis center of the submerged nozzle. θ − 6 ≤ α ≤ θ + 10 … (1) In Equation (1), α is the angle of inclination to the reference plane, and θ is an angle defined by the following Equation (2). tan θ = (D/2)/(W/2) … (2) In equation (2), D is the thickness of the slab casting piece, and W is the width of the slab casting piece.

Description

スラブ鋳片の連続鋳造方法Continuous casting method of slab slab
 本発明は、鋳型内の溶鋼流を制御してスラブ鋳片表層の非金属介在物の少ない高品質のスラブ鋳片を製造する連続鋳造方法に関する。 The present invention relates to a continuous casting method for producing a high quality slab slab with less non-metallic inclusions on the surface layer of the slab slab by controlling the molten steel flow in the mold.
 近年、自動車外板用鋼板、缶用鋼板などの高級鋼製品の品質要求が厳格化しており、スラブ鋳片の段階、つまり、連続鋳造段階からの高品質化が要望されている。スラブ鋳片に要求される品質の1つとして、スラブ鋳片の表層の非金属介在物(以下、単に「介在物」とも記す)の少ないことが挙げられる。 In recent years, quality requirements for high-grade steel products such as steel plates for automobile outer plates and steel plates for cans have become stricter, and there is a demand for higher quality from the slab cast stage, that is, from the continuous casting stage. One of the qualities required for a slab slab is that there are few non-metallic inclusions (hereinafter also simply referred to as “inclusions”) on the surface layer of the slab slab.
 スラブ鋳片の表層に捕捉される介在物には次のものが挙げられる。
(a)アルミニウムなどによる溶鋼の脱酸工程で生成し、溶鋼中に懸濁している脱酸生成物。
(b)タンディッシュや浸漬ノズルで溶鋼内に吹き込まれるアルゴンガス気泡の内部に含まれる微細な酸化物。
(c)鋳型内溶鋼湯面上に添加したモールドパウダーが溶鋼中に巻き込まれた懸濁物など。
The inclusions captured on the surface layer of the slab slab include the following.
(A) A deoxidation product produced in a deoxidation step of molten steel with aluminum or the like and suspended in the molten steel.
(B) Fine oxide contained in argon gas bubbles blown into molten steel with a tundish or immersion nozzle.
(C) Suspension in which mold powder added on the molten steel surface in the mold is entrained in the molten steel.
 上記介在物は何れも鋼製品段階で表面欠陥となるので、スラブ鋳片の表層に捕捉される介在物の量を少なくすることが重要である。また、スラブ鋳片の表層に捕捉されたアルゴンガス気泡がスラブ鋳片表層に開口した場合は、気泡の内部が加熱炉などで酸化され、酸化された部分が表面欠陥となる。 Since all the inclusions become surface defects at the steel product stage, it is important to reduce the amount of inclusions trapped in the surface layer of the slab slab. Further, when the argon gas bubbles trapped in the surface layer of the slab slab are opened in the surface layer of the slab slab, the inside of the bubbles is oxidized in a heating furnace or the like, and the oxidized portion becomes a surface defect.
 従来、溶鋼中の脱酸生成物、アルゴンガス気泡、モールドパウダーが、凝固シェルに捕捉されて鋼製品での欠陥となることを防止するために、連続鋳造用鋳型内で溶鋼の流動を適正な状態にするための手法が提案されている。 Conventionally, in order to prevent deoxidation products, argon gas bubbles, and mold powder in molten steel from being trapped by the solidified shell and causing defects in steel products, the flow of molten steel is properly controlled in a continuous casting mold. A method for achieving the state has been proposed.
 例えば、特許文献1には、浸漬ノズルの鉛直軸に対して対称に配置される一対の吐出孔を有する浸漬ノズルを用いた連続鋳造方法において、浸漬ノズルの浸漬深さ、鋳型1/4幅における吐出流の最大流速、吐出孔の吐出角度を規定するとともに、浸漬ノズルからの吐出流の吐出方向と鋳型長辺とで成す角度が水平面上において3~7°になるように調整する技術が開示されている。吐出流の吐出方向と鋳型長辺とで成す角度が3~7°になるように調整する目的は、吐出流の少なくとも一部を鋳型長辺側の凝固シェルと接触させ、これによって吐出流の流速を減衰させるためである。 For example, in Patent Document 1, in a continuous casting method using an immersion nozzle having a pair of discharge holes arranged symmetrically with respect to the vertical axis of the immersion nozzle, the immersion nozzle has an immersion depth and a mold width of 1/4. Disclosed is a technology that regulates the maximum flow velocity of the discharge flow and the discharge angle of the discharge holes, and adjusts the angle formed by the discharge direction of the discharge flow from the immersion nozzle and the long side of the mold to 3 to 7 ° on the horizontal plane. Has been. The purpose of adjusting the angle formed by the discharge direction of the discharge flow and the long side of the mold to be 3 to 7 ° is to bring at least a part of the discharge flow into contact with the solidified shell on the long side of the mold, thereby This is to attenuate the flow velocity.
特許第4285345号公報Japanese Patent No. 4285345 特許第5742992号公報Japanese Patent No. 5742992
 しかしながら、上記従来技術には以下の問題がある。
即ち、近年の自動車外板用鋼板などの品質厳格化に伴い、これまで問題にならなかった微小な気泡やモールドパウダーの巻き込みに起因する欠陥が問題視されるようになりつつあり、従来の方法のみではこのような厳しい品質要求に十分に対応できない。特に、合金化溶融亜鉛めっき鋼板は、溶融めっき後に加熱して母材鋼板の鉄成分を亜鉛めっき層に拡散させるものであり、母材鋼板の表層性状が合金化溶融亜鉛めっき層の品質に大きく影響する。即ち、母材鋼板の表層に気泡性やモールドパウダー性の欠陥があると、小さな欠陥であっても、めっき層の厚みにむらが生じ、それが表面に筋状の欠陥として現れ、自動車外板用鋼板などのような品質要求の厳しい用途には使用できなくなる。
However, the above prior art has the following problems.
That is, with the recent stricter quality of steel plates for automobile outer panels, defects caused by entrapment of fine bubbles and mold powder that have not been a problem until now are becoming a problem. It is not possible to sufficiently meet such strict quality requirements. In particular, alloyed hot-dip galvanized steel sheets are heated after hot-dip plating to diffuse the iron component of the base steel sheet into the galvanized layer, and the surface layer properties of the base steel sheet greatly contribute to the quality of the alloyed hot-dip galvanized layer. Affect. That is, if there is a bubble or mold powder defect on the surface layer of the base steel plate, even if it is a small defect, unevenness occurs in the thickness of the plating layer, which appears as a streak defect on the surface, It can no longer be used for demanding applications such as steel sheets for industrial use.
 特許文献1は、浸漬ノズル吐出孔の浸漬深さ、形状、及び、浸漬ノズルからの吐出方向を調整することで、鋳型内溶鋼流動の制御を試みている。一般的に、浸漬ノズル内壁への介在物(主にAl)の付着を抑制するため、タンディッシュ流出孔から浸漬ノズル吐出孔までの間で、アルゴンや窒素などの不活性ガスが吹き込まれる。このようなガス吹き込みが吐出噴流の挙動に及ぼす影響は非常に大きく、また溶鋼スループットも当然、吐出噴流挙動に多大な影響を及ぼす。ガス吹き込み量や溶鋼スループットを適正な範囲に制御することなく、浸漬ノズルの設計事項を調整するだけでは、得られる流動制御効果は大きく成り得ず、自動車外板用鋼板などの厳格材の製造には適用できないと考えられる。 Patent Document 1 attempts to control the flow of molten steel in a mold by adjusting the immersion depth and shape of the immersion nozzle discharge hole and the discharge direction from the immersion nozzle. Generally, an inert gas such as argon or nitrogen is blown from the tundish outflow hole to the immersion nozzle discharge hole in order to suppress the adhesion of inclusions (mainly Al 2 O 3 ) to the inner wall of the immersion nozzle. It is. The influence of such gas blowing on the behavior of the discharge jet is very large, and the molten steel throughput naturally has a great influence on the behavior of the discharge jet. The flow control effect obtained cannot be increased simply by adjusting the design items of the immersion nozzle without controlling the gas injection amount and the molten steel throughput within an appropriate range. Is not considered applicable.
 本発明は、上記問題に鑑みてなされたもので、その目的とするところは、浸漬ノズルからの溶鋼の吐出位置、浸漬ノズル形状、溶鋼スループットや、吹き込み不活性ガスの流量などを適正な範囲内に制御したうえで、浸漬ノズルの吐出方向を適切な方向に調整して鋳型内の溶鋼流動を制御し、高品質なスラブ鋳片を製造することの可能な連続鋳造方法を提供することである。更には、種々の鋳型内電磁流動制御技術に対して、適正な浸漬ノズル吐出方向を提示し、より介在物の少ない高品質スラブ鋳片を製造することの可能な連続鋳造方法を提供することである。 The present invention has been made in view of the above problems, and the purpose thereof is to set the discharge position of molten steel from the immersion nozzle, the shape of the immersion nozzle, the molten steel throughput, the flow rate of the blown inert gas, and the like within an appropriate range. It is to provide a continuous casting method capable of producing a high-quality slab slab by controlling the molten steel flow in the mold by adjusting the discharge direction of the immersion nozzle to an appropriate direction after controlling . Furthermore, by providing a proper immersion nozzle discharge direction for various in-mold electromagnetic flow control technologies, and providing a continuous casting method capable of producing a high-quality slab slab with fewer inclusions. is there.
 このような課題を解決するための本発明の特徴は、以下の通りである。
[1]連続鋳造用鋳型内に浸漬ノズルを配置し、該浸漬ノズルに溶鋼を供給し、該溶鋼を鋳造する連続鋳造方法であって、前記浸漬ノズルは、その鉛直軸に対して対称に配置される一対の吐出孔を有し、前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から前記吐出孔上端までの距離)を180mm以上300mm未満、前記吐出孔の水平方向から下向きの溶鋼吐出角度を15~35°の範囲内、タンディッシュ流出孔から前記吐出孔までの間に吹き込む不活性ガスの流量A(NL/min)と溶鋼スループットP(ton/min)との比A/Pを2.0~3.5NL/tonの範囲内とし、前記浸漬ノズルの吐出方向を、前記浸漬ノズルの鉛直軸中心を通り鋳型長辺面に平行な基準面に対して(1)式の範囲内で傾斜させるスラブ鋳片の連続鋳造方法。
The features of the present invention for solving such problems are as follows.
[1] A continuous casting method in which an immersion nozzle is disposed in a continuous casting mold, molten steel is supplied to the immersion nozzle, and the molten steel is cast. The immersion nozzle is disposed symmetrically with respect to the vertical axis. The immersion depth of the immersion nozzle (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 mm or more and less than 300 mm, and the molten steel discharge angle is downward from the horizontal direction of the discharge hole. The ratio A / P between the flow rate A (NL / min) of the inert gas blown between the tundish outflow hole and the discharge hole within the range of 15 to 35 ° and the molten steel throughput P (ton / min) is 2 In the range of 0.0 to 3.5 NL / ton, the discharge direction of the immersion nozzle is within the range of the expression (1) with respect to a reference plane passing through the vertical axis center of the immersion nozzle and parallel to the long side of the mold. Inclined slab cast slabs Production method.
 θ-6≦α≦θ+10     ・・・(1)
 但し、(1)式において、αは、前記連続鋳造用鋳型を鉛直上方から見たときの、前記浸漬ノズルの吐出方向の前記基準面に対する傾斜角度(°)であり、
 θは、前記連続鋳造用鋳型を鉛直上方から見たときの、前記浸漬ノズルの鉛直軸中心から鋳型長辺と鋳型短辺との接触点へ向かう直線と前記基準面とで成す角度(鋭角)であって、下記の(2)式によって定義される角度(°)である。
θ−6 ≦ α ≦ θ + 10 (1)
However, in the formula (1), α is an inclination angle (°) with respect to the reference surface in the discharge direction of the immersion nozzle when the continuous casting mold is viewed from above.
θ is an angle (acute angle) formed by a straight line from the vertical axis center of the immersion nozzle to the contact point between the long side of the mold and the short side of the mold and the reference plane when the continuous casting mold is viewed from above. And an angle (°) defined by the following equation (2).
 tanθ=(D/2)/(W/2)・・・(2)
 但し、(2)式において、Dは、連続鋳造されるスラブ鋳片の厚み(mm)であり、
 Wは連続鋳造されるスラブ鋳片の幅(mm)である。
[2]連続鋳造中または連続鋳造中鋳型幅変更完了後に前記αを測定し、前記αが前記(1)式を満たさない場合に前記(1)式を満たすように前記浸漬ノズルの吐出方向を変更する[1]に記載のスラブ鋳片の連続鋳造方法。
[3]前記鋳型長辺の背面に、前記鋳型長辺を挟んで相対する一対の上部磁極と一対の下部磁極とを配置し、前記上部磁極から印加される直流静磁界の最大値の位置と前記下部磁極から印加される直流静磁界の最大値の位置との間に前記吐出孔を位置させ、前記上部磁極と前記下部磁極とで直流静磁界を印加して溶鋼流を制動することとし、前記上部磁極から印加される直流静磁界の強度が1500Gs以上2500Gs未満(ガウス;1Gs=10-4T)の場合は、前記浸漬ノズルの吐出方向を、前記基準面に対して(1)式に代えて(3)式の範囲内で傾斜させ、前記直流静磁界の強度が2500Gs以上3500Gs未満の場合は(1)式に代えて(4)式の範囲内で傾斜させる[1]に記載のスラブ鋳片の連続鋳造方法。
tan θ = (D / 2) / (W / 2) (2)
However, in Formula (2), D is the thickness (mm) of the slab slab continuously cast,
W is the width (mm) of the continuously cast slab slab.
[2] The α is measured during continuous casting or after completion of the mold width change during continuous casting, and when the α does not satisfy the equation (1), the discharge direction of the immersion nozzle is set so as to satisfy the equation (1). The continuous casting method of a slab slab according to [1] to be changed.
[3] A pair of upper magnetic poles and a pair of lower magnetic poles opposed to each other across the mold long side are disposed on the back side of the mold long side, and the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole is The discharge hole is positioned between the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole, and the molten steel flow is braked by applying a DC static magnetic field between the upper magnetic pole and the lower magnetic pole, When the strength of the DC static magnetic field applied from the upper magnetic pole is 1500 Gs or more and less than 2500 Gs (Gauss; 1 Gs = 10 −4 T), the discharge direction of the immersion nozzle is expressed by the formula (1) with respect to the reference plane. Instead, it is tilted within the range of the formula (3), and when the DC static magnetic field strength is 2500 Gs or more and less than 3500 Gs, it is tilted within the range of the formula (4) instead of the formula (1). Continuous casting method for slab slabs.
 θ≦α≦θ+5   ・・・(3)
 θ+6≦α≦θ+10・・・(4)
[4]連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、前記直流静磁界の強度が1500Gs以上2500Gs未満の場合であって前記αが前記(3)式を満たさない場合に前記(3)式を満たすように浸漬ノズルの吐出方向を変更し、前記直流静磁界の強度が2500Gs以上3500Gs未満の場合であって前記αが前記(4)式を満たさない場合に前記(4)式を満たすように浸漬ノズルの吐出方向を変更する[3]に記載のスラブ鋳片の連続鋳造方法。
[5]前記鋳型長辺の背面に、磁場の移動方向が鋳型幅方向であるリニア型移動磁場発生装置を設け、前記浸漬ノズルから吐出される溶鋼流に制動力を与えるべく前記鋳型短辺側から前記浸漬ノズル側に向かう移動磁場を印加、或いは、溶鋼流に加速力を与えるべく前記浸漬ノズル側から前記鋳型短辺側に向かう移動磁場を印加して流動制御を行なうこととし、前記浸漬ノズルの吐出方向を、前記基準面に対して(1)式に代えて(5)式の範囲内で傾斜させる[1]に記載のスラブ鋳片の連続鋳造方法。
θ ≦ α ≦ θ + 5 (3)
θ + 6 ≦ α ≦ θ + 10 (4)
[4] When the α is measured during continuous casting or after completion of mold width change during continuous casting, and the strength of the DC static magnetic field is 1500 Gs or more and less than 2500 Gs, and the α does not satisfy the formula (3) When the discharge direction of the submerged nozzle is changed so as to satisfy the expression (3), and the strength of the DC static magnetic field is 2500 Gs or more and less than 3500 Gs, and the α does not satisfy the expression (4), 4) The continuous casting method of a slab cast according to [3], wherein the discharge direction of the immersion nozzle is changed so as to satisfy the formula.
[5] A linear moving magnetic field generator having a moving direction of the magnetic field in the mold width direction is provided on the back side of the long side of the mold, and the short side of the mold is used to apply a braking force to the molten steel flow discharged from the immersion nozzle. The flow control is performed by applying a moving magnetic field from the immersion nozzle side to the mold short side in order to apply a moving magnetic field from the immersion nozzle side to the immersion nozzle side, or to give an acceleration force to the molten steel flow. The continuous casting method of a slab slab according to [1], wherein the discharge direction of the slab is inclined with respect to the reference plane within the range of the formula (5) instead of the formula (1).
 θ+2≦α≦θ+7・・・(5)
[6]連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、前記αが前記(5)式を満たさない場合に前記(5)式を満たすように前記浸漬ノズルの吐出方向を変更する[5]に記載のスラブ鋳片の連続鋳造方法。
[7]前記鋳型長辺の背面に、前記鋳型長辺を挟んで相対する一対の磁極を配置し、前記磁極から交流移動磁界を印加して溶鋼に水平方向の旋回撹拌を与えることとし、前記交流移動磁界の強度を300~1000Gsの範囲内とした上で、前記交流移動磁界の強度X(Gs)と連続鋳造されるスラブ鋳片の幅W(mm)との比X/W(Gs/mm)が0.30以上0.45未満の場合は、前記浸漬ノズルの吐出方向を、前記基準面に対して、前記交流移動磁界によって形成される旋回流の上流側へ向けて、(1)式に代えて(6)式の範囲内で傾斜させ、前記比X/W(Gs/mm)が0.45以上0.55未満の場合は、(1)式に代えて(7)式の範囲内で傾斜させる[1]に記載のスラブ鋳片の連続鋳造方法。
θ + 2 ≦ α ≦ θ + 7 (5)
[6] The α is measured during continuous casting or after completion of the mold width change during continuous casting, and when the α does not satisfy the equation (5), the discharge direction of the immersion nozzle so as to satisfy the equation (5) The continuous casting method for a slab cast according to [5].
[7] A pair of magnetic poles opposed to each other across the mold long side is disposed on the back surface of the mold long side, and an AC moving magnetic field is applied from the magnetic pole to give horizontal swirling stirring to the molten steel, The ratio X / W (Gs / G) of the AC moving magnetic field strength X (Gs) and the width W (mm) of the continuously cast slab slab after setting the AC moving magnetic field strength within the range of 300 to 1000 Gs. mm) is 0.30 or more and less than 0.45, the discharge direction of the immersion nozzle is directed toward the upstream side of the swirl flow formed by the AC moving magnetic field with respect to the reference plane, (1) When the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the equation (7) is substituted for (1) instead of the equation (6). The continuous casting method of a slab cast according to [1], wherein the casting is inclined within a range.
 θ-3≦α≦θ  ・・・(6)
 θ-6≦α≦θ-4・・・(7)
[8]連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、前記比X/W(Gs/mm)が0.30以上0.45未満の場合であって前記αが(6)式を満たさない場合に(6)式を満たすように浸漬ノズルの吐出方向を変更し、前記比X/W(Gs/mm)が0.45以上0.55未満の場合であって前記αが前記(7)式を満たさない場合に前記(7)式を満たすように浸漬ノズルの吐出方向を変更する[7]に記載のスラブ鋳片の連続鋳造方法。
[9]前記鋳型長辺の背面に、前記鋳型長辺を挟んで相対する一対の上部磁極と一対の下部磁極とを配置し、前記上部磁極から印加される直流静磁界の最大値の位置と前記下部磁極から印加される直流静磁界の最大値の位置との間に前記吐出孔を位置させ、前記上部磁極から直流静磁界と交流移動磁界とを重畳して印加し、前記上部磁極から印加される交流移動磁界によって鋳型内溶鋼湯面に水平方向に回転する溶鋼の旋回流を形成させるとともに、前記上部磁極から印加される直流静磁界によって溶鋼流を制動し、且つ、前記下部磁極から印加される直流静磁界によって溶鋼流を制動することとし、前記交流移動磁界の強度を500~900Gs(ガウス;1Gs=10-4T)の範囲内、前記上部磁極から印加される直流静磁界の強度を2000~3300Gsの範囲内、前記下部磁極から印加される直流静磁界の強度を3000~4500Gsの範囲内とした上で、前記交流移動磁界の強度X(Gs)と連続鋳造されるスラブ鋳片の幅W(mm)との比X/W(Gs/mm)を0.30以上0.55未満に制御し、且つ、前記浸漬ノズルの吐出方向を、前記基準面に対して、前記交流移動磁界によって形成される前記溶鋼の旋回流の上流側へ向けて傾斜させる[1]に記載のスラブ鋳片の連続鋳造方法。
[10]前記比X/W(Gs/mm)が0.30以上0.45未満の場合は、前記浸漬ノズルの吐出方向を前記基準面に対して(1)式に代えて下記の(8)式の範囲内で傾斜させ、前記比X/W(Gs/mm)が0.45以上0.55未満の場合は、前記浸漬ノズルの吐出方向を前記基準面に対して(1)式に代えて下記の(9)式の範囲内で傾斜させる[9]に記載のスラブ鋳片の連続鋳造方法。
θ-3 ≦ α ≦ θ (6)
θ-6 ≦ α ≦ θ-4 (7)
[8] The α is measured during continuous casting or after completion of mold width change during continuous casting, and the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, and the α is ( 6) When the expression is not satisfied, the discharge direction of the immersion nozzle is changed so as to satisfy the expression (6), and the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55. The continuous casting method of a slab slab according to [7], wherein the discharge direction of the immersion nozzle is changed so as to satisfy the expression (7) when α does not satisfy the expression (7).
[9] A pair of upper magnetic poles and a pair of lower magnetic poles opposed to each other across the mold long side are arranged on the back surface of the mold long side, and the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole is The discharge hole is positioned between the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole, the DC static magnetic field and the AC moving magnetic field are superimposed and applied from the upper magnetic pole, and applied from the upper magnetic pole The swirling flow of the molten steel rotating in the horizontal direction is formed on the molten steel surface in the mold by the AC moving magnetic field, and the molten steel flow is braked by the DC static magnetic field applied from the upper magnetic pole and applied from the lower magnetic pole. and damping the molten steel flow by a DC static magnetic field, the AC traveling magnetic field strength of 500 ~ 900Gs; range, the intensity of the DC static magnetic field applied from the upper pole of the (Gaussian 1Gs = 10 -4 T) In the range of 2000-3300 Gs, the strength of the DC static magnetic field applied from the lower magnetic pole is set in the range of 3000-4500 Gs, and the strength of the AC moving magnetic field X (Gs) is continuously cast. The ratio X / W (Gs / mm) to the width W (mm) is controlled to be 0.30 or more and less than 0.55, and the discharge direction of the immersion nozzle is set to the AC moving magnetic field with respect to the reference plane. The continuous casting method of a slab slab according to [1], wherein the slab slab is inclined toward the upstream side of the swirling flow of the molten steel formed by the step.
[10] When the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, the discharge direction of the immersion nozzle is changed to the formula (1) with respect to the reference plane, and the following (8) When the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the discharge direction of the immersion nozzle is set to the expression (1) with respect to the reference plane. Instead, the continuous casting method for a slab slab according to [9], wherein the slab casting is inclined within the range of the following expression (9).
 θ-2≦α≦θ+5・・・(8)
 θ-5≦α≦θ+2・・・(9)
[11]連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、前記比X/W(Gs/mm)が0.30以上0.45未満の場合であって前記αが前記(8)式を満たさない場合に前記(8)式を満たすように浸漬ノズルの吐出方向を変更し、前記比X/W(Gs/mm)が0.45以上0.55未満の場合であって前記αが前記(9)式を満たさない場合に前記(9)式を満たすように浸漬ノズルの吐出方向を変更する[10]に記載のスラブ鋳片の連続鋳造方法。
θ-2 ≦ α ≦ θ + 5 (8)
θ-5 ≦ α ≦ θ + 2 (9)
[11] The α is measured during continuous casting or after completion of the mold width change during continuous casting, and the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, where the α When the expression (8) is not satisfied, the discharge direction of the immersion nozzle is changed so as to satisfy the expression (8), and the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55. When the α does not satisfy the equation (9), the discharge direction of the immersion nozzle is changed so as to satisfy the equation (9) [10].
 本発明によれば、浸漬ノズル形状や溶鋼スループット、吹き込み不活性ガスの流量などを適正な範囲内に制御したうえで、浸漬ノズルの吐出方向を適切な方向に調整することで、鋳型内の溶鋼流動が適切に制御され、高品質なスラブ鋳片を製造することが実現できる。更には、種々の鋳型内電磁流動制御条件に対し適正な浸漬ノズル吐出方向に制御することで、より介在物の少ない高品質スラブ鋳片を製造することが実現できる。 According to the present invention, by controlling the immersion nozzle shape, molten steel throughput, flow rate of blown inert gas, etc. within an appropriate range, and adjusting the discharge direction of the immersion nozzle to an appropriate direction, the molten steel in the mold It is possible to produce a high-quality slab slab whose flow is appropriately controlled. Furthermore, it is possible to produce a high quality slab slab with fewer inclusions by controlling the discharge nozzle discharge direction to be appropriate for various in-mold electromagnetic flow control conditions.
連続鋳造用鋳型の一例を鋳型長辺側から見た概略断面図である。It is the schematic sectional drawing which looked at an example of the mold for continuous casting from the mold long side. 連続鋳造用鋳型における浸漬ノズルからの吐出流の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of the discharge flow from the immersion nozzle in the casting mold for continuous casting. 浸漬ノズルの吐出方向を傾けて鋳造する様子を鉛直上方から見た概略図である。It is the schematic which looked at a mode that casting by inclining the discharge direction of an immersion nozzle from the perpendicular | vertical upper direction. 図1とは別の連続鋳造用鋳型の概略断面図である。It is a schematic sectional drawing of the casting mold for another casting different from FIG. 図4を鉛直上方から見た概略断面図である。It is the schematic sectional drawing which looked at Drawing 4 from the perpendicular upper part. 図1及び図4とは別の連続鋳造用鋳型の概略断面図である。FIG. 5 is a schematic cross-sectional view of a continuous casting mold different from FIGS. 1 and 4. 図6を鉛直上方から見た概略断面図である。It is the schematic sectional drawing which looked at FIG. 6 from the perpendicular | vertical upper direction. 図1、図4及び図6とは別の連続鋳造用鋳型の概略断面図である。FIG. 7 is a schematic cross-sectional view of a continuous casting mold different from FIGS. 1, 4, and 6. 図8を鉛直上方から見た概略断面図である。It is the schematic sectional drawing which looked at Drawing 8 from the perpendicular upper part. 吐出方向を鋳型短辺に垂直とした鋳造条件下における鋳型内の溶鋼流速状況を模式的に示す図である。It is a figure which shows typically the molten steel flow rate condition in a casting_mold | template in the casting conditions which made the discharge direction perpendicular | vertical to the casting_mold | template short side. 吐出方向を傾けて鋳造する様子を鉛直上方から見た概略図である。It is the schematic which looked at the mode of casting by inclining a discharge direction from the perpendicular upper direction. 図1、図4、図6及び図8とは別の連続鋳造用鋳型の概略断面図である。FIG. 9 is a schematic cross-sectional view of a continuous casting mold different from those in FIGS. 1, 4, 6, and 8. 図12の上部磁極の部位の概略横断面図である。FIG. 13 is a schematic cross-sectional view of a portion of the upper magnetic pole in FIG. 12. 図12の下部磁極の部位の概略横断面図である。FIG. 13 is a schematic cross-sectional view of the lower magnetic pole part of FIG. 12. 浸漬ノズルからの吐出方向を鋳型短辺に垂直とした鋳造条件下における鋳型内の溶鋼流速状況を模式的に示す図である。It is a figure which shows typically the molten steel flow rate condition in a casting_mold | template in the casting conditions which made the discharge direction from an immersion nozzle perpendicular | vertical to a casting_mold | template short side. 浸漬ノズルの吐出方向を旋回流の上流側へ傾けて鋳造する様子を鉛直上方から見た概略図である。It is the schematic which looked at a mode that it inclines and casts the discharge direction of an immersion nozzle to the upstream of a swirl | vortex flow from the perpendicular upper direction. 吐出方向の傾斜角度αを変更する処理の一例を示すフロー図である。It is a flowchart which shows an example of the process which changes the inclination angle (alpha) of a discharge direction. 図17とは別の例を示すフロー図である。FIG. 18 is a flowchart showing an example different from FIG. 17. 図17及び図18とは別の例を示すフロー図である。It is a flowchart which shows an example different from FIG.17 and FIG.18. 図17~図19とは別の例を示すフロー図である。FIG. 20 is a flowchart showing an example different from FIGS. 図17~図20とは別の例を示すフロー図である。FIG. 21 is a flowchart showing an example different from FIGS. 17 to 20. 図17~図21の処理の各々を鋳造条件によって使い分ける処理の一例を示すフロー図である。FIG. 22 is a flowchart showing an example of processing for properly using each of the processing in FIGS. 17 to 21 depending on casting conditions. 本発明例19~38の「α-θ」と「製品欠陥指数」との関係を、静磁界強度である2500(Gs)を境として区分けして示す図である。FIG. 6 is a diagram showing the relationship between “α-θ” and “product defect index” in Invention Examples 19 to 38, with a static magnetic field strength of 2500 (Gs) as a boundary. 本発明例39~49の「α-θ」と「製品欠陥指数」との関係を示す図である。FIG. 4 is a diagram showing the relationship between “α-θ” and “product defect index” in Inventive Examples 39 to 49. 本発明例50~71の「α-θ」と「製品欠陥指数」との関係を、比X/Wの値である0.45を境として区分けして示す図である。FIG. 6 is a diagram showing the relationship between “α-θ” and “product defect index” in inventive examples 50 to 71, with the ratio X / W value of 0.45 as a boundary. 本発明例83~106の「α-θ」と「製品欠陥指数」との関係を、比X/Wの値である0.45を境として区分けして示す図である。FIG. 10 is a diagram showing the relationship between “α-θ” and “product defect index” in Invention Examples 83 to 106, with the ratio X / W value of 0.45 as a boundary.
 以下、本発明を発明の実施形態を通じて詳細に説明する。図1は、本実施形態に係る連続鋳造方法を適用可能なスラブ連続鋳造機の連続鋳造用鋳型20の一例を示しており、連続鋳造用鋳型20を鋳型長辺側から見た断面図である。スラブ鋳片用の連続鋳造用鋳型20は、相対する一対の鋳型長辺2と、相対する一対の鋳型短辺3とが組み合わされて構成されている。一対の鋳型長辺と一対の鋳型短辺とで囲まれた鋳型内部空間に、浸漬ノズル4が配置され、浸漬ノズル4の吐出孔5から鋳型内部空間に溶鋼8が注入されて、溶鋼8の連続鋳造が行われる。吐出孔5は、浸漬ノズル4の側壁の、浸漬ノズル4の鉛直軸に対して左右対称に配置されている。吐出孔5から注入される溶鋼8は、吐出流となって左右の鋳型短辺3の方向に向いて吐出される。鋳型内部空間に注入された溶鋼8は、鋳型長辺2及び鋳型短辺3と接触して冷却され、鋳型長辺2及び鋳型短辺3との接触面に凝固シェル9が形成される。この凝固シェル9を外殻として内部を未凝固の溶鋼8とするスラブ鋳片が下方に連続的に引き抜かれて、スラブ鋳片が製造される。その際、鋳型内溶鋼湯面10には、潤滑剤、保温剤、酸化防止剤などの機能を発揮するモールドパウダー(図示せず)が添加される。また、浸漬ノズル4内面への介在物の付着を防止するために、タンディッシュ流出孔(図示せず)から浸漬ノズル4の吐出孔5までの間にアルゴンガスや窒素ガスなどが吹き込まれる。 Hereinafter, the present invention will be described in detail through embodiments of the invention. FIG. 1 shows an example of a continuous casting mold 20 of a slab continuous casting machine to which the continuous casting method according to this embodiment can be applied, and is a cross-sectional view of the continuous casting mold 20 viewed from the long side of the mold. . A continuous casting mold 20 for a slab slab is configured by combining a pair of opposed mold long sides 2 and a pair of opposed mold short sides 3. An immersion nozzle 4 is arranged in a mold internal space surrounded by a pair of mold long sides and a pair of mold short sides, and molten steel 8 is injected into the mold internal space from a discharge hole 5 of the immersion nozzle 4. Continuous casting is performed. The discharge holes 5 are arranged on the side wall of the immersion nozzle 4 symmetrically with respect to the vertical axis of the immersion nozzle 4. The molten steel 8 injected from the discharge hole 5 is discharged in the direction of the left and right mold short sides 3 as a discharge flow. The molten steel 8 injected into the mold inner space comes into contact with the mold long side 2 and the mold short side 3 and is cooled, and a solidified shell 9 is formed on the contact surface between the mold long side 2 and the mold short side 3. A slab slab is produced by continuously drawing the slab slab with the solidified shell 9 as an outer shell and the inside thereof into an unsolidified molten steel 8 downward. At that time, mold powder (not shown) that functions as a lubricant, a heat retaining agent, an antioxidant, and the like is added to the molten steel surface 10 in the mold. In order to prevent inclusions from adhering to the inner surface of the immersion nozzle 4, argon gas, nitrogen gas, or the like is blown between the tundish outflow hole (not shown) and the discharge hole 5 of the immersion nozzle 4.
 図1に示すような鋳造条件下における鋳型内の流動挙動を、数値計算や実機1/1水モデル装置、低融点合金(Bi-Pb-Sn-Cd合金;融点約70℃)を用いた実機1/4サイズの試験鋳造装置による流速測定によって、繰り返し確認した。この時、吐出流11の流動挙動に特に着目して鋳型内流動の適正化条件の定量化を試みた。 Fig. 1 shows flow behavior in a mold under casting conditions. Numerical calculation, actual 1/1 water model device, actual machine using low melting point alloy (Bi-Pb-Sn-Cd alloy; melting point about 70 ° C) It confirmed repeatedly by the flow rate measurement by the test casting apparatus of 1/4 size. At this time, focusing on the flow behavior of the discharge flow 11, an attempt was made to quantify the conditions for optimizing the flow in the mold.
 図2は、連続鋳造用鋳型における浸漬ノズルからの吐出流の状態を示す概略断面図である。浸漬ノズル4の浸漬深さ(鋳型内溶鋼湯面から吐出孔上端までの距離)を180mm以上300mm未満、吐出孔5の水平方向から下向きの溶鋼吐出角度を15~35°の範囲内とした条件において、タンディッシュ流出孔から浸漬ノズル4の吐出孔5までの間で吹き込む不活性ガスの流量A(NL/min)と溶鋼スループットP(ton/min)との比A/Pを2.0~3.5(NL/ton)の範囲内に制御すると、図2(a)に示すように、吐出流11が比較的鋳型短辺近傍まで到達した後に、吐出流11がメニスカス側へ浮上する傾向があることがわかった。即ち、浸漬ノズル4の吐出孔5に不活性ガスを吹き込むことで吐出流11は、上昇挙動(リフトアップ)を示すことがわかった。このことから、溶鋼スループットに対する不活性ガス流量比であるA/Pと、浸漬ノズル4の浸漬深さと、吐出角度とのバランスを適切にとることで、吐出流11の流動挙動の安定制御が可能なことがわかった。また、図2(b)に示すように、溶鋼スループットPに対して不活性ガス流量Aが多すぎる場合、吐出流11がリフトアップ効果によって早期に浮上する。このような早期の吐出流11の浮上は、メニスカス湯面の変動を助長しモールドパウダーを巻き込みやすくなることがわかった。一方、図2(c)に示すように、溶鋼スループットPに対して不活性ガス流量Aが小さすぎる場合、吐出11が浮上しづらく鋳型短辺3に直接衝突しブレークアウトが危惧されることや、メニスカス側への溶鋼供給が不安定となりメニスカスへの熱付与が行われずモールドパウダーの溶融不良を引き起こす可能性があることもわかった。尚、これらの知見は、鋳造幅が1000~2000(mm)、吐出孔1孔あたりの面積が4000~10000(mm)、溶鋼スループットが3.0~8.0(ton/min)の範囲内で確認されているので、このような範囲の鋳造条件であれば、吐出流11の流動挙動を安定して制御することができる。 FIG. 2 is a schematic cross-sectional view showing a state of a discharge flow from an immersion nozzle in a continuous casting mold. Conditions that the immersion depth of the immersion nozzle 4 (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 mm or more and less than 300 mm, and the discharge angle of the molten steel from the horizontal direction of the discharge hole 5 is in the range of 15 to 35 °. , The ratio A / P of the flow rate A (NL / min) of the inert gas blown from the tundish outflow hole to the discharge hole 5 of the immersion nozzle 4 and the molten steel throughput P (ton / min) is 2.0 to When controlled within the range of 3.5 (NL / ton), as shown in FIG. 2A, the discharge flow 11 tends to float toward the meniscus after the discharge flow 11 has reached a relatively short mold side. I found out that That is, it has been found that the discharge flow 11 exhibits a rising behavior (lift-up) by blowing an inert gas into the discharge hole 5 of the immersion nozzle 4. From this, stable control of the flow behavior of the discharge flow 11 is possible by appropriately balancing the A / P, which is the ratio of the inert gas flow rate to the molten steel throughput, the immersion depth of the immersion nozzle 4 and the discharge angle. I found out. Moreover, as shown in FIG.2 (b), when there are too many inert gas flow rates A with respect to the molten steel throughput P, the discharge flow 11 floats early by the lift-up effect. It was found that such early rise of the discharge flow 11 promotes fluctuations in the meniscus level and makes it easier to entrain the mold powder. On the other hand, as shown in FIG. 2 (c), when the inert gas flow rate A is too small for the molten steel throughput P, the discharge 11 is difficult to float and directly collides with the mold short side 3, and there is a fear of breakout, It has also been found that the molten steel supply to the meniscus side becomes unstable and heat is not applied to the meniscus, which may cause defective melting of the mold powder. These findings are that the casting width is 1000 to 2000 (mm), the area per discharge hole is 4000 to 10000 (mm 2 ), and the molten steel throughput is 3.0 to 8.0 (ton / min). Therefore, the flow behavior of the discharge flow 11 can be stably controlled under such casting conditions in this range.
 次に、本発明者らは、吐出流11の吐出方向に着目して調査した。その結果、上述したように吐出流11のリフトアップ挙動を適正に制御したうえで、鋳型コーナー部へ向かって適切な角度の範囲内で吐出方向を制御すると、メニスカス面で適度な流速が得られ、表面欠陥因子となる気泡や微小介在物・パウダーなどの凝固シェル9への捕捉を抑制でき、これにより、表面欠陥を低減できることがわかった。 Next, the present inventors investigated paying attention to the discharge direction of the discharge flow 11. As a result, when the lift-up behavior of the discharge flow 11 is appropriately controlled as described above and the discharge direction is controlled within an appropriate angle range toward the mold corner, an appropriate flow velocity can be obtained on the meniscus surface. It has been found that the trapping of bubbles, fine inclusions, powder, and the like, which become surface defect factors, into the solidified shell 9 can be suppressed, thereby reducing surface defects.
 図3は、浸漬ノズルの吐出方向を傾けて鋳造する様子を鉛直上方から見た概略図である。図3に示すように、浸漬ノズル4の鉛直軸中心を通り、鋳型長辺2と鋳型短辺3との接触点(鋳型コーナー部)へ向かう直線と、鋳型長辺面に平行で浸漬ノズル4の鉛直軸中心を通る基準面とで成す角度(鋭角)をθ(°)とすると、θは、鋳造されるスラブ鋳片の厚みD(mm)と鋳造されるスラブ鋳片の幅W(mm)とを用いて、下記の(2)式で定義される(以下、角度θを「対角線方向角度θ」とも記す)。このように、対角線方向角度θは、スラブ鋳片の横断面寸法に応じて変化する。 FIG. 3 is a schematic view of a state in which casting is performed by tilting the discharge direction of the immersion nozzle as viewed from above. As shown in FIG. 3, the immersion nozzle 4 passes through the center of the vertical axis of the immersion nozzle 4 and goes to the contact point (mold corner portion) between the mold long side 2 and the mold short side 3 and parallel to the mold long side surface. When the angle (acute angle) formed with the reference plane passing through the center of the vertical axis is θ (°), θ is the thickness D (mm) of the cast slab cast and the width W (mm of the cast slab cast ) And is defined by the following equation (2) (hereinafter, the angle θ is also referred to as “diagonal angle θ”). Thus, diagonal direction angle (theta) changes according to the cross-sectional dimension of a slab slab.
 tanθ=(D/2)/(W/2)・・・(2)
 また、図3に示すように、浸漬ノズル4の吐出方向を傾けて鋳造するとき、連続鋳造用鋳型20を鉛直上方から見たときの、浸漬ノズル4の吐出方向の基準面に対する傾斜角度をα(°)とする。
tan θ = (D / 2) / (W / 2) (2)
In addition, as shown in FIG. 3, when casting with the discharge direction of the submerged nozzle 4 inclined, the inclination angle of the submerged nozzle 4 with respect to the reference surface when the continuous casting mold 20 is viewed from vertically above is α (°).
 本発明者らは、吐出流11の流動挙動を適正に制御したうえで、基準面に対する傾斜角度αを下記(1)式の範囲内に定めると、表面欠陥の少ない良質なスラブ鋳片が得られることを見出した。即ち、傾斜角度αを(1)式の範囲内に制御することで、表面欠陥因子を排除できる適切な流速を得ることができる。 The present inventors appropriately control the flow behavior of the discharge flow 11 and determine the inclination angle α with respect to the reference plane within the range of the following formula (1) to obtain a high-quality slab slab with few surface defects. I found out that That is, by controlling the inclination angle α within the range of the expression (1), it is possible to obtain an appropriate flow velocity that can eliminate the surface defect factor.
 θ-6≦α≦θ+10・・・(1)
 尚、傾斜角度αがθ-6よりも小さい場合は、適切な流速を得ることができない。また、傾斜角度αがθ+10よりも大きい場合は、吐出流11が直接長辺凝固シェル9に衝突するので、ブレークアウトのリスクが大きくなる。
θ−6 ≦ α ≦ θ + 10 (1)
When the inclination angle α is smaller than θ-6, an appropriate flow rate cannot be obtained. Further, when the inclination angle α is larger than θ + 10, the discharge flow 11 directly collides with the long-side solidified shell 9, so that the risk of breakout increases.
 このように、本実施形態に係る連続鋳造方法を用いることで、高価な電磁流動コイル設備を利用することなく、良質なスラブ鋳片を製造できる。尚、本実施形態において、厚みが220~300(mm)の範囲内のスラブ鋳片を対象にしており、当該範囲内の厚みのスラブであれば本実施形態に係る連続鋳造方法を適用できる。 As described above, by using the continuous casting method according to the present embodiment, a high-quality slab slab can be manufactured without using an expensive electromagnetic fluid coil equipment. In the present embodiment, the slab cast having a thickness in the range of 220 to 300 (mm) is targeted, and the continuous casting method according to the present embodiment can be applied to any slab having a thickness in the range.
 次に、本発明者らは、種々の鋳型内電磁流動制御方式を用いた場合の最適な基準面に対する傾斜角度αについて調査を行った。 Next, the present inventors investigated the inclination angle α with respect to the optimum reference plane when using various in-mold electromagnetic flow control methods.
 図4は、前述とは別の連続鋳造用鋳型の概略断面図である。また、図5は、図4を鉛直上方から見た概略断面図である。スラブ鋳片用の連続鋳造用鋳型30には、図1に示した連続鋳造用鋳型20に対して、さらに、鋳型長辺2の背面に、鋳型長辺2を挟んで相対する一対の上部磁極6と一対の下部磁極7とが設けられている。それぞれの上部磁極6および下部磁極7には、図5に示すように、直流静磁界を印加する直流静磁界発生コイル13が設けられている。直流静磁界発生コイル13は、鋳造されるスラブ鋳片の幅と同等またはそれ以上に亘って配置されている。 FIG. 4 is a schematic cross-sectional view of a continuous casting mold different from that described above. FIG. 5 is a schematic cross-sectional view of FIG. 4 viewed from vertically above. The continuous casting mold 30 for the slab slab further includes a pair of upper magnetic poles opposed to the continuous casting mold 20 shown in FIG. 6 and a pair of lower magnetic poles 7 are provided. Each of the upper magnetic pole 6 and the lower magnetic pole 7 is provided with a DC static magnetic field generating coil 13 for applying a DC static magnetic field, as shown in FIG. The DC static magnetic field generating coil 13 is arranged over the width of the slab slab to be cast or over it.
 上部磁極6の直流静磁界発生コイル13から印加される直流静磁界により、鋳型内溶鋼湯面10における溶鋼流が制動(減速)される。同様に、下部磁極7の直流静磁界発生コイル13から印加される直流静磁界により、吐出流11のうちで直流静磁界発生コイル13の位置を下方に向かって通過しようとする溶鋼流が制動(減速)される。尚、浸漬ノズル4の吐出孔5は、上部磁極6から印加される直流静磁界の最大値の位置と下部磁極7から印加される直流静磁界の最大値の位置との間に設置されている。 The molten steel flow on the molten steel surface 10 in the mold is braked (decelerated) by the DC static magnetic field applied from the DC static magnetic field generating coil 13 of the upper magnetic pole 6. Similarly, the molten steel flow that attempts to pass downward through the position of the DC static magnetic field generating coil 13 in the discharge flow 11 by the DC static magnetic field applied from the DC static magnetic field generating coil 13 of the lower magnetic pole 7 is braked ( Decelerated). The discharge hole 5 of the immersion nozzle 4 is disposed between the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole 6 and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7. .
 このような電磁流動制御が行われている場合、溶鋼流は、静磁場により制動されているので、モールドパウダーの巻き込みが抑制される。一方、凝固シェル9への気泡や微小介在物の捕捉を抑制するために、溶鋼流に適度な流速を付与する必要もある。本発明者らは鋭意検討を重ねた結果、上部磁極6における直流静磁界の強度に応じた適切な吐出方向の傾斜角度αが存在することを見出した。即ち、上部磁極6から印加される直流静磁界の強度が1500Gs以上2500Gs未満(ガウス;1Gs=10-4T)の場合は、浸漬ノズル4の吐出方向を、浸漬ノズル4の鉛直軸中心を通り、鋳型長辺面に平行な基準面に対して(3)式の範囲内で傾斜させ、上部磁極6から印加される直流静磁界の強度が2500Gs以上3500Gs未満の場合は(4)式の範囲内で傾斜させることで良質なスラブ鋳片が得られることがわかった。直流静磁界の強度が2500Gs以上3500Gs未満と比較的強い場合には、(4)式のように傾斜角度αを大きくすることで、静磁界による制動に見合った流速を溶鋼流に付与できるからである。 When such electromagnetic flow control is performed, the molten steel flow is damped by a static magnetic field, so that the entrainment of mold powder is suppressed. On the other hand, in order to suppress trapping of bubbles and fine inclusions in the solidified shell 9, it is necessary to impart an appropriate flow rate to the molten steel flow. As a result of intensive studies, the present inventors have found that there is an appropriate inclination angle α in the ejection direction in accordance with the strength of the DC static magnetic field in the upper magnetic pole 6. That is, when the strength of the DC static magnetic field applied from the upper magnetic pole 6 is 1500 Gs or more and less than 2500 Gs (Gauss; 1 Gs = 10 −4 T), the discharge direction of the immersion nozzle 4 passes through the vertical axis center of the immersion nozzle 4. When the strength of the DC static magnetic field applied from the upper magnetic pole 6 is 2500 Gs or more and less than 3500 Gs with respect to the reference plane parallel to the mold long side surface, the range of the equation (4) It was found that a good quality slab slab can be obtained by inclining inside. If the strength of the dc static magnetic field is relatively strong at 2500 Gs or more and less than 3500 Gs, increasing the tilt angle α as shown in equation (4) can give the molten steel flow a flow rate suitable for braking by the static magnetic field. is there.
 θ≦α≦θ+5・・・(3)
 θ+6≦α≦θ+10・・・(4)
 図6は、前述とは別の連続鋳造用鋳型の概略断面図である。また、図7は、図6を鉛直上方から見た概略断面図である。スラブ鋳片用の連続鋳造用鋳型40には、図1に示した連続鋳造用鋳型20に対して、さらに、鋳型長辺2の背面に、鋳型長辺2を挟んで相対する一対のリニア型移動磁場発生装置42が設けられている。リニア型移動磁場発生装置42の磁場の移動方向は、鋳型幅方向である。鋳型内に設置された浸漬ノズル4から吐出される吐出流11に制動力を与えて鋳型内流動を制御する場合には、図7(a)に示すように、鋳型短辺3から浸漬ノズル4に向かう方向に移動磁場を印加し、吐出流11に加速力を与えて鋳型内流動を制御する場合には、図7(b)に示すように、浸漬ノズル4から鋳型短辺3に向かう方向に移動磁場を印加する。このような流動制御方式は、吐出流11に制動力或いは加速力を付与して、常に吐出流11を適正な状態に制御できるという特徴があるが、基本的には浸漬ノズル4を中心として左右対称の流れとなるので、左右の流れが干渉する部分において流速の小さい領域が発生することがわかった。この場合にも、浸漬ノズル4の吐出方向の基準面に対する傾斜角度αを適切な値に制御することで、凝固シェル9への気泡や微小介在物の捕捉を抑制できることを見出した。種々の実験・調査の結果、このような移動磁場を印可する鋳型内流動制御方式の場合には、浸漬ノズル4の吐出方向を、浸漬ノズルの鉛直軸中心を通り、鋳型長辺面に平行な基準面に対して(5)式の範囲内で傾斜させることで良質なスラブ鋳片が得られることがわかった。
θ ≦ α ≦ θ + 5 (3)
θ + 6 ≦ α ≦ θ + 10 (4)
FIG. 6 is a schematic cross-sectional view of a continuous casting mold different from that described above. FIG. 7 is a schematic cross-sectional view of FIG. 6 viewed from vertically above. The continuous casting mold 40 for slab slabs is a pair of linear molds opposed to the continuous casting mold 20 shown in FIG. A moving magnetic field generator 42 is provided. The moving direction of the magnetic field of the linear moving magnetic field generator 42 is the mold width direction. In the case of controlling the flow in the mold by applying a braking force to the discharge flow 11 discharged from the immersion nozzle 4 installed in the mold, as shown in FIG. In the case where the moving magnetic field is applied in the direction toward the surface and the flow in the mold is controlled by applying the acceleration force to the discharge flow 11, the direction from the immersion nozzle 4 toward the mold short side 3 as shown in FIG. A moving magnetic field is applied to. Such a flow control method is characterized in that a braking force or an acceleration force can be applied to the discharge flow 11 so that the discharge flow 11 can always be controlled in an appropriate state. Since the flow is symmetric, it has been found that a region with a small flow velocity occurs in the part where the left and right flow interfere. Also in this case, it was found that trapping of bubbles and fine inclusions in the solidified shell 9 can be suppressed by controlling the inclination angle α with respect to the reference surface in the discharge direction of the immersion nozzle 4 to an appropriate value. As a result of various experiments and investigations, in the case of the flow control method in the mold in which such a moving magnetic field is applied, the discharge direction of the immersion nozzle 4 passes through the center of the vertical axis of the immersion nozzle and is parallel to the long side surface of the mold. It was found that a good quality slab slab can be obtained by inclining within the range of the formula (5) with respect to the reference surface.
 θ+2≦α≦θ+7・・・(5)
 即ち、左右対称となりがちな鋳型内の流れに対して(5)式の傾斜角度に浸漬ノズル吐出方向を向けることで、適度な流速を溶鋼流に付与できるものと考えられる。
θ + 2 ≦ α ≦ θ + 7 (5)
That is, it is considered that an appropriate flow rate can be imparted to the molten steel flow by directing the immersion nozzle discharge direction at an inclination angle of the expression (5) with respect to the flow in the mold that tends to be symmetrical.
 図8は、前述とは別の連続鋳造用鋳型の概略断面図である。また、図9は、図8を鉛直上方から見た概略断面図である。連続鋳造用鋳型50には、図1に示した連続鋳造用鋳型20に対して、さらに、鋳型長辺2の背面に、鋳型長辺2を挟んで相対する一対の磁極52が設けられている。磁極52には、図9に示すように交流移動磁界を印可する交流移動磁界発生コイル12が設置されている。磁極52は、磁場の移動方向が鋳型幅方向の交流移動磁界を印加し、鋳型内の溶鋼8に水平方向の旋回流を付与して溶鋼流の流動を制御する。このような流動制御手法において、浸漬ノズル4からの吐出方向を鋳型短辺3の方向に左右対称に吐出させる場合を例にして鋳型内流動を説明する。 FIG. 8 is a schematic cross-sectional view of a continuous casting mold different from that described above. FIG. 9 is a schematic cross-sectional view of FIG. 8 viewed from vertically above. The continuous casting mold 50 is further provided with a pair of magnetic poles 52 opposed to the continuous casting mold 20 shown in FIG. . The magnetic pole 52 is provided with an AC moving magnetic field generating coil 12 for applying an AC moving magnetic field as shown in FIG. The magnetic pole 52 controls the flow of the molten steel flow by applying an AC moving magnetic field whose magnetic field is moved in the mold width direction and applying a horizontal swirling flow to the molten steel 8 in the mold. In such a flow control method, the flow in the mold will be described by taking as an example a case where the discharge direction from the immersion nozzle 4 is discharged symmetrically in the direction of the mold short side 3.
 図10は、吐出方向を鋳型短辺に垂直とした鋳造条件下における鋳型内の溶鋼流速状況を模式的に示す図である。図10において、符号15は、交流移動磁界によって形成される、鋳型内溶鋼湯面10及びその近傍で時計回りまたは反時計回りの一方向に回転する旋回流、16は、吐出流11が鋳型短辺3側の凝固シェル9に衝突した後に鉛直上方に向いて流れ、その後、鋳型内溶鋼湯面10で鋳型短辺側から浸漬ノズル側に向いて流れる反転流、17は低流速領域、18は、旋回流15と反転流16とが衝突することで発生する渦流、19は、吐出流11が鋳型短辺側の凝固シェルに衝突した後に鉛直下方に向いて流れる下降流である。尚、図10では、低流速領域17及び渦流18を片方の鋳型短辺側だけに記載しているが、反対側の鋳型短辺側においても発生する。図10に示すように、交流移動磁界による旋回流15の下流領域となる、鋳型長辺2の幅方向の鋳型短辺3の近傍において、溶鋼流速の小さくなる低流速領域17が発生することを確認した。このような鋳造条件下における連続鋳造機で鋳造した鋼製品の欠陥分布の調査結果から、鋼製品の欠陥の存在する領域は、低流速領域17の発生位置と一致することを確認している。 FIG. 10 is a diagram schematically showing the flow rate of molten steel in the mold under casting conditions in which the discharge direction is perpendicular to the mold short side. In FIG. 10, reference numeral 15 denotes a swirl flow that is formed by an AC moving magnetic field and rotates in one direction in the clockwise or counterclockwise direction in the molten steel surface 10 in the mold and the vicinity thereof. After colliding with the solidified shell 9 on the side 3 side, it flows upward in the vertical direction, and then flows in the molten steel surface 10 in the mold from the short side of the mold toward the immersion nozzle, 17 is a low flow velocity region, 18 is The vortex flow 19 generated by the collision of the swirling flow 15 and the reverse flow 16 is a downward flow that flows downward in the vertical direction after the discharge flow 11 collides with the solidified shell on the short side of the mold. In FIG. 10, the low flow velocity region 17 and the vortex 18 are shown only on one mold short side, but they also occur on the opposite mold short side. As shown in FIG. 10, in the vicinity of the mold short side 3 in the width direction of the mold long side 2, which is the downstream region of the swirling flow 15 by the AC moving magnetic field, a low flow rate region 17 in which the molten steel flow rate becomes small is generated. confirmed. From the investigation result of the defect distribution of the steel product cast by the continuous casting machine under such casting conditions, it is confirmed that the region where the defect of the steel product exists coincides with the generation position of the low flow velocity region 17.
 また、本発明者らは、種々の考察の結果、鋳型短辺3の近傍において、交流移動磁界による旋回流15と、吐出流11とが短辺側凝固シェル9に衝突することによって生じた反転流16とが、衝突・干渉することにより低流速領域17が発生し、この低流速領域17に気泡や介在物などが捕捉され、最終的に鋼製品の欠陥となることを見出した。また、旋回流15と反転流16とが衝突することで渦流18が発生し、この渦流によってモールドパウダーが巻き込まれて凝固シェル9に捕捉され、これが鋼製品の欠陥となる可能性も見出した。本発明者らは、これらの解決策について鋭意検討を行った。前述したように、介在物、気泡、モールドパウダーの捕捉に起因する鋼製品の欠陥は、交流移動磁界による旋回流15と、吐出流11の反転流16との衝突・干渉に伴う低流速領域17及び渦流18の発生に起因している。交流移動磁界を印加して水平方向の旋回流15を付与する流動制御方式においても、浸漬ノズル4の吐出方向を基準面から傾斜させることで、旋回流15と反転流16との衝突・干渉を回避できることを見出した。 Further, as a result of various considerations, the inventors have found that the reversal caused by the swirling flow 15 caused by the AC moving magnetic field and the discharge flow 11 colliding with the short-side solidified shell 9 in the vicinity of the mold short side 3. It has been found that a low flow velocity region 17 is generated by collision / interference with the flow 16, and bubbles or inclusions are trapped in the low flow velocity region 17 and eventually become defects in the steel product. Moreover, the swirl | vortex flow 15 and the reversal flow 16 collided, and the vortex | eddy_current 18 generate | occur | produced, the mold powder was caught by this eddy current, and it caught by the solidification shell 9, and also discovered the possibility of becoming a defect of steel products. The present inventors have intensively studied these solutions. As described above, the defect of the steel product caused by the inclusions, bubbles, and mold powder is caused by the low flow velocity region 17 caused by the collision / interference between the swirling flow 15 caused by the AC moving magnetic field and the reverse flow 16 of the discharge flow 11. And the generation of the vortex 18. Even in the flow control method in which an alternating moving magnetic field is applied to apply a horizontal swirling flow 15, collision / interference between the swirling flow 15 and the reversing flow 16 can be prevented by inclining the discharge direction of the immersion nozzle 4 from the reference plane. I found that it can be avoided.
 図11は、吐出方向を傾けて鋳造する様子を鉛直上方から見た概略図である。図11に示すように、浸漬ノズル4の吐出方向を交流移動磁界による旋回流15の上流側へ向けて吐出方向を傾斜させることが重要であることが、種々の流動調査実験から明らかになった。更に、本発明者らは流動調査実験を進めて、交流移動磁界の強度を300~1000Gsの範囲内とした上で、交流移動磁界の強度X(Gs)と連続鋳造されるスラブ鋳片の幅W(mm)との比X/W(Gs/mm)が0.30以上0.45未満の場合は、浸漬ノズル4の吐出方向を、浸漬ノズル4の鉛直軸中心を通り、鋳型長辺面に平行な基準面に対して、交流移動磁界によって形成される旋回流の上流側へ向けて(6)式の範囲内で傾斜させ、交流移動磁界の強度X(Gs)と連続鋳造されるスラブ鋳片の幅W(mm)との比X/W(Gs/mm)が0.45以上0.55未満の場合は(7)式の範囲内で傾斜させることで良質なスラブ鋳片が得られることがわかった。 FIG. 11 is a schematic view of a state where casting is performed while the discharge direction is inclined as viewed from above. As shown in FIG. 11, it was clarified from various flow investigation experiments that it is important to incline the discharge direction of the immersion nozzle 4 toward the upstream side of the swirling flow 15 by the AC moving magnetic field. . Furthermore, the present inventors proceeded with the flow investigation experiment to set the AC moving magnetic field strength within the range of 300 to 1000 Gs, and then the AC moving magnetic field strength X (Gs) and the width of the slab slab continuously cast. When the ratio X / W (Gs / mm) to W (mm) is 0.30 or more and less than 0.45, the discharge direction of the immersion nozzle 4 passes through the center of the vertical axis of the immersion nozzle 4 and the long side of the mold The slab is continuously cast with the strength X (Gs) of the AC moving magnetic field inclined in the range of the equation (6) toward the upstream side of the swirling flow formed by the AC moving magnetic field with respect to the reference plane parallel to When the ratio X / W (Gs / mm) to the width W (mm) of the slab is 0.45 or more and less than 0.55, a good quality slab slab is obtained by inclining within the range of the formula (7). I found out that
 θ-3≦α≦θ・・・(6)
 θ-6≦α≦θ-4・・・(7)
 図4に示した溶鋼8に直流静磁界を印加する場合や、図6に示した吐出流11に制動力あるいは加速力を付与する場合は、基本的に鋳型内の溶鋼流は左右対称であるので、適度な旋回流速を付与すべく、浸漬ノズル4の吐出方向を鋳型長辺2側に大きく傾斜させるのが好適であった。一方、図8に示した電磁流動制御で旋回撹拌を付与する場合は、反転流16と旋回流15の衝突・干渉を抑制できる程度に傾斜させていれば十分であるので、(6)式及び(7)式に示すように傾斜角度αを小さくすることが好ましい。尚、傾斜角度αを大きくし過ぎると、凝固シェル9の近傍の溶鋼の流速が速くなりすぎて、凝固シェル9の成長が阻害されてブレークアウトのような操業阻害を引き起こすことが懸念されるので好ましくない。
θ-3 ≦ α ≦ θ (6)
θ-6 ≦ α ≦ θ-4 (7)
When a DC static magnetic field is applied to the molten steel 8 shown in FIG. 4 or when a braking force or acceleration force is applied to the discharge flow 11 shown in FIG. 6, the molten steel flow in the mold is basically symmetrical. Therefore, it is preferable to greatly incline the discharge direction of the immersion nozzle 4 toward the mold long side 2 in order to provide an appropriate swirl flow rate. On the other hand, when the swirl stirring is applied by the electromagnetic flow control shown in FIG. 8, it is sufficient to tilt the reversal flow 16 and the swirl flow 15 so that the collision / interference can be suppressed. As shown in the equation (7), it is preferable to reduce the inclination angle α. If the inclination angle α is too large, the flow rate of the molten steel in the vicinity of the solidified shell 9 becomes too high, and there is a concern that the growth of the solidified shell 9 is hindered, causing an operation inhibition such as a breakout. It is not preferable.
 図12は、前述とは別の連続鋳造用鋳型1の概略断面図であり、符号1は連続鋳造用鋳型、2は鋳型長辺、3は鋳型短辺、4は浸漬ノズル、5は浸漬ノズルの吐出孔、6は上部磁極、7は下部磁極、8は溶鋼、9は凝固シェル、10は鋳型内溶鋼湯面、11は浸漬ノズルからの吐出流である。 FIG. 12 is a schematic cross-sectional view of a continuous casting mold 1 different from the above, wherein reference numeral 1 is a continuous casting mold, 2 is a mold long side, 3 is a mold short side, 4 is an immersion nozzle, and 5 is an immersion nozzle. , 6 is an upper magnetic pole, 7 is a lower magnetic pole, 8 is molten steel, 9 is a solidified shell, 10 is a molten steel surface in the mold, and 11 is a discharge flow from an immersion nozzle.
 連続鋳造用鋳型1は、相対する一対の鋳型長辺2と、相対する一対の鋳型短辺3とが組み合わされて構成されており、一対の鋳型長辺2と一対の鋳型短辺3とで囲まれた鋳型内部空間に、浸漬ノズル4が配置され、浸漬ノズル4の吐出孔5から鋳型内部空間に溶鋼8が注入されて、溶鋼8の連続鋳造が行われる。吐出孔5は、浸漬ノズル4の側壁の、浸漬ノズル4の中心を通る直線上に左右対称に配置されており、吐出孔5から注入される溶鋼8は吐出流11となって左右の鋳型短辺3の方向に向いて吐出される。鋳型内部空間に注入された溶鋼8は鋳型長辺2及び鋳型短辺3と接触して冷却され、鋳型長辺2及び鋳型短辺3との接触面に凝固シェル9が形成され、この凝固シェル9を外殻とし、内部を未凝固の溶鋼8とするスラブが下方に連続的に引き抜かれて、スラブ鋳片が製造される。その際、鋳型内溶鋼湯面10には、潤滑剤、保温剤、酸化防止剤などの機能を発揮するモールドパウダー(図示せず)が添加される。 The continuous casting mold 1 is configured by combining a pair of opposed mold long sides 2 and a pair of opposed mold short sides 3, and the pair of mold long sides 2 and the pair of mold short sides 3 are combined. The immersion nozzle 4 is disposed in the enclosed mold inner space, and the molten steel 8 is injected from the discharge hole 5 of the immersion nozzle 4 into the mold inner space, and the molten steel 8 is continuously cast. The discharge holes 5 are arranged symmetrically on a straight line passing through the center of the immersion nozzle 4 on the side wall of the immersion nozzle 4, and the molten steel 8 injected from the discharge hole 5 becomes a discharge flow 11 and the left and right molds are short. It is discharged in the direction of side 3. The molten steel 8 injected into the mold inner space is cooled by contacting with the mold long side 2 and the mold short side 3, and a solidified shell 9 is formed on the contact surface between the mold long side 2 and the mold short side 3. A slab having a shell 9 as an outer shell and an inside of the unsolidified molten steel 8 is continuously drawn downward to produce a slab slab. At that time, mold powder (not shown) that functions as a lubricant, a heat retaining agent, an antioxidant, and the like is added to the molten steel surface 10 in the mold.
 図13は、図12の上部磁極の部位の概略横断面図である。また、図14は、図12の下部磁極の部位の概略横断面図である。本実施形態で使用する連続鋳造用鋳型1には、鋳型長辺2の背面に、鋳型長辺2を挟んで相対する一対の上部磁極6と一対の下部磁極7とが配置されている。上部磁極6には、図13に示すように、交流移動磁界を印加する交流移動磁界発生コイル12と、直流静磁界を印加する直流静磁界発生コイル13とが設置され、一方、下部磁極7には、図14に示すように、直流静磁界を印加する直流静磁界発生コイル14が設置されている。交流移動磁界発生コイル12、直流静磁界発生コイル13及び直流静磁界発生コイル14は、鋳造されるスラブ鋳片の幅と同等またはそれ以上に亘って配置されている。 FIG. 13 is a schematic cross-sectional view of the upper magnetic pole portion of FIG. FIG. 14 is a schematic cross-sectional view of the lower magnetic pole portion of FIG. In the continuous casting mold 1 used in this embodiment, a pair of upper magnetic poles 6 and a pair of lower magnetic poles 7 are arranged on the back surface of the mold long side 2 with the mold long side 2 interposed therebetween. As shown in FIG. 13, the upper magnetic pole 6 is provided with an AC moving magnetic field generating coil 12 for applying an AC moving magnetic field and a DC static magnetic field generating coil 13 for applying a DC static magnetic field. As shown in FIG. 14, a DC static magnetic field generating coil 14 for applying a DC static magnetic field is installed. The AC moving magnetic field generating coil 12, the DC static magnetic field generating coil 13, and the DC static magnetic field generating coil 14 are disposed over the width of the slab slab to be cast or more.
 上部磁極6の交流移動磁界発生コイル12から印加される交流移動磁界により、鋳型内溶鋼が水平方向に回転する溶鋼8の旋回流が形成され、また、上部磁極6の直流静磁界発生コイル13から印加される直流静磁界により、鋳型内溶鋼湯面10における溶鋼流が制動(減速)される。同様に、下部磁極7の直流静磁界発生コイル14から印加される直流静磁界により、吐出流11のうちで直流静磁界発生コイル14の位置を下方に向かって通過しようとする溶鋼流が制動(減速)される。尚、浸漬ノズル4の吐出孔5は、上部磁極6から印加される直流静磁界の最大値の位置と下部磁極7から印加される直流静磁界の最大値の位置との間に設置されている。 The AC moving magnetic field applied from the AC moving magnetic field generating coil 12 of the upper magnetic pole 6 forms a swirling flow of the molten steel 8 in which the molten steel in the mold rotates in the horizontal direction, and from the DC static magnetic field generating coil 13 of the upper magnetic pole 6. The molten steel flow on the molten steel surface 10 in the mold is braked (decelerated) by the applied DC static magnetic field. Similarly, the molten steel flow that attempts to pass downward through the position of the DC static magnetic field generating coil 14 in the discharge flow 11 by the DC static magnetic field applied from the DC static magnetic field generating coil 14 of the lower magnetic pole 7 is braked ( Decelerated). The discharge hole 5 of the immersion nozzle 4 is disposed between the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole 6 and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7. .
 図15は、浸漬ノズルからの吐出方向を鋳型短辺に垂直とした鋳造条件下における鋳型内の溶鋼流速状況を模式的に示す図である。本発明者らは、図12に示す連続鋳造用鋳型1を用い、上部磁極6に直流静磁界と交流移動磁界とを重畳して印加し、下部磁極7に直流静磁界を印加し、浸漬ノズル4の吐出孔5からの吐出方向を鋳型長辺面と平行として、吐出流11を鋳型短辺3に垂直に向けた鋳造条件下における鋳型内流動状況について調査した。 FIG. 15 is a diagram schematically showing the molten steel flow rate in the mold under casting conditions in which the discharge direction from the immersion nozzle is perpendicular to the mold short side. The inventors use a continuous casting mold 1 shown in FIG. 12, applying a DC static magnetic field and an AC moving magnetic field superimposed on the upper magnetic pole 6, applying a DC static magnetic field to the lower magnetic pole 7, and an immersion nozzle. The state of flow in the mold under the casting conditions in which the discharge direction from the four discharge holes 5 was parallel to the long side surface of the mold and the discharge flow 11 was perpendicular to the short side 3 of the mold was investigated.
 この鋳造条件下における鋳型内の流速分布を、数値計算や低融点合金(Bi-Pb-Sn-Cd合金;融点約70℃)を用いた実機1/4サイズの試験鋳造装置による流速測定によって、繰り返し確認した。その結果、図15に示すように、交流移動磁界による旋回流15の下流領域となる、鋳型長辺2の幅方向における鋳型短辺3の近傍において、溶鋼流速の小さくなる低流速領域17が発生することを確認した。図15において、符号15は、交流移動磁界によって形成される、鋳型内溶鋼湯面10及びその近傍で時計回りまたは反時計回りの一方向に回転する旋回流、16は、吐出流11が鋳型短辺側の凝固シェルに衝突した後に鉛直上方に向いて流れ、その後、鋳型内溶鋼湯面10では鋳型短辺側から浸漬ノズル側に向いて流れる反転流、17は低流速領域、18は、旋回流15と反転流16とが衝突することで発生する渦流、19は、吐出流11が鋳型短辺側の凝固シェルに衝突した後に鉛直下方に向いて流れる下降流である。尚、図15では、低流速領域17及び渦流18を片方の鋳型短辺側だけに記載しているが、反対側の鋳型短辺側においても発生する。 The flow velocity distribution in the mold under this casting condition is obtained by numerical calculation and flow velocity measurement by a test casting apparatus of 1/4 size of actual machine using a low melting point alloy (Bi-Pb-Sn-Cd alloy; melting point about 70 ° C). Confirmed repeatedly. As a result, as shown in FIG. 15, a low flow velocity region 17 in which the molten steel flow velocity becomes small is generated in the vicinity of the mold short side 3 in the width direction of the mold long side 2, which is the downstream region of the swirling flow 15 by the AC moving magnetic field. Confirmed to do. In FIG. 15, reference numeral 15 denotes a swirling flow that is formed by an AC moving magnetic field and rotates in one direction clockwise or counterclockwise in the molten steel surface 10 in the mold and the vicinity thereof, and 16 is a discharge flow 11 that is short of the mold. After colliding with the solidified shell on the side, it flows vertically upward, and then on the molten steel surface 10 in the mold, it flows in the reverse direction from the short side of the mold toward the immersion nozzle, 17 is a low flow velocity region, and 18 is a swirl. A vortex flow 19 generated by the collision of the flow 15 and the reversal flow 16 is a downward flow that flows downward in the vertical direction after the discharge flow 11 collides with the solidified shell on the short side of the mold. In FIG. 15, the low flow velocity region 17 and the vortex 18 are shown only on one mold short side, but they also occur on the opposite mold short side.
 また、このような鋳造条件下で実機の連続鋳造機で鋳造した鋼製品の欠陥分布の調査結果から、鋼製品の欠陥の存在する領域は、上記の低流速領域17の発生位置と一致することを確認している。 In addition, from the investigation results of the defect distribution of the steel product cast by the actual continuous casting machine under such casting conditions, the region where the defect of the steel product exists coincides with the generation position of the low flow velocity region 17 described above. Have confirmed.
 本発明者らは、種々の考察の結果、鋳型短辺近傍においては交流移動磁界による旋回流15と、吐出孔5からの吐出流11の短辺凝固シェル衝突後の反転流16とが、衝突・干渉することに起因して低流速領域17が発生し、この低流速領域17に気泡や介在物などが捕捉され、最終的に鋼製品の欠陥となることを見出した。また、旋回流15と反転流16が衝突することで渦流18が発生し、この渦流18によってモールドパウダーが巻き込まれて凝固シェルに捕捉され、これが鋼製品の欠陥となる可能性も見出した。 As a result of various considerations, the present inventors have found that a swirling flow 15 caused by an AC moving magnetic field and a reversal flow 16 after a short-side solidified shell collision of the discharge flow 11 from the discharge hole 5 collide in the vicinity of the mold short side. -It has been found that a low flow velocity region 17 is generated due to the interference, bubbles and inclusions are trapped in the low flow velocity region 17 and eventually become a defect of the steel product. Moreover, the swirl | vortex flow 15 and the reversal flow 16 collided, and the vortex | eddy_current 18 generate | occur | produced, the mold powder was drawn in by this vortex | eddy_current 18, and it caught the solidification shell, and also discovered the possibility of becoming a defect of steel products.
 本発明者らは、これらの解決策について鋭意検討を行った。前述したように、介在物、気泡、モールドパウダーの捕捉に起因する鋼製品の欠陥は、交流移動磁界による旋回流15と、吐出孔5からの吐出流11の反転流16との衝突・干渉に伴う低流速領域17及び渦流18の発生に起因している。そこで、本発明者らは、旋回流15と反転流16との衝突・干渉を回避する方法を検討し、その結果、浸漬ノズル4からの吐出流11の吐出方向を、鋳型短辺3に垂直な方向からずらすことを見出した。 The present inventors diligently studied about these solutions. As described above, defects in steel products caused by inclusions, bubbles, and mold powder trapping are caused by collision / interference between the swirling flow 15 caused by the AC moving magnetic field and the reverse flow 16 of the discharge flow 11 from the discharge hole 5. This is due to the accompanying generation of the low flow velocity region 17 and the vortex 18. Therefore, the present inventors examined a method for avoiding the collision / interference between the swirling flow 15 and the reversing flow 16, and as a result, the discharge direction of the discharge flow 11 from the immersion nozzle 4 is perpendicular to the mold short side 3. I found out that it was shifted from any direction.
 通常、浸漬ノズル4の吐出孔5は、鋳型短辺面に向かって溶鋼8が吐出されるように、鋳型長辺面と平行する方向を向いて配置され、鋳型内左右の溶鋼流動の対称性を保つよう工夫されている。しかし、本発明のように交流移動磁界によって鋳型内の溶鋼8に旋回流15が付与される条件においては、鋳型内左右の対称性を保つよりも浸漬ノズル4を中心とした軸対称性を勘案して浸漬ノズル4の吐出孔5の吐出方向を決定するのが原理的にも好ましいと考えられる。 Usually, the discharge hole 5 of the immersion nozzle 4 is arranged in a direction parallel to the long side surface of the mold so that the molten steel 8 is discharged toward the short side surface of the mold. It is devised to keep. However, under the condition that the swirling flow 15 is applied to the molten steel 8 in the mold by the AC moving magnetic field as in the present invention, the axial symmetry about the immersion nozzle 4 is taken into consideration rather than the left-right symmetry in the mold. Therefore, it is considered that it is preferable in principle to determine the discharge direction of the discharge hole 5 of the immersion nozzle 4.
 図16は、浸漬ノズルの吐出方向を旋回流の上流側へ傾けて鋳造する様子を鉛直上方から見た概略図である。数値解析や低融点合金による試験鋳造装置を用いて様々な条件で浸漬ノズル4からの吐出方向を検討したところ、上部磁極6の交流移動磁界の強度を500~900(Gs)の範囲内、上部磁極6の直流静磁界の強度を2000~3300(Gs)の範囲内、下部磁極7の直流静磁界の強度を3000~4500(Gs)の範囲内、上部磁極6の交流移動磁界強度X(Gs)と連続鋳造されるスラブ鋳片の幅W(mm)の比X/W(Gs/mm)を0.30以上0.55未満に制御した場合に、図16に示すように浸漬ノズル4の吐出方向を、交流移動磁界によって形成される旋回流15の上流側へ向けて傾けることで、旋回流15と反転流16との衝突・干渉が回避され、低流速領域17及び渦流18の発生がなく、望ましい鋳型内溶鋼流動が得られることを見出した。 FIG. 16 is a schematic view of a state in which casting is performed by inclining the discharge direction of the immersion nozzle toward the upstream side of the swirling flow, as viewed from above. When the discharge direction from the immersion nozzle 4 was examined under various conditions using numerical analysis and a test casting apparatus using a low melting point alloy, the AC moving magnetic field strength of the upper magnetic pole 6 was in the range of 500 to 900 (Gs), and the upper part The strength of the DC static magnetic field of the magnetic pole 6 is in the range of 2000 to 3300 (Gs), the strength of the DC static magnetic field of the lower magnetic pole 7 is in the range of 3000 to 4500 (Gs), and the AC moving magnetic field strength X (Gs of the upper magnetic pole 6 is ) And the ratio X / W (Gs / mm) of the width W (mm) of the continuously cast slab slab is controlled to be 0.30 or more and less than 0.55, as shown in FIG. By tilting the discharge direction toward the upstream side of the swirling flow 15 formed by the AC moving magnetic field, collision / interference between the swirling flow 15 and the reversing flow 16 can be avoided, and the generation of the low flow velocity region 17 and the vortex flow 18 can be avoided. Desirable molten steel flow in mold Found that can be obtained.
 尚、比X/Wが0.30未満の場合は、スラブ鋳片の幅に対して旋回流15の流速が小さすぎるため、浸漬ノズル4の吐出方向を傾けても十分な効果を得ることができない。また、比X/Wが0.55以上の場合は、スラブ鋳片の幅に対して十分な旋回流15の流速が確保でき、反転流16との干渉による低流速領域17の発生などの弊害が抑制できることから、浸漬ノズル4の吐出方向を傾ける効果が小さくなると考えられる。また、比X/Wを過度に高めることは、旋回流15が強くなりすぎて、モールドパウダーの巻き込みが発生し、巻き込まれたモールドパウダーに起因する欠陥の発生する可能性があるので好ましくない。また、旋回流15の流速が十分に速い場合に吐出方向を傾けると旋回流15が強くなりすぎて凝固シェル9の厚みが薄くなり、ブレークアウトなどの操業安定性を阻害する要因となる可能性も考えられるので好ましくない。 When the ratio X / W is less than 0.30, the flow velocity of the swirling flow 15 is too small with respect to the width of the slab slab, so that a sufficient effect can be obtained even if the discharge direction of the immersion nozzle 4 is inclined. Can not. Further, when the ratio X / W is 0.55 or more, a sufficient flow velocity of the swirl flow 15 can be ensured with respect to the width of the slab slab, and adverse effects such as generation of a low flow velocity region 17 due to interference with the reverse flow 16 are obtained. Therefore, the effect of tilting the discharge direction of the immersion nozzle 4 is considered to be small. Moreover, it is not preferable to increase the ratio X / W excessively because the swirling flow 15 becomes too strong and the mold powder is entrained and defects due to the encapsulated mold powder may occur. Further, if the discharge direction is inclined when the flow velocity of the swirling flow 15 is sufficiently high, the swirling flow 15 becomes too strong and the thickness of the solidified shell 9 becomes thin, which may be a factor that hinders operational stability such as breakout. It is not preferable because it is also possible.
 更に本発明者らは、鋭意検討・実験を重ね、交流移動磁界の強度X(Gs)と鋳造されるスラブ鋳片の幅W(mm)との比X/Wに着目し、最適吐出方向の関係性を見出した。 Furthermore, the present inventors have conducted intensive studies and experiments, paying attention to the ratio X / W between the strength X (Gs) of the AC moving magnetic field and the width W (mm) of the slab slab to be cast. I found a relationship.
 交流移動磁界強度Xと、鋳片の幅Wとの比X/W(Gs/mm)が0.30以上0.45未満の場合は、浸漬ノズル4の鉛直軸中心を通り、鋳型長辺面に平行な基準面に対する吐出方向の傾斜角度αを下記の(8)式の範囲内とすることが好ましいことがわかった。これは、スラブ鋳片の幅Wに対して交流移動磁界強度Xが比較的小さいので、傾斜角度αを大きくして、より積極的に旋回流15の下流側における旋回流15と反転流16との衝突・干渉を回避する必要があるからと考えられる。 When the ratio X / W (Gs / mm) between the AC moving magnetic field strength X and the width W of the slab is 0.30 or more and less than 0.45, the long side surface of the mold passes through the center of the vertical axis of the immersion nozzle 4 It was found that the inclination angle α in the discharge direction with respect to the reference plane parallel to is preferably in the range of the following equation (8). This is because the AC moving magnetic field strength X is relatively small with respect to the width W of the slab slab. It is thought that it is necessary to avoid collision and interference.
 θ-2≦α≦θ+5・・・(8)
 また、比X/W(Gs/mm)が0.45以上0.55未満の場合は、浸漬ノズル4の鉛直軸中心を通り、鋳型長辺面に平行な基準面に対する吐出方向の傾斜角度αを下記の(9)式の範囲内とするのが好ましいこともわかった。スラブ鋳片の幅Wに対して交流移動磁界強度Xが比較的大きいので、傾斜角度αを小さめに設定して吐出方向を傾けることで、旋回流15の下流側での旋回流15と反転流16との衝突・干渉を回避しつつ、上述したようにブレークアウトなどの操業安定性の阻害要因のリスクを排除できるからである。
θ-2 ≦ α ≦ θ + 5 (8)
In addition, when the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the inclination angle α in the discharge direction with respect to a reference plane passing through the center of the vertical axis of the immersion nozzle 4 and parallel to the mold long side surface. It was also found that it is preferable to set the value within the range of the following formula (9). Since the AC moving magnetic field strength X is relatively large with respect to the width W of the slab slab, the swirling flow 15 and the reversing flow on the downstream side of the swirling flow 15 are set by tilting the discharge direction by setting the inclination angle α to be small. This is because, as described above, it is possible to eliminate the risk of an operational stability impediment such as breakout as described above while avoiding collision / interference with 16.
 θ-5≦α≦θ+2・・・(9)
 また、浸漬ノズル4の吐出方向の傾斜角度αは、連続鋳造開始前に設定することに加えて、吐出方向の傾斜角度αを変更できる装置を用いて、連続鋳造中に設定してもよい。当該装置を用いて、連続鋳造中における鋳型幅の変更など鋳造条件を変更する度に、逐次αとθを測定し、(1)式または(3)式から(9)式で表されるαとθの大小関係を満足する傾斜角度αになるように浸漬ノズル4の吐出方向を変更することで、より好ましい効果が得られる。
θ-5 ≦ α ≦ θ + 2 (9)
Further, the inclination angle α in the discharge direction of the immersion nozzle 4 may be set during continuous casting using an apparatus capable of changing the inclination angle α in the discharge direction in addition to setting before the start of continuous casting. Using this apparatus, each time the casting conditions are changed, such as changing the mold width during continuous casting, α and θ are sequentially measured, and α expressed by the formula (1) or (3) to (9) A more preferable effect can be obtained by changing the discharge direction of the submerged nozzle 4 so that the inclination angle α satisfies the magnitude relationship between and θ.
 図17は、吐出方向の傾斜角度αを変更する処理の一例を示すフロー図である。図17を用いて、浸漬ノズル4の吐出方向の傾斜角度αを変更する処理について説明する。図17に示した処理は、予め定められた時間ごとに、浸漬ノズル4の浸漬深さが180mm以上300mm未満、吐出孔の水平方向から下向きの溶鋼吐出角度が15~35°、タンディッシュ流出孔から吐出孔までの間に吹き込む不活性ガスの流量A(NL/min)と溶鋼スループットP(ton/min)との比A/Pが2.0~3.5NL/tonの範囲内であるか否かを確認し、当該条件を満たす場合に開始される。また、当該処理は、例えば、特許文献2に開示されているような吐出方向を変更できる駆動機構を備えた装置(以後、「角度調整装置」と記載する)を用いて実施できる。本実施形態においては、角度調整装置が吐出方向の傾斜角度αを変更する主体である、として説明する。 FIG. 17 is a flowchart showing an example of processing for changing the inclination angle α in the ejection direction. A process of changing the inclination angle α in the discharge direction of the immersion nozzle 4 will be described with reference to FIG. In the processing shown in FIG. 17, the immersion depth of the immersion nozzle 4 is 180 mm or more and less than 300 mm at every predetermined time, the molten steel discharge angle from the horizontal direction of the discharge hole is 15 to 35 °, the tundish outflow hole Whether the ratio A / P of the flow rate A (NL / min) of the inert gas blown between the gas and the discharge hole to the discharge hole and the molten steel throughput P (ton / min) is in the range of 2.0 to 3.5 NL / ton The process is started when the condition is satisfied. Further, the processing can be performed using, for example, an apparatus (hereinafter referred to as “angle adjustment apparatus”) provided with a drive mechanism that can change the ejection direction as disclosed in Patent Document 2. In the present embodiment, it is assumed that the angle adjusting device is a main body that changes the inclination angle α in the ejection direction.
 図17に示した処理において、角度調整装置は、連続鋳造装置が定常鋳込中であるか否かを判断する(ステップS101)。本実施形態において、定常鋳込中とは、鋳込中であり、鋳造速度が変更されている状態ではなく、鋳型幅が変更されている状態ではなく、不活性ガスの流量が変更されている状態ではなく、浸漬ノズル4の浸漬深さが変更されている状態ではない状態を意味する。 In the process shown in FIG. 17, the angle adjusting device determines whether or not the continuous casting device is in steady casting (step S101). In the present embodiment, the term “steady casting” means that the casting is being performed and the casting speed is not changed, but the mold width is not changed, but the flow rate of the inert gas is changed. It means not a state but a state where the immersion depth of the immersion nozzle 4 is not changed.
 角度調整装置は、連続鋳造装置が定常鋳込中でないと判断した場合(ステップS101:No)、図17に示した処理を終了する。角度調整装置は、連続鋳造装置が定常鋳込み中になった場合(ステップS101:Yes)、角度調整装置は傾斜角度αとθとを測定して、傾斜角度αが(1)式を満足するか否かを判断する(ステップS102)。角度調整装置は、傾斜角度αが(1)式を満足すると判断した場合(ステップS102:Yes)、図17に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(1)式を満足しないと判断した場合(ステップS102:No)、(1)式を満足する傾斜角度αを再設定する(ステップS103)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS104)、図17に示した処理を終了する。 If the angle adjusting device determines that the continuous casting device is not in a steady casting (step S101: No), the processing shown in FIG. When the continuous casting apparatus is in a steady casting state (step S101: Yes), the angle adjusting device measures the inclination angles α and θ, and does the inclination angle α satisfy the expression (1)? It is determined whether or not (step S102). When it is determined that the inclination angle α satisfies the expression (1) (step S102: Yes), the angle adjusting device ends the processing illustrated in FIG. On the other hand, when it is determined that the inclination angle α does not satisfy the expression (1) (step S102: No), the angle adjustment device resets the inclination angle α that satisfies the expression (1) (step S103). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to obtain the reset inclination angle α (step S104), and ends the process shown in FIG.
 このように、角度調整装置は、図17に示した処理によって、予め定められた時間毎に傾斜角度αが(1)式を満足するように浸漬ノズル4の吐出方向を変更できる。これにより、何らかの原因により、傾斜角度αが(1)式を満足しなくなった場合であっても、角度調整装置によって傾斜角度αが(1)式を満足するように浸漬ノズル4の吐出方向が変更されるので、介在物を含むスラブ鋳片が製造され続けてしまうことを防止できる。 As described above, the angle adjusting device can change the discharge direction of the submerged nozzle 4 by the process shown in FIG. 17 so that the inclination angle α satisfies the expression (1) every predetermined time. Thereby, even if the inclination angle α does not satisfy the expression (1) for some reason, the discharge direction of the immersion nozzle 4 is adjusted so that the inclination angle α satisfies the expression (1) by the angle adjusting device. Since it is changed, it can prevent that the slab cast containing an inclusion continues being manufactured.
 図18は、前述とは別の例を示すフロー図である。図18を用いて、浸漬ノズル4の吐出方向の傾斜角度αを変更する別の処理について説明する。図18に示した処理は、図17で示した処理の開始条件に加え、さらに、鋳型長辺2の背面に、鋳型長辺を挟んで相対する一対の上部磁極6と一対の下部磁極7とが配置され、上部磁極6から印加される直流静磁界の最大値の位置と下部磁極7から印加される直流静磁界の最大値の位置との間に吐出孔を配置し、当該静磁界の強度が1500Gs以上3500Gs未満である場合に開始される。 FIG. 18 is a flowchart showing an example different from the above. Another process for changing the inclination angle α in the discharge direction of the immersion nozzle 4 will be described with reference to FIG. The process shown in FIG. 18 includes a pair of upper magnetic pole 6 and a pair of lower magnetic pole 7 opposed to the back surface of the mold long side 2 across the mold long side in addition to the processing start conditions shown in FIG. Is disposed between the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole 6 and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7, and the strength of the static magnetic field Is started when it is 1500 Gs or more and less than 3500 Gs.
 図18に示した処理において、角度調整装置は、連続鋳造装置が定常鋳込中であるか否かを判断する(ステップS201)。角度調整装置は、連続鋳造装置が定常鋳込中でないと判断した場合(ステップS201:No)、図18に示した処理を終了する。角度調整装置は、連続鋳造装置が定常鋳込み中になった場合(ステップS201:Yes)、角度調整装置は、直流静磁界の強度が1500≦Gs<2500の範囲内か否かを判断する(ステップS202)。角度調整装置は、直流静磁界の強度が1500≦Gs<2500の範囲内であると判断した場合(ステップS202:Yes)、傾斜角度αとθとを測定して、傾斜角度αが(3)式を満足するか否かを判断する(ステップS203)。 In the process shown in FIG. 18, the angle adjusting device determines whether or not the continuous casting device is in steady casting (step S201). When the angle adjusting device determines that the continuous casting device is not in the steady casting (step S201: No), the processing shown in FIG. 18 is terminated. The angle adjusting device determines whether the strength of the DC static magnetic field is within a range of 1500 ≦ Gs <2500 when the continuous casting apparatus is in a steady casting (step S201: Yes) (step S201: Yes). S202). When the angle adjusting device determines that the intensity of the DC static magnetic field is within the range of 1500 ≦ Gs <2500 (step S202: Yes), the inclination angle α and θ are measured, and the inclination angle α is (3). It is determined whether or not the expression is satisfied (step S203).
 角度調整装置は、傾斜角度αが、(3)式を満足すると判断した場合(ステップS203:Yes)、図18に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(3)式を満足しないと判断した場合(ステップS203:No)、(3)式を満足する傾斜角度αを再設定する(ステップS204)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS205)、図18に示した処理を終了する。 When the angle adjustment device determines that the inclination angle α satisfies the expression (3) (step S203: Yes), the process illustrated in FIG. On the other hand, when it is determined that the inclination angle α does not satisfy the expression (3) (step S203: No), the angle adjustment device resets the inclination angle α that satisfies the expression (3) (step S204). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to have the reset inclination angle α (step S205), and ends the process shown in FIG.
 一方、角度調整装置は、直流静磁界の強度が1500≦Gs<2500の範囲内でなく、2500≦Gs<3500の範囲内であると判断した場合(ステップS202:No)、傾斜角度αとθとを測定して、傾斜角度αが(4)式を満足するか否かを判断する(ステップS206)。角度調整装置は、傾斜角度αが(4)式を満足すると判断した場合(ステップS206:Yes)、図18に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(4)式を満足しないと判断した場合(ステップS206:No)、(4)式を満足する傾斜角度αを再設定する(ステップS207)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS208)、図18に示した処理を終了する。 On the other hand, when the angle adjusting device determines that the strength of the DC static magnetic field is not in the range of 1500 ≦ Gs <2500 but in the range of 2500 ≦ Gs <3500 (step S202: No), the inclination angles α and θ To determine whether the inclination angle α satisfies the equation (4) (step S206). When it is determined that the inclination angle α satisfies the expression (4) (step S206: Yes), the angle adjusting device ends the process illustrated in FIG. On the other hand, when it is determined that the inclination angle α does not satisfy the expression (4) (step S206: No), the angle adjusting device resets the inclination angle α that satisfies the expression (4) (step S207). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to have the reset inclination angle α (step S208), and the process shown in FIG. 18 is ended.
 図19は、前述とは別の例を示すフロー図である。図19を用いて、浸漬ノズル4の吐出方向の傾斜角度αを変更する別の処理について説明する。図19に示した処理は、図17で示した処理の開始条件に加え、さらに、磁場の移動方向が鋳型幅方向であるリニア型移動磁場発生装置42が設けられている場合に開始される。 FIG. 19 is a flowchart showing an example different from the above. Another process for changing the inclination angle α in the discharge direction of the immersion nozzle 4 will be described with reference to FIG. The process shown in FIG. 19 is started when a linear type moving magnetic field generator 42 in which the magnetic field movement direction is the mold width direction is provided in addition to the process start conditions shown in FIG.
 図19に示した処理において、角度調整装置は、連続鋳造装置が定常鋳込中であるか否かを判断する(ステップS301)。角度調整装置は、連続鋳造装置が定常鋳込中でないと判断した場合(ステップS301:No)、図19に示した処理を終了する。角度調整装置は、連続鋳造装置が定常鋳込み中になった場合(ステップS301:Yes)、角度調整装置は傾斜角度αとθとを測定して、傾斜角度αが(5)式を満足するか否かを判断する(ステップS302)。角度調整装置は、傾斜角度αが(5)式を満足すると判断した場合(ステップS302:Yes)、図19に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(5)式を満足しないと判断した場合(ステップS302:No)、(5)式を満足する傾斜角度αを再設定する(ステップS303)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS304)、図19に示した処理を終了する。 In the process shown in FIG. 19, the angle adjusting device determines whether or not the continuous casting device is in steady casting (step S301). When the angle adjusting device determines that the continuous casting device is not in a steady casting state (step S301: No), the processing shown in FIG. When the continuous casting apparatus is in the steady casting (step S301: Yes), the angle adjusting device measures the inclination angles α and θ, and whether the inclination angle α satisfies the equation (5). It is determined whether or not (step S302). When it is determined that the inclination angle α satisfies the expression (5) (step S302: Yes), the angle adjusting device ends the process illustrated in FIG. On the other hand, when it is determined that the inclination angle α does not satisfy the expression (5) (step S302: No), the angle adjustment device resets the inclination angle α that satisfies the expression (5) (step S303). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to have the reset inclination angle α (step S304), and ends the process shown in FIG.
 図20は、前述とは別の例を示すフロー図である。図20を用いて、浸漬ノズル4の吐出方向の傾斜角度αを変更する別の処理について説明する。図20に示した処理は、図17で示した処理の開始条件に加え、さらに、鋳型長辺2の背面に一対の磁極52を備え、当該磁極から300~1000Gsの範囲内の強度の交流移動磁界が印加され、交流移動磁界の強度とスラブ鋳片の幅との比X/Wが0.30以上0.55未満である場合に開始される。 FIG. 20 is a flowchart showing an example different from the above. Another process for changing the inclination angle α in the discharge direction of the immersion nozzle 4 will be described with reference to FIG. The process shown in FIG. 20 is provided with a pair of magnetic poles 52 on the back surface of the mold long side 2 in addition to the process start conditions shown in FIG. 17, and the AC movement with a strength within the range of 300 to 1000 Gs from the magnetic poles. The process is started when a magnetic field is applied and the ratio X / W between the strength of the AC moving magnetic field and the width of the slab cast is not less than 0.30 and less than 0.55.
 図20に示した処理において、角度調整装置は、連続鋳造装置が定常鋳込中であるか否かを判断する(ステップS401)。角度調整装置は、連続鋳造装置が定常鋳込中でないと判断した場合(ステップS401:No)、図20に示した処理を終了する。角度調整装置は、連続鋳造装置が定常鋳込み中になった場合(ステップS401:Yes)、角度調整装置は、比X/Wが0.30以上0.45未満であるか否かを判断する(ステップS402)。角度調整装置は、比X/Wが0.30以上0.45未満であると判断した場合(ステップS402:Yes)、傾斜角度αとθとを測定して、傾斜角度αが(6)式を満足するか否かを判断する(ステップS403)。 In the process shown in FIG. 20, the angle adjusting device determines whether or not the continuous casting device is in a steady casting (step S401). If the angle adjusting device determines that the continuous casting device is not in a steady casting state (step S401: No), the processing shown in FIG. When the continuous casting apparatus is in steady casting (step S401: Yes), the angle adjusting apparatus determines whether the ratio X / W is 0.30 or more and less than 0.45 (step S401: Yes). Step S402). When the angle adjustment device determines that the ratio X / W is not less than 0.30 and less than 0.45 (step S402: Yes), the angle adjustment device measures the inclination angles α and θ, and the inclination angle α is expressed by equation (6). Is satisfied (step S403).
 角度調整装置は、傾斜角度αが、(6)式を満足すると判断した場合(ステップS403:Yes)、図20に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(6)式を満足しないと判断した場合(ステップS403:No)、(6)式を満足する傾斜角度αを再設定する(ステップS404)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS405)、図20に示した処理を終了する。 When the angle adjusting device determines that the inclination angle α satisfies the expression (6) (step S403: Yes), the process illustrated in FIG. On the other hand, when the angle adjusting device determines that the inclination angle α does not satisfy the expression (6) (step S403: No), the angle adjustment apparatus resets the inclination angle α that satisfies the expression (6) (step S404). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to have the reset inclination angle α (step S405), and ends the process shown in FIG.
 一方、角度調整装置は、比X/Wが0.30以上0.45未満ではなく、0.45以上0.55未満であると判断した場合(ステップS402:No)、傾斜角度αとθとを測定して、傾斜角度αが(7)式を満足するか否かを判断する(ステップS406)。 On the other hand, when the angle adjustment device determines that the ratio X / W is not 0.30 or more and less than 0.45 but 0.45 or more and less than 0.55 (step S402: No), the inclination angles α and θ Is measured to determine whether the inclination angle α satisfies the expression (7) (step S406).
 角度調整装置は、傾斜角度αが、(7)式を満足すると判断した場合(ステップS406:Yes)、図20に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(7)式を満足しないと判断した場合(ステップS406:No)、(7)式を満足する傾斜角度αを再設定する(ステップS407)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS408)、図20に示した処理を終了する。 When the angle adjusting device determines that the inclination angle α satisfies the expression (7) (step S406: Yes), the process illustrated in FIG. On the other hand, when it is determined that the inclination angle α does not satisfy the expression (7) (step S406: No), the angle adjusting device resets the inclination angle α that satisfies the expression (7) (step S407). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to have the reset inclination angle α (step S408), and ends the process shown in FIG.
 図21は、前述とは別の例を示すフロー図である。図21を用いて、浸漬ノズル4の吐出方向の傾斜角度αを変更する別の処理について説明する。図21に示した処理は、図17で示した処理の開始条件に加え、さらに、鋳型長辺の背面に、鋳型長辺を挟んで相対する一対の上部磁極6と一対の下部磁極7とが配置され、上部磁極6から印加される直流静磁界の最大値の位置と下部磁極7から印加される直流静磁界の最大値の位置との間に吐出孔が配置され、上部磁極6から500~900Gsの範囲内の強度の交流移動磁界と、2000~3300Gsの範囲内の強度の直流静磁界とが重畳して印加され、下部磁極7から3000~4500Gsの範囲内の強度の直流静磁界が印加され、交流移動磁界の強度とスラブ鋳片の幅との比X/Wが0.30以上0.55未満である場合に開始される。 FIG. 21 is a flowchart showing an example different from the above. Another process for changing the inclination angle α in the discharge direction of the immersion nozzle 4 will be described with reference to FIG. In addition to the processing start conditions shown in FIG. 17, the process shown in FIG. 21 further includes a pair of upper magnetic poles 6 and a pair of lower magnetic poles 7 that are opposed to each other across the mold long side on the back side of the mold long side. The discharge hole is disposed between the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole 6 and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7, and 500 to 500 to An AC moving magnetic field having a strength in the range of 900 Gs and a DC static magnetic field having a strength in the range of 2000 to 3300 Gs are superimposed and applied, and a DC static magnetic field having a strength in the range of 3000 to 4500 Gs is applied from the lower magnetic pole 7. And started when the ratio X / W between the strength of the AC moving magnetic field and the width of the slab slab is not less than 0.30 and less than 0.55.
 図21に示した処理において、角度調整装置は、連続鋳造装置が定常鋳込中であるか否かを判断する(ステップS501)。角度調整装置は、連続鋳造装置が定常鋳込中でないと判断した場合(ステップS501:No)、図21に示した処理を終了する。角度調整装置は、連続鋳造装置が定常鋳込み中になった場合(ステップS501:Yes)、角度調整装置は、比X/Wが0.30以上0.45未満であるか否かを判断する(ステップS502)。角度調整装置は、比X/Wが0.30以上0.45未満であると判断した場合(ステップS502:Yes)、傾斜角度αとθとを測定して、傾斜角度αが(8)式を満足するか否かを判断する(ステップS503)。 21. In the process shown in FIG. 21, the angle adjusting device determines whether or not the continuous casting device is in steady casting (step S501). When the angle adjusting device determines that the continuous casting device is not in a steady casting (step S501: No), the processing shown in FIG. 21 is terminated. The angle adjusting device determines whether the ratio X / W is equal to or greater than 0.30 and less than 0.45 when the continuous casting device is in the steady casting (step S501: Yes) ( Step S502). When the angle adjustment device determines that the ratio X / W is not less than 0.30 and less than 0.45 (step S502: Yes), the angle adjustment device measures the inclination angles α and θ, and the inclination angle α is expressed by equation (8). Is determined (step S503).
 角度調整装置は、傾斜角度αが、(8)式を満足すると判断した場合(ステップS503:Yes)、図21に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(8)式を満足しないと判断した場合(ステップS503:No)、(8)式を満足する傾斜角度αを再設定する(ステップS504)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS505)、図21に示した処理を終了する。 When the angle adjusting device determines that the inclination angle α satisfies the equation (8) (step S503: Yes), the process illustrated in FIG. On the other hand, when it is determined that the inclination angle α does not satisfy the expression (8) (step S503: No), the angle adjustment device resets the inclination angle α that satisfies the expression (8) (step S504). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to obtain the reset inclination angle α (step S505), and ends the process shown in FIG.
 一方、角度調整装置は、比X/Wが0.30以上0.45未満ではなく、0.45以上0.55未満であると判断した場合(ステップS502:No)、傾斜角度αとθとを測定して、傾斜角度αが(9)式を満足するか否かを判断する(ステップS506)。 On the other hand, when the angle adjustment device determines that the ratio X / W is not 0.30 or more and less than 0.45 but 0.45 or more and less than 0.55 (step S502: No), the inclination angles α and θ To determine whether the inclination angle α satisfies the expression (9) (step S506).
 角度調整装置は、傾斜角度αが、(9)式を満足すると判断した場合(ステップS506:Yes)、図21に示した処理を終了する。一方、角度調整装置は、傾斜角度αが(9)式を満足しないと判断した場合(ステップS506:No)、(9)式を満足する傾斜角度αを再設定する(ステップS507)。角度調整装置は、再設定した傾斜角度αになるように浸漬ノズル4の吐出方向を変更して(ステップS508)、図21に示した処理を終了する。 When the angle adjusting device determines that the inclination angle α satisfies the expression (9) (step S506: Yes), the process illustrated in FIG. On the other hand, when it is determined that the inclination angle α does not satisfy the expression (9) (step S506: No), the angle adjustment device resets the inclination angle α that satisfies the expression (9) (step S507). The angle adjusting device changes the discharge direction of the immersion nozzle 4 so as to have the reset inclination angle α (step S508), and ends the processing shown in FIG.
 図22は、図17~図21の処理の各々を鋳造条件によって使い分ける処理の一例を示すフロー図である。図22に示した例において、角度調整装置は、予め定められた時間毎に、鋳造条件を確認し、当該鋳造条件により図17~図21に記載した処理を使い分ける。角度調整装置は、浸漬ノズル4の浸漬深さが180mm以上300mm未満、吐出孔の水平方向から下向きの溶鋼吐出角度が15~35°、タンディッシュ流出孔から吐出孔までの間に吹き込む不活性ガスの流量A(NL/min)と溶鋼スループットP(ton/min)との比A/Pが2.0~3.5NL/tonの範囲内である、という条件Aのみを満足すると判断した場合に、図17に示した吐出方向の傾斜角度αを変更する処理を実行する。 FIG. 22 is a flowchart showing an example of processing for properly using each of the processing in FIGS. 17 to 21 depending on casting conditions. In the example shown in FIG. 22, the angle adjusting device confirms the casting conditions at predetermined time intervals, and uses the processes described in FIGS. 17 to 21 depending on the casting conditions. The angle adjusting device has an immersion nozzle 4 with an immersion depth of 180 mm or more and less than 300 mm, a discharge angle of 15 to 35 ° from the horizontal direction of the discharge hole, and an inert gas blown between the tundish outlet hole and the discharge hole. When the ratio A / P between the flow rate A (NL / min) and the molten steel throughput P (ton / min) is within the range of 2.0 to 3.5 NL / ton, it is determined that only the condition A is satisfied The process of changing the inclination angle α in the ejection direction shown in FIG. 17 is executed.
 また、角度調整装置は、条件Aに加えて、鋳型長辺の背面に鋳型長辺を挟んで相対する一対の上部磁極6と一対の下部磁極7とが配置され、上部磁極6から印加される直流静磁界の最大値の位置と下部磁極7から印加される直流静磁界の最大値の位置との間に吐出孔を配置し、当該静磁界の強度が1500Gs以上3500Gs未満である、という条件Bを満足すると判断した場合に、図18に示した吐出方向の傾斜角度αを変更する処理を実行する。 Further, in addition to the condition A, the angle adjusting device includes a pair of upper magnetic pole 6 and a pair of lower magnetic poles 7 that are opposed to each other with the mold long side on the back of the mold long side, and is applied from the upper magnetic pole 6. Condition B in which an ejection hole is arranged between the position of the maximum value of the DC static magnetic field and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7, and the strength of the static magnetic field is 1500 Gs or more and less than 3500 Gs. When it is determined that the condition is satisfied, the process of changing the inclination angle α in the ejection direction shown in FIG. 18 is executed.
 また、角度調整装置は、条件Aに加えて、磁場の移動方向が鋳型幅方向であるリニア型移動磁場発生装置42が設けられている、という条件Cを満足すると判断した場合に、図19に示した吐出方向の傾斜角度αを変更する処理を実行する。 When the angle adjustment device determines that the condition C that the linear movement magnetic field generation device 42 in which the magnetic field movement direction is the mold width direction is provided in addition to the condition A is shown in FIG. A process of changing the inclination angle α in the discharge direction shown is executed.
 また、角度調整装置は、条件Aに加えて、長辺背面に一対の磁極52を備え、磁極52から300~1000Gsの範囲内の強度の交流移動磁界が印加され、交流移動磁界の強度とスラブ鋳片の幅との比X/Wが0.30以上0.55未満である、という条件Dを満足すると判断した場合に、図20に示した吐出方向の傾斜角度αを変更する処理を実行する。 In addition to the condition A, the angle adjusting device includes a pair of magnetic poles 52 on the back surface of the long side, and an AC moving magnetic field having a strength within the range of 300 to 1000 Gs is applied from the magnetic poles 52, and the strength of the AC moving magnetic field and the slab When it is determined that the condition D that the ratio X / W to the width of the slab is 0.30 or more and less than 0.55 is satisfied, the process of changing the inclination angle α in the discharge direction shown in FIG. 20 is executed. To do.
 さらに、角度調整装置は、条件Aに加えて、鋳型長辺の背面に、鋳型長辺を挟んで相対する一対の上部磁極6と一対の下部磁極7とが配置され、上部磁極6から印加される直流静磁界の最大値の位置と下部磁極7から印加される直流静磁界の最大値の位置との間に吐出孔が配置され、上部磁極6から500~900Gsの範囲内の強度の交流移動磁界と、2000~3300Gsの範囲内の強度の直流静磁界とが重畳して印加され、下部磁極7から3000~4500Gsの範囲内の強度の直流静磁界が印加され、交流移動磁界の強度とスラブ鋳片の幅との比X/Wが0.30以上0.55未満である、という条件Eを満足すると判断した場合に、図21に示した吐出方向の傾斜角度αを変更する処理を実行する。 Further, in addition to the condition A, the angle adjusting device includes a pair of upper magnetic pole 6 and a pair of lower magnetic poles 7 which are opposed to each other with the long side of the mold interposed therebetween, and is applied from the upper magnetic pole 6. The discharge hole is arranged between the position of the maximum value of the DC static magnetic field and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole 7, and the AC movement with a strength within the range of 500 to 900 Gs from the upper magnetic pole 6. A magnetic field and a DC static magnetic field having a strength in the range of 2000 to 3300 Gs are applied in a superimposed manner, and a DC static magnetic field having a strength in the range of 3000 to 4500 Gs is applied from the bottom magnetic pole 7, and the strength of the AC moving magnetic field and the slab When it is determined that the condition E that the ratio X / W to the width of the slab is 0.30 or more and less than 0.55 is satisfied, the process of changing the inclination angle α in the discharge direction shown in FIG. 21 is executed. To do.
 このように、本実施形態において角度調整装置は、予め定められた時間毎に、鋳造条件に対応した傾斜角度αを変更する処理を実行し、傾斜角度αが鋳造条件に対応した(1)、(3)~(9)式を満足しないと判断した場合には、当該式を満足するように、浸漬ノズル4の吐出方向を変更する。これにより、何らかの原因により、傾斜角度αが(3)~(9)式を満足しなくなった場合であっても、角度調整装置によって当該数式を満足するように浸漬ノズル4の吐出方向が変更されるので、介在物を含むスラブ鋳片が製造され続けてしまうことを防止できる。 As described above, in the present embodiment, the angle adjustment device executes the process of changing the inclination angle α corresponding to the casting condition at every predetermined time, and the inclination angle α corresponds to the casting condition (1). When it is determined that the expressions (3) to (9) are not satisfied, the discharge direction of the immersion nozzle 4 is changed so as to satisfy the expression. Thus, even if the inclination angle α does not satisfy the equations (3) to (9) for some reason, the discharge direction of the immersion nozzle 4 is changed by the angle adjusting device so as to satisfy the equation. Therefore, it can prevent that the slab slab containing an inclusion continues being manufactured.
 以上、説明したように、本実施形態に係る連続鋳造方法を用いることで、上部磁極及び下部磁極から印加する直流静磁界の強度や交流移動磁界の強度などを最適な範囲内に定めたうえで、浸漬ノズルからの吐出方向を交流移動磁界による旋回流の上流側に傾斜させるので、旋回流と反転流とが衝突・干渉することに起因して発生する低流速領域及び渦流が回避され、介在物の少ない高品質のスラブ鋳片を製造できる。 As described above, by using the continuous casting method according to the present embodiment, the strength of the DC static magnetic field and the strength of the AC moving magnetic field applied from the upper magnetic pole and the lower magnetic pole are determined within the optimum range. Because the discharge direction from the immersion nozzle is tilted to the upstream side of the swirling flow due to the AC moving magnetic field, the low flow velocity region and vortex flow that are generated due to the collision and interference between the swirling flow and the reversing flow are avoided, and intervening High quality slab slabs with few objects can be manufactured.
 図1に示した連続鋳造用鋳型20を有するスラブ連続鋳造機を用いて、約300(ton)のアルミキルド溶鋼を鋳造する試験を行った。鋳造されるスラブ鋳片の厚みは250(mm)であり、幅は1000~2000(mm)であり、溶鋼注入流量は3.0~8.0(ton/min)である。使用した2孔式浸漬ノズルの吐出孔の溶鋼吐出角度(水平の場合をゼロとする角度)は下向き15(°)であり、浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から吐出孔上端までの距離)は、180(mm)以上300(mm)未満である。浸漬ノズルの吐出孔の形状は、1辺の長さが80(mm)の正方形であり、浸漬ノズルの内径は80(mm)である。また、浸漬ノズルからの吹き込む不活性ガスとしてアルゴンガスを使用した。浸漬ノズルからの吐出流の吐出方向は、鋳型長辺と平行な方向(鋳型短辺に垂直な方向)と、基準面に対して傾ける方向の2種類とした。 Using a slab continuous casting machine having the continuous casting mold 20 shown in FIG. 1, a test for casting about 300 (ton) of aluminum killed molten steel was performed. The slab slab to be cast has a thickness of 250 (mm), a width of 1000 to 2000 (mm), and a molten steel injection flow rate of 3.0 to 8.0 (ton / min). The molten steel discharge angle of the discharge hole of the used two-hole immersion nozzle (the angle when the horizontal is zero) is 15 (°) downward, and the immersion depth of the immersion nozzle (from the molten steel surface in the mold to the upper end of the discharge hole) ) Is 180 (mm) or more and less than 300 (mm). The shape of the discharge hole of the immersion nozzle is a square having a side length of 80 (mm), and the inner diameter of the immersion nozzle is 80 (mm). Moreover, argon gas was used as the inert gas blown from the immersion nozzle. The discharge direction of the discharge flow from the immersion nozzle was made into two types: a direction parallel to the mold long side (direction perpendicular to the mold short side) and a direction inclined with respect to the reference surface.
 鋳造されたスラブ鋳片に対して、熱間圧延、冷間圧延、合金化溶融亜鉛めっき処理を順次施し、この合金化溶融亜鉛めっき鋼板の表面欠陥を、オンライン表面欠陥計を用いて連続的に測定し、そのなかから、欠陥の外観及びSEM分析、ICP分析などにより、製鋼性欠陥(スラブ鋳片の介在物に起因する欠陥)を判別し、合金化溶融亜鉛めっき鋼板の100(m)長さあたりの欠陥個数(「製品欠陥指数」という)で評価した。表1に、本発明例1~18及び比較例1~18における鋳造条件及び製品欠陥指数の調査結果を示す。 The cast slab slab is sequentially subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing treatment, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter. Measured and discriminated steelmaking defects (defects caused by inclusions in the slab cast) by the appearance of defects, SEM analysis, ICP analysis, etc., and 100 (m) length of the alloyed hot-dip galvanized steel sheet The number of defects per unit (called “product defect index”) was evaluated. Table 1 shows the examination results of casting conditions and product defect index in Examples 1 to 18 of the present invention and Comparative Examples 1 to 18.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1には、鋳造される鋳片の厚みDと鋳片の幅Wとで計算される対角線方向角度θ、及び、鋳造時の吐出流の傾斜角度αを記載している。尚、対角線方向角度θは小数点第2位を四捨五入して計算した。また、「α-θ」の値は、小数点第1位を四捨五入して記載した。
本発明例1~18では、溶鋼スループットとアルゴンガスの流量との比A/Pが2.0~3.5(NL/ton)の範囲内となるように設定した上で「α-θ」を-6~10(°)の範囲内にすることで、製品欠陥指数が0.26~0.29(個/100m)と低くなることがわかった。つまり、傾斜角度α(°)を「θ-6」以上「θ+10」以下の範囲内とすることで、適正な流速を溶鋼流に付与でき、製品欠陥指数を低くできることがわかった。
Table 1 shows the diagonal direction angle θ calculated by the thickness D of the cast slab and the width W of the slab, and the inclination angle α of the discharge flow at the time of casting. The diagonal direction angle θ was calculated by rounding off the second decimal place. The value of “α−θ” is shown by rounding off the first decimal place.
In Examples 1 to 18 of the present invention, the ratio A / P between the molten steel throughput and the flow rate of argon gas was set to be in the range of 2.0 to 3.5 (NL / ton), and then “α-θ” It was found that the product defect index was lowered to 0.26 to 0.29 (pieces / 100 m) by setting the value in the range of −6 to 10 (°). That is, it was found that by setting the inclination angle α (°) within the range of “θ−6” or more and “θ + 10” or less, an appropriate flow rate can be imparted to the molten steel flow and the product defect index can be lowered.
 これに対して、比較例1~6では、吐出方向を傾斜させていないので、製品欠陥指数は0.61~0.68(個/100m)と高くなった。また、比較例7~9では、傾斜角度αを本発明例1~18よりも小さくしており、この場合に製品欠陥指数は0.63~0.67(個/100m)と高くなった。これは、傾斜角度αが小さいために、適正な流速を溶鋼流に付与できなかった結果と推定される。 In contrast, in Comparative Examples 1 to 6, since the discharge direction was not inclined, the product defect index was as high as 0.61 to 0.68 (pieces / 100 m). In Comparative Examples 7 to 9, the inclination angle α was made smaller than those of Examples 1 to 18, and in this case, the product defect index was as high as 0.63 to 0.67 (pieces / 100 m). It is presumed that this is because the proper flow velocity could not be imparted to the molten steel flow because the inclination angle α was small.
 比較例10~12では、傾斜角度αを本発明例1~18よりも大きくしている。この場合に製品欠陥指数は0.27~0.29(個/100m)と低くなったものの、鋳片断面調査の結果から、鋳型内でのシェル成長厚みがやや薄い箇所が見られ、ブレークアウトなどの操業安定性を阻害する可能性があった。 In Comparative Examples 10 to 12, the inclination angle α is larger than that of Examples 1 to 18 of the present invention. In this case, although the product defect index was as low as 0.27 to 0.29 (pieces / 100m), the results of the slab cross-sectional investigation showed that the shell growth thickness in the mold was slightly thin, and the breakout There was a possibility of hindering operational stability.
 比較例13~18では、溶鋼スループットPとアルゴンガス流量Aとの比A/Pを2.0~3.5(NL/ton)の範囲外としており、この場合に製品欠陥指数は0.61~0.68(個/100m)と高くなった。これは、吐出噴流を制御できていなかったために、吐出方向を傾斜させた効果が発揮できなかった結果と推定される。 In Comparative Examples 13 to 18, the ratio A / P between the molten steel throughput P and the argon gas flow rate A is outside the range of 2.0 to 3.5 (NL / ton). In this case, the product defect index is 0.61. It became high to 0.68 (pieces / 100m). This is presumed to be the result that the effect of tilting the discharge direction could not be exhibited because the discharge jet flow could not be controlled.
 尚、本実施例では記載しなかったが、鋳造されるスラブ鋳片の厚みが220~300(mm)の範囲内においても、本実施例にて記載したものと同等の効果が得られることを別途確認している。また、浸漬ノズルの溶鋼吐出角度が15~35(°)の範囲内では同様の傾向が得られることも確認している。その他、浸漬ノズルの吐出孔の形状や浸漬ノズルの内径についても、本実施例で記載した条件のみに限定されるものではなく、当業者の想定し得る範囲内のものであれば、どのようなものでも構わない。 Although not described in this embodiment, the same effect as described in this embodiment can be obtained even when the thickness of the cast slab slab is in the range of 220 to 300 (mm). Separately confirmed. It has also been confirmed that the same tendency can be obtained when the molten steel discharge angle of the immersion nozzle is in the range of 15 to 35 (°). In addition, the shape of the discharge hole of the immersion nozzle and the inner diameter of the immersion nozzle are not limited only to the conditions described in the present embodiment, and any one can be used as long as it is within the range that can be assumed by those skilled in the art. It does n’t matter.
 図4に示した上部磁極6と、下部磁極7とを備えた連続鋳造用鋳型30を有するスラブ連続鋳造機を用いて、約300(ton)のアルミキルド溶鋼を鋳造する試験を行った。鋳造されるスラブ鋳片の厚みは250(mm)であり、幅は1800(mm)であり、溶鋼注入流量は5.0~8.0(ton/min)である。使用した2孔式浸漬ノズルの吐出孔の吐出角度は下向き15(°)であり、浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から吐出孔上端までの距離)は180(mm)以上300(mm)未満である。浸漬ノズルの吐出孔の形状は1辺の長さが80(mm)の正方形であり、浸漬ノズルの内径は80(mm)である。また、浸漬ノズルから吹き込む不活性ガスとしてアルゴンガスを使用した。溶鋼スループットPとアルゴンガス流量Aとの比A/Pは、2.0~3.5(NL/ton)の範囲内となるように設定した。 Using a slab continuous casting machine having a continuous casting mold 30 having an upper magnetic pole 6 and a lower magnetic pole 7 shown in FIG. 4, a test for casting about 300 (ton) of aluminum killed molten steel was performed. The cast slab slab has a thickness of 250 (mm), a width of 1800 (mm), and a molten steel injection flow rate of 5.0 to 8.0 (ton / min). The discharge angle of the discharge hole of the used 2-hole immersion nozzle is downward 15 (°), and the immersion depth of the immersion nozzle (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 (mm) or more (300). mm). The shape of the discharge hole of the immersion nozzle is a square having a side length of 80 (mm), and the inner diameter of the immersion nozzle is 80 (mm). Argon gas was used as an inert gas blown from the immersion nozzle. The ratio A / P between the molten steel throughput P and the argon gas flow rate A was set to be in the range of 2.0 to 3.5 (NL / ton).
 浸漬ノズルからの吐出流の吐出方向は、鋳型長辺と平行な方向(鋳型短辺に垂直な方向)と、基準面に対して傾ける方向の2種類とした。 The discharge direction of the discharge flow from the immersion nozzle was made into two types: a direction parallel to the mold long side (a direction perpendicular to the mold short side) and a direction inclined with respect to the reference surface.
 鋳造されたスラブ鋳片に対して熱間圧延、冷間圧延、合金化溶融亜鉛めっき処理を順次施し、この合金化溶融亜鉛めっき鋼板の表面欠陥を、オンライン表面欠陥計を用いて連続的に測定し、そのなかから、欠陥の外観及びSEM分析、ICP分析などにより、製鋼性欠陥(スラブ鋳片の介在物に起因する欠陥)を判別し、合金化溶融亜鉛めっき鋼板の100(m)長さあたりの欠陥個数(「製品欠陥指数」という)で評価した。表2に、本発明例19~38及び比較例19~32における鋳造条件及び製品欠陥指数の調査結果を示す。表2においても対角線方向角度θは、小数点第2位を四捨五入して計算した。また、「α-θ」の値は、小数点第1位を四捨五入して記載した。図23は、本発明例19~38の「α-θ」と「製品欠陥指数」との関係を、静磁界強度である2500(Gs)を境として区分けして示す図である。 The cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter. Among them, the defect appearance, SEM analysis, ICP analysis, etc. are used to discriminate steelmaking defects (defects caused by inclusions in the slab cast), and the alloyed hot-dip galvanized steel sheet is 100 (m) long. The number of defects per product (called “product defect index”) was evaluated. Table 2 shows the examination results of casting conditions and product defect index in Examples 19 to 38 of the present invention and Comparative Examples 19 to 32. Also in Table 2, the diagonal direction angle θ was calculated by rounding off the second decimal place. The value of “α−θ” is shown by rounding off the first decimal place. FIG. 23 is a diagram showing the relationship between “α-θ” and “product defect index” in Invention Examples 19 to 38, with the static magnetic field strength of 2500 (Gs) as a boundary.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明例19~28では、直流静磁界強度を1500(Gs)以上2500(Gs)未満にしている。図23に示すように、この場合において、「α-θ」を0~5(°)の範囲内にすることで製品欠陥指数は0.21~0.24(個/100m)とより低くなることがわかった。つまり、直流静磁界強度を1500(Gs)以上2500(Gs)未満にした場合には、傾斜角度α(°)を「θ」以上「θ+5」以下の範囲内とすることが好ましいことがわかった。 In Examples 19 to 28 of the present invention, the DC static magnetic field strength is set to 1500 (Gs) or more and less than 2500 (Gs). As shown in FIG. 23, in this case, the product defect index is lowered to 0.21 to 0.24 (pieces / 100 m) by setting “α-θ” within the range of 0 to 5 (°). I understood it. That is, when the DC static magnetic field intensity is set to 1500 (Gs) or more and less than 2500 (Gs), it is found that the inclination angle α (°) is preferably set in the range of “θ” to “θ + 5”. .
 また、本発明例29~38では、直流静磁界強度を2500(Gs)以上3500(Gs)未満にしている。この場合においては、「α-θ」を6~10(°)の範囲内にすることで製品欠陥指数は0.21~0.24(個/100m)とより低くなることがわかった。つまり、直流静磁界強度を2500(Gs)以上3500(Gs)未満にした場合には、傾斜角度α(°)を「θ+6」以上「θ+10」以下の範囲内とすることが好ましいことがわかった。 In Examples 29 to 38 of the present invention, the DC static magnetic field strength is set to 2500 (Gs) or more and less than 3500 (Gs). In this case, it was found that the product defect index was lowered to 0.21 to 0.24 (pieces / 100 m) by setting “α-θ” within the range of 6 to 10 (°). That is, when the DC static magnetic field strength is 2500 (Gs) or more and less than 3500 (Gs), it was found that the inclination angle α (°) is preferably in the range of “θ + 6” or more and “θ + 10” or less. .
 比較例19~23及び比較例26~30では、傾斜角度αを「θ-6」より小さくしている。この場合の製品欠陥指数は、0.51~0.54(個/100m)と高くなった。また比較例24~25及び比較例31~32では、傾斜角度αを「θ+10」よりも大きくしている。この場合の製品欠陥指数は0.22~0.25(個/100m)と低くなったものの、鋳片断面調査の結果から、鋳型内でのシェル成長厚みがやや薄い箇所が見られ、ブレークアウトなどの操業安定性を阻害する可能性があった。 In Comparative Examples 19 to 23 and Comparative Examples 26 to 30, the inclination angle α is made smaller than “θ-6”. In this case, the product defect index was as high as 0.51 to 0.54 (pieces / 100 m). In Comparative Examples 24 to 25 and Comparative Examples 31 to 32, the inclination angle α is larger than “θ + 10”. Although the product defect index in this case was as low as 0.22 to 0.25 (pieces / 100 m), the results of the slab cross-sectional investigation showed that the shell growth thickness in the mold was slightly thin, and the breakout There was a possibility of hindering operational stability.
 尚、本実施例では記載しなかったが、鋳造されるスラブ鋳片の厚みが220~300(mm)、鋳造幅が1000~2000(mm)、溶鋼スループットが3.0~8.0の範囲内において、本実施例にて記載したものと同等の効果が得られることを別途確認している。また、浸漬ノズルの溶鋼吐出角度が15~35(°)の範囲で同様の傾向が得られることも確認している。その他、浸漬ノズルの吐出孔の形状や浸漬ノズルの内径についても、本実施例で記載した条件のみに限定されるものではなく、当業者の想定し得る範囲内のものであれば、どのようなものでも構わない。 Although not described in the present embodiment, the slab cast cast has a thickness of 220 to 300 (mm), a casting width of 1000 to 2000 (mm), and a molten steel throughput of 3.0 to 8.0. It has been separately confirmed that the same effects as those described in this example can be obtained. It has also been confirmed that the same tendency can be obtained when the molten steel discharge angle of the immersion nozzle is in the range of 15 to 35 (°). In addition, the shape of the discharge hole of the immersion nozzle and the inner diameter of the immersion nozzle are not limited only to the conditions described in the present embodiment, and any one can be used as long as it is within the range that can be assumed by those skilled in the art. It does n’t matter.
 図6に示すような一対のリニア型移動磁場発生装置42を備えた連続鋳造用鋳型40を有するスラブ連続鋳造機を用いて、約300(ton)のアルミキルド溶鋼を鋳造する試験を行った。鋳造されるスラブ鋳片の厚みは250(mm)であり、幅は1600(mm)であり、溶鋼注入流量は5.0~6.0(ton/min)である。使用した2孔式浸漬ノズルの吐出孔の吐出角度は下向き25(°)であり、浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から吐出孔上端までの距離)は180(mm)以上300(mm)未満である。浸漬ノズルの吐出孔の形状は1辺の長さが70(mm)の正方形であり、浸漬ノズルの内径は70(mm)である。浸漬ノズルから吹き込む不活性ガスとしてアルゴンガスを使用した。溶鋼スループットPとアルゴンガス流量Aとの比A/Pは2.0~3.5(NL/ton)の範囲となるように設定した。磁極から交流移動磁界を印加し、溶鋼吐出流を制動した条件で鋳造を実施した。 Using a slab continuous casting machine having a continuous casting mold 40 provided with a pair of linear type moving magnetic field generators 42 as shown in FIG. 6, a test for casting about 300 (ton) of molten aluminum killed steel was performed. The thickness of the cast slab slab is 250 (mm), the width is 1600 (mm), and the molten steel injection flow rate is 5.0 to 6.0 (ton / min). The discharge angle of the discharge hole of the used two-hole immersion nozzle is 25 (°) downward, and the immersion depth of the immersion nozzle (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 (mm) or more and 300 ( mm). The shape of the discharge hole of the immersion nozzle is a square having a side length of 70 (mm), and the inner diameter of the immersion nozzle is 70 (mm). Argon gas was used as an inert gas blown from the immersion nozzle. The ratio A / P between the molten steel throughput P and the argon gas flow rate A was set to be in the range of 2.0 to 3.5 (NL / ton). Casting was performed under the condition that an AC moving magnetic field was applied from the magnetic pole and the molten steel discharge flow was damped.
 鋳造されたスラブ鋳片に対して熱間圧延、冷間圧延、合金化溶融亜鉛めっき処理を順次施し、この合金化溶融亜鉛めっき鋼板の表面欠陥を、オンライン表面欠陥計を用いて連続的に測定し、そのなかから、欠陥の外観及びSEM分析、ICP分析などにより、製鋼性欠陥(スラブ鋳片の介在物に起因する欠陥)を判別し、合金化溶融亜鉛めっき鋼板の100m長さあたりの欠陥個数(「製品欠陥指数」という)で評価した。表3に、本発明例30~49の鋳造条件及び製品欠陥指数の調査結果を示す。表3においても対角線方向角度θは、小数点第2位を四捨五入して計算した。また、「α-θ」の値は、小数点第1位を四捨五入して記載した。図24は、本発明例39~49の「α-θ」と「製品欠陥指数」との関係を示す図である。 The cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter. Among these, the defect appearance per 100 m length of the alloyed hot-dip galvanized steel sheet is determined by the appearance of defects, SEM analysis, ICP analysis, etc., to determine steelmaking defects (defects caused by inclusions in the slab slab). It was evaluated by the number (referred to as “product defect index”). Table 3 shows the results of the investigation of the casting conditions and product defect index of Examples 30 to 49 of the present invention. Also in Table 3, the diagonal direction angle θ was calculated by rounding off the second decimal place. The value of “α−θ” is shown by rounding off the first decimal place. FIG. 24 is a diagram showing the relationship between “α-θ” and “Product Defect Index” in Inventive Examples 39-49.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 尚、表3には記載しなかったが、同様の流動制御方式で、浸漬ノズル吐出孔を傾斜させず短辺に向けた場合には、製品欠陥指数は0.51~0.56(個/100m)と高くなることを確認している。 Although not shown in Table 3, the product defect index is 0.51 to 0.56 (pieces / piece) when the immersion nozzle discharge hole is not inclined and is directed to the short side by the same flow control method. It is confirmed that the height becomes 100 m).
 本発明例39~44では、「α-θ」を2~7(°)の範囲内にしている。図24に示すように、この場合において、製品欠陥指数は0.22~0.24(個/100m)と低くなった。つまり、リニア型移動磁場発生装置を設け、溶鋼流を制動しながら流動を制御した場合には、傾斜角度α(°)を「θ+2」以上「θ+7」以下の範囲内とすることが好ましいことがわかった。 In Invention Examples 39 to 44, “α−θ” is set in the range of 2 to 7 (°). As shown in FIG. 24, in this case, the product defect index was as low as 0.22 to 0.24 (pieces / 100 m). That is, when a linear type moving magnetic field generator is provided and the flow is controlled while braking the molten steel flow, it is preferable that the inclination angle α (°) is in the range of “θ + 2” or more and “θ + 7” or less. all right.
 一方、本発明例45~47では、「α-θ」を-6~0(°)の範囲内にしている。この場合において、製品欠陥指数は0.27~0.29(個/100m)と若干高くなった。これは、若干、溶鋼流への流速付与が小さかった結果と推定されるが、これらも十分に良質なスラブであった。また、本発明例48~49では「α-θ」を8~10(°)の範囲内にしている。この場合において、製品欠陥指数は、0.27~0.28(個/100m)と若干高くなった。これは、若干、溶鋼流への流速付与が大きく、モールドパウダーの巻き込みなどが助長された結果と推定されるが、これらも十分に良質なスラブであった。尚、これらのスラブを鋳片断面調査したところ、鋳型内でのシェル成長厚みが若干薄い箇所も見られたが、操業安定性を阻害するものではなかった。 On the other hand, in Examples 45 to 47 of the present invention, “α-θ” is set in the range of −6 to 0 (°). In this case, the product defect index was slightly higher, 0.27 to 0.29 (pieces / 100 m). This is presumably due to the fact that the flow velocity was slightly applied to the molten steel flow, but these were also sufficiently good quality slabs. In Examples 48 to 49 of the present invention, “α−θ” is set in the range of 8 to 10 (°). In this case, the product defect index was slightly high, 0.27 to 0.28 (pieces / 100 m). This is presumably due to the fact that the flow velocity is slightly increased in the molten steel flow and the entrainment of the mold powder is promoted, but these were also sufficiently good quality slabs. In addition, when the cross section of the slab was examined for these slabs, a portion where the shell growth thickness in the mold was slightly thin was found, but it did not hinder the operation stability.
 尚、本実施例では記載しなかったが、浸漬ノズルからの溶鋼吐出流を加速させた場合においても同様の傾向にあったことを確認している。また、鋳造されるスラブ鋳片の厚みが220~300(mm)の範囲、鋳造幅が1000~2000(mm)、溶鋼スループットが3.0~8.0の範囲において、本実施例にて記載したものと同等の効果が得られることも別途確認している。また、浸漬ノズルの溶鋼吐出角度が15~35(°)の範囲で同様の傾向が得られることも確認している。その他、浸漬ノズルの吐出孔の形状や浸漬ノズルの内径についても、本実施例で記載した条件のみに限定されるものではなく、当業者の想定し得る範囲内のものであれば、どのようなものでも構わない。 Although not described in this example, it was confirmed that the same tendency was observed when the molten steel discharge flow from the immersion nozzle was accelerated. Further, in the present example, the thickness of the cast slab slab is in the range of 220 to 300 (mm), the casting width is 1000 to 2000 (mm), and the molten steel throughput is in the range of 3.0 to 8.0. It has also been confirmed that the same effect as that obtained can be obtained. It has also been confirmed that the same tendency can be obtained when the molten steel discharge angle of the immersion nozzle is in the range of 15 to 35 (°). In addition, the shape of the discharge hole of the immersion nozzle and the inner diameter of the immersion nozzle are not limited only to the conditions described in the present embodiment, and any one can be used as long as it is within the range that can be assumed by those skilled in the art. It does n’t matter.
 図8に示すような一対の磁極52を備えた連続鋳造用鋳型50を有するスラブ連続鋳造機を用いて、約300(ton)のアルミキルド溶鋼を鋳造する試験を行った。鋳造されるスラブ鋳片の厚みは260(mm)であり、幅は1600(mm)であり、溶鋼注入流量は5.0~6.0(ton/min)である。使用した2孔式浸漬ノズルの吐出孔の吐出角度は下向き25(°)であり、浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から吐出孔上端までの距離)は180(mm)以上300(mm)未満である。浸漬ノズルの吐出孔の形状は1辺の長さが70(mm)の正方形であり、浸漬ノズルの内径は70(mm)である。浸漬ノズルから吹き込む不活性ガスとしてアルゴンガスを使用した。溶鋼スループットPとアルゴンガス流量Aとの比A/Pは2.0~3.5(NL/ton)の範囲内となるように設定した。交流移動磁界強度を300~1000(Gs)の範囲内として、交流移動磁界強度Xと鋳造されるスラブ鋳片の幅Wとの比X/W(Gs/mm)、及び、浸漬ノズルからの吐出流の傾斜角度αを変化させて鋳造を実施した。 Using a slab continuous casting machine having a continuous casting mold 50 provided with a pair of magnetic poles 52 as shown in FIG. 8, a test for casting about 300 (ton) of molten aluminum killed steel was performed. The cast slab slab has a thickness of 260 (mm), a width of 1600 (mm), and a molten steel injection flow rate of 5.0 to 6.0 (ton / min). The discharge angle of the discharge hole of the used two-hole immersion nozzle is 25 (°) downward, and the immersion depth of the immersion nozzle (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 (mm) or more and 300 ( mm). The shape of the discharge hole of the immersion nozzle is a square having a side length of 70 (mm), and the inner diameter of the immersion nozzle is 70 (mm). Argon gas was used as an inert gas blown from the immersion nozzle. The ratio A / P between the molten steel throughput P and the argon gas flow rate A was set to be in the range of 2.0 to 3.5 (NL / ton). The AC moving magnetic field strength is in the range of 300 to 1000 (Gs), the ratio X / W (Gs / mm) between the AC moving magnetic field strength X and the width W of the cast slab slab, and the discharge from the immersion nozzle Casting was carried out by changing the flow inclination angle α.
 鋳造されたスラブ鋳片に対して熱間圧延、冷間圧延、合金化溶融亜鉛めっき処理を順次施し、この合金化溶融亜鉛めっき鋼板の表面欠陥を、オンライン表面欠陥計を用いて連続的に測定し、そのなかから、欠陥の外観及びSEM分析、ICP分析などにより、製鋼性欠陥(スラブ鋳片の介在物に起因する欠陥)を判別し、合金化溶融亜鉛めっき鋼板の100(m)長さあたりの欠陥個数(「製品欠陥指数」という)で評価した。表4に、本発明例50~71の鋳造条件及び製品欠陥指数の調査結果を示す。表4においても対角線方向角度θは、小数点第2位を四捨五入して計算した。また、「α-θ」の値は、小数点第1位を四捨五入して記載した。比較例33~37には旋回の下流側に吐出孔を向けた水準も記載した。図25は、本発明例50~71の「α-θ」と「製品欠陥指数」との関係を、比X/Wの値である0.45を境として区分けして示す図である。 The cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter. Among them, the defect appearance, SEM analysis, ICP analysis, etc. are used to discriminate steelmaking defects (defects caused by inclusions in the slab cast), and the alloyed hot-dip galvanized steel sheet is 100 (m) long. The number of defects per product (called “product defect index”) was evaluated. Table 4 shows the results of investigating the casting conditions and product defect index of Examples 50 to 71 of the present invention. Also in Table 4, the diagonal direction angle θ was calculated by rounding off the second decimal place. The value of “α−θ” is shown by rounding off the first decimal place. In Comparative Examples 33 to 37, the level in which the discharge hole is directed downstream of the swivel is also described. FIG. 25 is a diagram showing the relationship between “α−θ” and “product defect index” in inventive examples 50 to 71, with the ratio X / W value of 0.45 as a boundary.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 尚、表4には記載しなかったが、同様の流動制御方式で、浸漬ノズル吐出孔を傾斜させず短辺に向けた場合に、製品欠陥指数は0.45~0.51(個/100m)と高くなることを確認している。 Although not described in Table 4, the product defect index is 0.45 to 0.51 (pieces / 100 m) when the immersion nozzle discharge hole is directed to the short side without being inclined by the same flow control method. ).
 本発明例50~60では、比X/W(Gs/mm)を0.30以上0.45未満の場合にしている。図25に示すように、この場合において「α-θ」を-3~0(°)の範囲内にすることで製品欠陥指数は0.18~0.20(個/100m)と特に低くなることがわかった。つまり、比X/W(Gs/mm)が0.30以上0.45未満にした場合には、傾斜角度α(°)を「θ-3」以上「θ」以下の範囲内とすることが好ましいことがわかった。 In the inventive examples 50 to 60, the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45. As shown in FIG. 25, in this case, by setting “α-θ” within a range of −3 to 0 (°), the product defect index is particularly low, 0.18 to 0.20 (pieces / 100 m). I understood it. That is, when the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, the inclination angle α (°) may be in the range of “θ−3” or more and “θ” or less. It turned out to be preferable.
 一方、本発明例61~71は、比X/W(Gs/mm)を0.45以上0.55未満にしている。この場合において「α-θ」を-6~-4(°)の範囲内にすることで、製品欠陥指数は0.18~0.20(個/100m)と特に低くなることがわかった。つまり、比X/W(Gs/mm)が0.45以上0.55未満にした場合には、傾斜角度α(°)を「θ-6」以上「θ-4」以下の範囲内にすることが好ましいことがわかった。これは、X/Wの値に応じて適切な傾斜角度を設定することにより、溶鋼流を良好に制御できた結果と推定される。その他の本発明例も十分に良質なスラブを得ることができた。 On the other hand, in Invention Examples 61 to 71, the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55. In this case, it was found that by setting “α-θ” within the range of −6 to −4 (°), the product defect index was particularly low, 0.18 to 0.20 (pieces / 100 m). That is, when the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the inclination angle α (°) is set within the range of “θ-6” or more and “θ-4” or less. It turned out to be preferable. This is presumed to be a result of good control of the molten steel flow by setting an appropriate inclination angle according to the value of X / W. Other examples of the present invention were able to obtain sufficiently good quality slabs.
 一方、比較例33~37に示したように、旋回の下流側へ吐出流を向けた場合には、製品欠陥指数は0.65~0.68(個/100m)と著しく高くなった。これは、旋回流と反転流の衝突・干渉が助長された結果と推定される。 On the other hand, as shown in Comparative Examples 33 to 37, when the discharge flow was directed downstream of the swirl, the product defect index was remarkably high, 0.65 to 0.68 (pieces / 100 m). This is presumed to be a result of promoting collision / interference between the swirling flow and the reverse flow.
 尚、本実施例では記載しなかったが、鋳造されるスラブ鋳片の厚みが220~300(mm)、鋳造幅が1000~2000(mm)、溶鋼スループットが3.0~8.0の範囲内においても、本実施例にて記載したものと同等の効果が得られることも別途確認している。また、浸漬ノズルの溶鋼吐出角度が15~35(°)の範囲内で同様の傾向が得られることも確認している。その他、浸漬ノズルの吐出孔の形状や浸漬ノズルの内径についても、本実施例で記載した条件のみに限定されるものではなく、当業者の想定し得る範囲内のものであれば、どのようなものでも構わない。 Although not described in the present embodiment, the slab cast cast has a thickness of 220 to 300 (mm), a casting width of 1000 to 2000 (mm), and a molten steel throughput of 3.0 to 8.0. It has also been confirmed separately that the same effects as those described in this example can be obtained. It has also been confirmed that the same tendency can be obtained when the molten steel discharge angle of the immersion nozzle is in the range of 15 to 35 (°). In addition, the shape of the discharge hole of the immersion nozzle and the inner diameter of the immersion nozzle are not limited only to the conditions described in the present embodiment, and any one can be used as long as it is within the range that can be assumed by those skilled in the art. It does n’t matter.
 図12に示すような、一対の上部磁極6と、一対の下部磁極7とを備えた連続鋳造用鋳型1を有するスラブ連続鋳造機を用いて、約300(ton)のアルミキルド溶鋼を鋳造する試験を行った。鋳造されるスラブ鋳片の厚みは260(mm)であり、幅は1000~1900(mm)であり、溶鋼注入流量は4.0~7.5(ton/min)である。使用した2孔式浸漬ノズルの吐出孔の吐出角度(水平の場合をゼロとする角度)は下向き25°であり、浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から吐出孔上端までの距離)は180(mm)以上300(mm)未満である。浸漬ノズルの吐出孔の形状は1辺の長さが80(mm)の正方形であり、浸漬ノズルの内径は80(mm)である。浸漬ノズルからの吹き込み不活性ガスにはアルゴンガスを使用した。溶鋼スループットPとアルゴンガス流量Aとの比A/Pは2.0~3.5(NL/ton)の範囲内となるように設定した。 A test for casting about 300 (ton) of molten aluminum killed steel using a slab continuous casting machine having a continuous casting mold 1 having a pair of upper magnetic poles 6 and a pair of lower magnetic poles 7 as shown in FIG. Went. The cast slab slab has a thickness of 260 (mm), a width of 1000 to 1900 (mm), and a molten steel injection flow rate of 4.0 to 7.5 (ton / min). The discharge angle of the discharge hole of the two-hole immersion nozzle used (the angle when the horizontal is zero) is 25 ° downward, and the immersion nozzle immersion depth (distance from the molten steel surface in the mold to the upper end of the discharge hole) Is 180 (mm) or more and less than 300 (mm). The shape of the discharge hole of the immersion nozzle is a square having a side length of 80 (mm), and the inner diameter of the immersion nozzle is 80 (mm). Argon gas was used as the inert gas blown from the immersion nozzle. The ratio A / P between the molten steel throughput P and the argon gas flow rate A was set to be in the range of 2.0 to 3.5 (NL / ton).
 浸漬ノズルからの吐出流の吐出方向は、交流移動磁界によって形成される旋回流の上流側、旋回流の下流側、及び、鋳型長辺と平行な方向(鋳型短辺に垂直な方向)の3種類とした。吐出流の吐出方向を旋回流の上流側及び旋回流の下流側に傾斜させる場合も、傾斜角度αを変化させた。また、上部磁極から印加される交流移動磁界、上部磁極から印加される直流静磁界、及び、下部磁極から印加される直流静磁界のそれぞれの強度を変化させて鋳造を実施した。 The discharge direction of the discharge flow from the immersion nozzle is 3 in the upstream direction of the swirl flow formed by the AC moving magnetic field, the downstream side of the swirl flow, and the direction parallel to the mold long side (direction perpendicular to the mold short side). Kind. The inclination angle α was also changed when the discharge direction of the discharge flow was inclined to the upstream side of the swirl flow and the downstream side of the swirl flow. Further, casting was performed by changing the strengths of the AC moving magnetic field applied from the upper magnetic pole, the DC static magnetic field applied from the upper magnetic pole, and the DC static magnetic field applied from the lower magnetic pole.
 鋳造されたスラブ鋳片に対して熱間圧延、冷間圧延、合金化溶融亜鉛めっき処理を順次施し、この合金化溶融亜鉛めっき鋼板の表面欠陥を、オンライン表面欠陥計を用いて連続的に測定し、そのなかから、欠陥の外観及びSEM分析、ICP分析などにより、製鋼性欠陥(スラブ鋳片の介在物に起因する欠陥)を判別し、合金化溶融亜鉛めっき鋼板の100(m)長さあたりの欠陥個数(「製品欠陥指数」という)で評価した。表5に、本発明例72~79及び比較例38~46における鋳造条件及び製品欠陥指数の調査結果を示す。表5において対角線方向角度θおよび傾斜角度αは、小数点第2位を四捨五入して計算した。 The cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter. Among them, the defect appearance, SEM analysis, ICP analysis, etc. are used to discriminate steelmaking defects (defects caused by inclusions in the slab cast), and the alloyed hot-dip galvanized steel sheet is 100 (m) long. The number of defects per product (called “product defect index”) was evaluated. Table 5 shows the examination results of the casting conditions and the product defect index in the inventive examples 72 to 79 and the comparative examples 38 to 46. In Table 5, the diagonal direction angle θ and the inclination angle α were calculated by rounding off the second decimal place.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表5に示すように、上部磁極から印加される交流移動磁界の強度を500~900(Gs)、上部磁極から印加される直流静磁界の強度を2000~3300(Gs)、下部磁極から印加される直流静磁界の強度を3000~4500(Gs)の範囲内に制御して連続鋳造を行った。尚、表5には記載していないが、上部磁極及び下部磁極から印加される直流静磁界の強度がこれらの範囲外であった場合には、総じて製品欠陥指数が高くなることを確認している。また、表5には記載してないが、上部磁極の交流移動磁界の強度Xとスラブ鋳片の幅Wとの比X/Wが0.30未満の場合にも、製品欠陥指数が高くなることを確認している。 As shown in Table 5, the strength of the AC moving magnetic field applied from the upper magnetic pole is 500 to 900 (Gs), the strength of the DC static magnetic field applied from the upper magnetic pole is 2000 to 3300 (Gs), and applied from the lower magnetic pole. Continuous casting was performed while controlling the strength of the DC static magnetic field within a range of 3000 to 4500 (Gs). Although not described in Table 5, if the strength of the DC static magnetic field applied from the upper magnetic pole and the lower magnetic pole is outside these ranges, confirm that the product defect index generally increases. Yes. Although not shown in Table 5, the product defect index is high even when the ratio X / W between the strength X of the AC magnetic field of the upper magnetic pole and the width W of the slab slab is less than 0.30. I have confirmed that.
 表5には、鋳造される鋳片の厚みDと鋳片の幅Wとで計算される対角線方向角度θ、及び、鋳造時の吐出流の傾斜角度αを記載している。尚、対角線方向角度θは小数点第2位を四捨五入して計算した。 Table 5 shows the diagonal direction angle θ calculated by the thickness D of the cast slab and the width W of the slab, and the inclination angle α of the discharge flow at the time of casting. The diagonal direction angle θ was calculated by rounding off the second decimal place.
 本発明例72~79では、浸漬ノズルからの吐出流を交流移動磁界によって形成される旋回流の上流側へ向けて傾斜させている。この場合に製品欠陥指数は0.12~0.25(個/100m)と低くなり、良好な結果であった。 In the present invention examples 72 to 79, the discharge flow from the immersion nozzle is inclined toward the upstream side of the swirl flow formed by the AC moving magnetic field. In this case, the product defect index was as low as 0.12 to 0.25 (pieces / 100 m), which was a favorable result.
 これに対して、比較例38~41では、吐出方向を傾斜させていない。この場合に製品欠陥指数は0.35~0.42(個/100m)となり、本発明例72~79と比較して高くなった。また、比較例42~43では、浸漬ノズルの吐出方向を交流移動磁界で形成される旋回流の下流側へ向けて傾斜させている。この場合に製品欠陥指数は0.55~0.58(個/100m)となり、大幅な悪化が確認された。これは、旋回流の下流側での旋回流と反転流との衝突・干渉を助長した結果と推定される。 On the other hand, in Comparative Examples 38 to 41, the discharge direction is not inclined. In this case, the product defect index was 0.35 to 0.42 (pieces / 100 m), which was higher than the inventive examples 72 to 79. In Comparative Examples 42 to 43, the discharge direction of the immersion nozzle is inclined toward the downstream side of the swirling flow formed by the AC moving magnetic field. In this case, the product defect index was 0.55 to 0.58 (pieces / 100 m), and a significant deterioration was confirmed. This is presumed to be a result of promoting collision / interference between the swirl flow and the reversal flow on the downstream side of the swirl flow.
 本発明例80~82では、上部磁極の交流移動磁界の強度Xとスラブ鋳片の幅Wとの比X/W(Gs/mm)を0.55以上にしている。この場合に製品欠陥指数は0.30~0.32(個/100m)となり、本発明例72~79と比較して若干高くなった。これは、交流移動磁界強度Xが幅Wに対して強すぎ、鋳型内の溶鋼流動がやや不安定となることに起因しているものと考えられる。 In Examples 80 to 82 of the present invention, the ratio X / W (Gs / mm) between the strength X of the AC magnetic field of the upper magnetic pole and the width W of the slab slab is 0.55 or more. In this case, the product defect index was 0.30 to 0.32 (pieces / 100 m), which was slightly higher than those of Examples 72 to 79 of the present invention. This is considered to be due to the fact that the AC moving magnetic field strength X is too strong for the width W and the molten steel flow in the mold becomes somewhat unstable.
 尚、本実施例では記載しなかったが、鋳造されるスラブ鋳片の厚みが220~300(mm)の範囲内においても、本実施例にて記載したものと同等の効果が得られることを別途確認している。また、浸漬ノズルの吐出孔の形状や浸漬ノズルの内径についても、本実施例で記載した条件のみに限定されるものではなく、同業者の想定し得る範囲内のものであれば、どのようなものでも構わない。 Although not described in this embodiment, the same effect as described in this embodiment can be obtained even when the thickness of the cast slab slab is in the range of 220 to 300 (mm). Separately confirmed. Further, the shape of the discharge hole of the immersion nozzle and the inner diameter of the immersion nozzle are not limited only to the conditions described in the present embodiment, and any one can be used as long as it is within the range that can be assumed by those skilled in the art. It does n’t matter.
 実施例5と同様に、図12に示すような上下2段の磁極を備えた連続鋳造用鋳型1を有するスラブ連続鋳造機を用いて、約300(ton)のアルミキルド溶鋼を鋳造する試験を行った。鋳造されるスラブ鋳片の厚みは260(mm)であり、幅は1600~1700(mm)であり、溶鋼注入流量は6.0~7.0(ton/min)である。使用した2孔式浸漬ノズルの吐出孔の吐出角度は下向き25(°)であり、浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から吐出孔上端までの距離)は180(mm)以上300(mm)未満である。浸漬ノズルの吐出孔の形状は1辺の長さが80(mm)の正方形であり、浸漬ノズルの内径は80(mm)である。浸漬ノズルから吹き込む不活性ガスとしてアルゴンガスを使用した。 As in Example 5, a test for casting about 300 (ton) of aluminum killed molten steel was performed using a slab continuous casting machine having a continuous casting mold 1 having two upper and lower magnetic poles as shown in FIG. It was. The slab slab to be cast has a thickness of 260 (mm), a width of 1600 to 1700 (mm), and a molten steel injection flow rate of 6.0 to 7.0 (ton / min). The discharge angle of the discharge hole of the used two-hole immersion nozzle is 25 (°) downward, and the immersion depth of the immersion nozzle (distance from the molten steel surface in the mold to the upper end of the discharge hole) is 180 (mm) or more and 300 ( mm). The shape of the discharge hole of the immersion nozzle is a square having a side length of 80 (mm), and the inner diameter of the immersion nozzle is 80 (mm). Argon gas was used as an inert gas blown from the immersion nozzle.
 実施例6では、浸漬ノズルからの吐出方向を、交流移動磁界によって形成される旋回流の上流側に傾斜させた。また、上部磁極に印加する交流移動磁界の強度を500~900(Gs)、上部磁極に印加する直流静磁界の強度を2000~3300(Gs)、下部磁極に印加する直流静磁界の強度を3000~4500(Gs)の範囲内とし、交流移動磁界強度Xと鋳造されるスラブ鋳片の幅Wとの比X/W(Gs/mm)、及び、浸漬ノズルからの吐出流の傾斜角度αを変化させて鋳造を実施した。 In Example 6, the discharge direction from the immersion nozzle was inclined to the upstream side of the swirling flow formed by the AC moving magnetic field. The strength of the AC moving magnetic field applied to the upper magnetic pole is 500 to 900 (Gs), the strength of the DC static magnetic field applied to the upper magnetic pole is 2000 to 3300 (Gs), and the strength of the DC static magnetic field applied to the lower magnetic pole is 3000. The ratio X / W (Gs / mm) between the AC moving magnetic field strength X and the width W of the cast slab slab and the inclination angle α of the discharge flow from the submerged nozzle are within the range of 4500 (Gs). The casting was carried out while changing.
 鋳造されたスラブ鋳片に対して熱間圧延、冷間圧延、合金化溶融亜鉛めっき処理を順次施し、この合金化溶融亜鉛めっき鋼板の表面欠陥を、オンライン表面欠陥計を用いて連続的に測定し、そのなかから、欠陥の外観及びSEM分析、ICP分析などにより、製鋼性欠陥(スラブ鋳片の介在物に起因する欠陥)を判別し、合金化溶融亜鉛めっき鋼板の100(m)長さあたりの欠陥個数(「製品欠陥指数」という)で評価した。表6に、本発明例80~103における鋳造条件及び製品欠陥指数の調査結果を示す。表6において対角線方向角度θの値は、小数点第2位を四捨五入し、「α-θ」の値は、小数点第1位を四捨五入して計算した。また、図26は、本発明例83~106の「α-θ」と「製品欠陥指数」との関係を、比X/Wの値である0.45を境として区分けして示す図である。 The cast slab slab is successively subjected to hot rolling, cold rolling, and alloyed hot dip galvanizing, and the surface defects of this hot galvanized steel sheet are continuously measured using an on-line surface defect meter. Among them, the defect appearance, SEM analysis, ICP analysis, etc. are used to discriminate steelmaking defects (defects caused by inclusions in the slab cast), and the alloyed hot-dip galvanized steel sheet is 100 (m) long. The number of defects per product (called “product defect index”) was evaluated. Table 6 shows the results of investigating the casting conditions and product defect index in Examples 80 to 103 of the present invention. In Table 6, the value of the diagonal direction angle θ is calculated by rounding off the first decimal place, and the value of “α−θ” is calculated by rounding off the first decimal place. FIG. 26 is a diagram showing the relationship between “α−θ” and “product defect index” in Invention Examples 83 to 106, with the ratio X / W value of 0.45 as a boundary. .
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 本発明例83~94では、比X/W(Gs/mm)を0.30以上0.45未満にしている。図26に示すように、この場合において、「α-θ」を-2°~5°の範囲内にすることで、製品欠陥指数が0.13~0.15(個/100m)と特に低くなることがわかった。つまり、比X/W(Gs/mm)が0.30以上0.45未満にした場合には、傾斜角度α(°)を「θ-2」以上「θ+5」以下の範囲内とすることが好ましいことがわかった。 In Invention Examples 83 to 94, the ratio X / W (Gs / mm) is set to 0.30 or more and less than 0.45. As shown in FIG. 26, in this case, by setting “α-θ” within the range of −2 ° to 5 °, the product defect index is particularly low at 0.13 to 0.15 (pieces / 100 m). I found out that That is, when the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, the inclination angle α (°) may be set within the range of “θ−2” or more and “θ + 5” or less. It turned out to be preferable.
 一方、本発明例95~106は、比X/W(Gs/mm)が0.45以上0.55未満の条件であり、このとき、「α-θ」が-5~2(°)の範囲内で、製品欠陥指数が0.13~0.15(個/100m)と特に低くなることがわかった。つまり、比X/W(Gs/mm)が0.45以上0.55未満の場合には、傾斜角度α(°)を「θ-5」以上「θ+2」以下の範囲内とすることが好ましいことがわかった。 On the other hand, Examples 95 to 106 of the present invention are conditions where the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, and at this time, “α-θ” is −5 to 2 (°) Within the range, the product defect index was found to be particularly low, 0.13 to 0.15 (pieces / 100 m). That is, when the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the inclination angle α (°) is preferably in the range of “θ−5” or more and “θ + 2” or less. I understood it.
 尚、表6では、スラブ鋳片の厚みや幅がある一定の範囲内のもののみを記載しているが、例えば、スラブ鋳片の厚みは220~300(mm)の範囲内、スラブ鋳片の幅は1000~2000(mm)の範囲内で同等の効果があることを確認している。 In Table 6, only the thickness and width of the slab cast are within a certain range. For example, the thickness of the slab cast is within a range of 220 to 300 (mm). It has been confirmed that there is an equivalent effect within the range of 1000 to 2000 (mm).
 1  連続鋳造用鋳型
 2  鋳型長辺
 3  鋳型短辺
 4  浸漬ノズル
 5  吐出孔
 6  上部磁極
 7  下部磁極
 8  溶鋼
 9  凝固シェル
 10 鋳型内溶鋼湯面
 11 吐出流
 12 交流移動磁界発生コイル
 13 直流静磁界発生コイル
 14 直流静磁界発生コイル
 15 旋回流
 16 反転流
 17 低流速領域
 18 渦流
 19 下降流
 20 連続鋳造用鋳型
 30 連続鋳造用鋳型
 40 連続鋳造用鋳型
 42 リニア型移動磁場発生装置
 50 連続鋳造用鋳型
 52 磁極
DESCRIPTION OF SYMBOLS 1 Mold for continuous casting 2 Mold long side 3 Mold short side 4 Immersion nozzle 5 Discharge hole 6 Upper magnetic pole 7 Lower magnetic pole 8 Molten steel 9 Solidified shell 10 Molten steel surface in mold 11 Discharge flow 12 AC moving magnetic field generation coil 13 DC static magnetic field generation Coil 14 DC static magnetic field generating coil 15 Swirling flow 16 Reversing flow 17 Low flow velocity region 18 Vortex flow 19 Downflow 20 Continuous casting mold 30 Continuous casting mold 40 Continuous casting mold 42 Linear type moving magnetic field generator 50 Continuous casting mold 52 Magnetic pole

Claims (11)

  1.  連続鋳造用鋳型内に浸漬ノズルを配置し、
     該浸漬ノズルに溶鋼を供給し、該溶鋼を鋳造する連続鋳造方法であって、
     前記浸漬ノズルは、その鉛直軸に対して対称に配置される一対の吐出孔を有し、前記浸漬ノズルの浸漬深さ(鋳型内溶鋼湯面から前記吐出孔上端までの距離)を180mm以上300mm未満、前記吐出孔の水平方向から下向きの溶鋼吐出角度を15~35°の範囲内、タンディッシュ流出孔から前記吐出孔までの間に吹き込む不活性ガスの流量A(NL/min)と溶鋼スループットP(ton/min)との比A/Pを2.0~3.5NL/tonの範囲内とし、前記浸漬ノズルの吐出方向を、前記浸漬ノズルの鉛直軸中心を通り鋳型長辺面に平行な基準面に対して(1)式の範囲内で傾斜させるスラブ鋳片の連続鋳造方法。
     θ-6≦α≦θ+10     ・・・(1)
     但し、(1)式において、αは、前記連続鋳造用鋳型を鉛直上方から見たときの、前記浸漬ノズルの吐出方向の前記基準面に対する傾斜角度(°)であり、
     θは、前記連続鋳造用鋳型を鉛直上方から見たときの、前記浸漬ノズルの鉛直軸中心から鋳型長辺と鋳型短辺との接触点へ向かう直線と前記基準面とで成す角度(鋭角)であって、下記の(2)式によって定義される角度(°)である。
     tanθ=(D/2)/(W/2)・・・(2)
     但し、(2)式において、Dは、連続鋳造されるスラブ鋳片の厚み(mm)であり、
     Wは連続鋳造されるスラブ鋳片の幅(mm)である。
    Place an immersion nozzle in the continuous casting mold,
    A continuous casting method for supplying molten steel to the immersion nozzle and casting the molten steel,
    The immersion nozzle has a pair of discharge holes arranged symmetrically with respect to the vertical axis, and the immersion nozzle has an immersion depth (distance from the molten steel surface in the mold to the upper end of the discharge hole) of 180 mm or more and 300 mm. Less than, the molten steel discharge angle from the horizontal direction of the discharge hole in the range of 15 to 35 °, the flow rate A (NL / min) of the inert gas blown between the tundish outflow hole and the discharge hole, and the molten steel throughput The ratio A / P to P (ton / min) is in the range of 2.0 to 3.5 NL / ton, and the discharge direction of the immersion nozzle is parallel to the long side of the mold through the center of the vertical axis of the immersion nozzle. A continuous casting method of a slab slab that is inclined within the range of the expression (1) with respect to a simple reference plane.
    θ−6 ≦ α ≦ θ + 10 (1)
    However, in the formula (1), α is an inclination angle (°) with respect to the reference surface in the discharge direction of the immersion nozzle when the continuous casting mold is viewed from above.
    θ is an angle (acute angle) formed by a straight line from the vertical axis center of the immersion nozzle to the contact point between the long side of the mold and the short side of the mold and the reference plane when the continuous casting mold is viewed from above. And an angle (°) defined by the following equation (2).
    tan θ = (D / 2) / (W / 2) (2)
    However, in Formula (2), D is the thickness (mm) of the slab slab continuously cast,
    W is the width (mm) of the continuously cast slab slab.
  2.  連続鋳造中または連続鋳造中鋳型幅変更完了後に前記αを測定し、
     前記αが前記(1)式を満たさない場合に前記(1)式を満たすように前記浸漬ノズルの吐出方向を変更する請求項1に記載のスラブ鋳片の連続鋳造方法。
    Measure the α during continuous casting or after completion of mold width change during continuous casting,
    The continuous casting method of a slab slab according to claim 1, wherein the discharge direction of the immersion nozzle is changed so as to satisfy the expression (1) when the α does not satisfy the expression (1).
  3.  前記鋳型長辺の背面に、前記鋳型長辺を挟んで相対する一対の上部磁極と一対の下部磁極とを配置し、
     前記上部磁極から印加される直流静磁界の最大値の位置と前記下部磁極から印加される直流静磁界の最大値の位置との間に前記吐出孔を位置させ、前記上部磁極と前記下部磁極とで直流静磁界を印加して溶鋼流を制動することとし、
     前記上部磁極から印加される直流静磁界の強度が1500Gs以上2500Gs未満(ガウス;1Gs=10-4T)の場合は、前記浸漬ノズルの吐出方向を、前記基準面に対して(1)式に代えて(3)式の範囲内で傾斜させ、前記直流静磁界の強度が2500Gs以上3500Gs未満の場合は(1)式に代えて(4)式の範囲内で傾斜させる請求項1に記載のスラブ鋳片の連続鋳造方法。
     θ≦α≦θ+5   ・・・(3)
     θ+6≦α≦θ+10・・・(4)
    On the back surface of the mold long side, a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the mold long side are arranged,
    The discharge hole is positioned between the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole, and the upper magnetic pole and the lower magnetic pole In order to brake the molten steel flow by applying a DC static magnetic field at
    When the strength of the DC static magnetic field applied from the upper magnetic pole is 1500 Gs or more and less than 2500 Gs (Gauss; 1 Gs = 10 −4 T), the discharge direction of the immersion nozzle is expressed by the formula (1) with respect to the reference plane. Instead, it is tilted within the range of the formula (3), and when the strength of the DC static magnetic field is 2500 Gs or more and less than 3500 Gs, it is tilted within the range of the formula (4) instead of the formula (1). Continuous casting method for slab slabs.
    θ ≦ α ≦ θ + 5 (3)
    θ + 6 ≦ α ≦ θ + 10 (4)
  4.  連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、
     前記直流静磁界の強度が1500Gs以上2500Gs未満の場合であって前記αが前記(3)式を満たさない場合に前記(3)式を満たすように浸漬ノズルの吐出方向を変更し、
     前記直流静磁界の強度が2500Gs以上3500Gs未満の場合であって前記αが前記(4)式を満たさない場合に前記(4)式を満たすように浸漬ノズルの吐出方向を変更する請求項3に記載のスラブ鋳片の連続鋳造方法。
    Measure the α after completion of mold width change during continuous casting or during continuous casting,
    When the intensity of the DC static magnetic field is 1500 Gs or more and less than 2500 Gs, and the α does not satisfy the equation (3), the discharge direction of the immersion nozzle is changed so as to satisfy the equation (3),
    The discharge direction of the submerged nozzle is changed to satisfy the formula (4) when the strength of the DC static magnetic field is 2500 Gs or more and less than 3500 Gs and the α does not satisfy the formula (4). The continuous casting method of the slab slab as described.
  5.  前記鋳型長辺の背面に、磁場の移動方向が鋳型幅方向であるリニア型移動磁場発生装置を設け、
     前記浸漬ノズルから吐出される溶鋼流に制動力を与えるべく前記鋳型短辺側から前記浸漬ノズル側に向かう移動磁場を印加、或いは、溶鋼流に加速力を与えるべく前記浸漬ノズル側から前記鋳型短辺側に向かう移動磁場を印加して流動制御を行なうこととし、
     前記浸漬ノズルの吐出方向を、前記基準面に対して(1)式に代えて(5)式の範囲内で傾斜させる請求項1に記載のスラブ鋳片の連続鋳造方法。
     θ+2≦α≦θ+7・・・(5)
    Provided on the back side of the long side of the mold is a linear type moving magnetic field generator in which the moving direction of the magnetic field is the mold width direction,
    Applying a moving magnetic field from the short side of the mold toward the immersion nozzle to give a braking force to the molten steel flow discharged from the immersion nozzle, or from the immersion nozzle side to give an acceleration force to the molten steel flow The flow control is performed by applying a moving magnetic field toward the side,
    The continuous casting method of a slab cast piece according to claim 1, wherein the discharge direction of the immersion nozzle is inclined with respect to the reference plane within the range of the formula (5) instead of the formula (1).
    θ + 2 ≦ α ≦ θ + 7 (5)
  6.  連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、
     前記αが前記(5)式を満たさない場合に前記(5)式を満たすように前記浸漬ノズルの吐出方向を変更する請求項5に記載のスラブ鋳片の連続鋳造方法。
    Measure the α after completion of mold width change during continuous casting or during continuous casting,
    The continuous casting method of a slab slab according to claim 5, wherein the discharge direction of the immersion nozzle is changed so as to satisfy the expression (5) when the α does not satisfy the expression (5).
  7.  前記鋳型長辺の背面に、前記鋳型長辺を挟んで相対する一対の磁極を配置し、
     前記磁極から交流移動磁界を印加して溶鋼に水平方向の旋回撹拌を与えることとし、
     前記交流移動磁界の強度を300~1000Gsの範囲内とした上で、前記交流移動磁界の強度X(Gs)と連続鋳造されるスラブ鋳片の幅W(mm)との比X/W(Gs/mm)が0.30以上0.45未満の場合は、前記浸漬ノズルの吐出方向を、前記基準面に対して、前記交流移動磁界によって形成される旋回流の上流側へ向けて、(1)式に代えて(6)式の範囲内で傾斜させ、前記比X/W(Gs/mm)が0.45以上0.55未満の場合は、(1)式に代えて(7)式の範囲内で傾斜させる請求項1に記載のスラブ鋳片の連続鋳造方法。
     θ-3≦α≦θ  ・・・(6)
     θ-6≦α≦θ-4・・・(7)
    On the back surface of the mold long side, a pair of magnetic poles facing each other with the mold long side interposed therebetween are arranged,
    By applying an AC moving magnetic field from the magnetic pole to give horizontal swirl stirring to the molten steel,
    A ratio X / W (Gs) between the strength X (Gs) of the AC moving magnetic field and the width W (mm) of the continuously cast slab slab after setting the strength of the AC moving magnetic field within the range of 300 to 1000 Gs. / Mm) is 0.30 or more and less than 0.45, the discharge direction of the immersion nozzle is directed toward the upstream side of the swirl flow formed by the AC moving magnetic field with respect to the reference plane (1 When the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the formula (7) is substituted for the formula (1) instead of the formula (6). The continuous casting method of a slab slab according to claim 1, wherein the slab slab is inclined within the range.
    θ-3 ≦ α ≦ θ (6)
    θ-6 ≦ α ≦ θ-4 (7)
  8.  連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、
     前記比X/W(Gs/mm)が0.30以上0.45未満の場合であって前記αが(6)式を満たさない場合に(6)式を満たすように浸漬ノズルの吐出方向を変更し、
     前記比X/W(Gs/mm)が0.45以上0.55未満の場合であって前記αが前記(7)式を満たさない場合に前記(7)式を満たすように浸漬ノズルの吐出方向を変更する請求項7に記載のスラブ鋳片の連続鋳造方法。
    Measure the α after completion of mold width change during continuous casting or during continuous casting,
    When the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, and the α does not satisfy the expression (6), the discharge direction of the immersion nozzle is set so as to satisfy the expression (6). change,
    When the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55 and the α does not satisfy the equation (7), the submerged nozzle is discharged so as to satisfy the equation (7). The continuous casting method for a slab cast according to claim 7, wherein the direction is changed.
  9.  前記鋳型長辺の背面に、前記鋳型長辺を挟んで相対する一対の上部磁極と一対の下部磁極とを配置し、
     前記上部磁極から印加される直流静磁界の最大値の位置と前記下部磁極から印加される直流静磁界の最大値の位置との間に前記吐出孔を位置させ、
     前記上部磁極から直流静磁界と交流移動磁界とを重畳して印加し、前記上部磁極から印加される交流移動磁界によって鋳型内溶鋼湯面に水平方向に回転する溶鋼の旋回流を形成させるとともに、前記上部磁極から印加される直流静磁界によって溶鋼流を制動し、且つ、前記下部磁極から印加される直流静磁界によって溶鋼流を制動することとし、
     前記交流移動磁界の強度を500~900Gs(ガウス;1Gs=10-4T)の範囲内、前記上部磁極から印加される直流静磁界の強度を2000~3300Gsの範囲内、前記下部磁極から印加される直流静磁界の強度を3000~4500Gsの範囲内とした上で、前記交流移動磁界の強度X(Gs)と連続鋳造されるスラブ鋳片の幅W(mm)との比X/W(Gs/mm)を0.30以上0.55未満に制御し、且つ、
     前記浸漬ノズルの吐出方向を、前記基準面に対して、前記交流移動磁界によって形成される前記溶鋼の旋回流の上流側へ向けて傾斜させる請求項1に記載のスラブ鋳片の連続鋳造方法。
    On the back surface of the mold long side, a pair of upper magnetic poles and a pair of lower magnetic poles facing each other across the mold long side are arranged,
    The discharge hole is positioned between the position of the maximum value of the DC static magnetic field applied from the upper magnetic pole and the position of the maximum value of the DC static magnetic field applied from the lower magnetic pole,
    A DC static magnetic field and an AC moving magnetic field are applied in a superimposed manner from the upper magnetic pole, and a swirling flow of the molten steel rotating in the horizontal direction is formed on the molten steel surface in the mold by the AC moving magnetic field applied from the upper magnetic pole, The molten steel flow is braked by a DC static magnetic field applied from the upper magnetic pole, and the molten steel flow is braked by a DC static magnetic field applied from the lower magnetic pole,
    The AC moving magnetic field is applied from the lower magnetic pole within the range of 500 to 900 Gs (Gauss; 1 Gs = 10 −4 T), and the DC static magnetic field applied from the upper magnetic pole is within the range of 2000 to 3300 Gs. The ratio X / W (Gs) of the strength of the alternating-current moving magnetic field X (Gs) and the width W (mm) of the continuously cast slab slab is set within the range of 3000 to 4500 Gs. / Mm) to 0.30 or more and less than 0.55, and
    The continuous casting method of a slab slab according to claim 1, wherein the discharge direction of the immersion nozzle is inclined toward the upstream side of the swirling flow of the molten steel formed by the AC moving magnetic field with respect to the reference surface.
  10.  前記比X/W(Gs/mm)が0.30以上0.45未満の場合は、前記浸漬ノズルの吐出方向を前記基準面に対して(1)式に代えて下記の(8)式の範囲内で傾斜させ、
     前記比X/W(Gs/mm)が0.45以上0.55未満の場合は、前記浸漬ノズルの吐出方向を前記基準面に対して(1)式に代えて下記の(9)式の範囲内で傾斜させる請求項9に記載のスラブ鋳片の連続鋳造方法。
     θ-2≦α≦θ+5・・・(8)
     θ-5≦α≦θ+2・・・(9)
    When the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, the discharge direction of the immersion nozzle is changed to the following formula (8) instead of the formula (1) with respect to the reference plane. Tilt within range,
    In the case where the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55, the discharge direction of the immersion nozzle is changed to the following formula (9) instead of the formula (1) with respect to the reference plane. The method for continuously casting a slab slab according to claim 9, wherein the slab slab is inclined within a range.
    θ-2 ≦ α ≦ θ + 5 (8)
    θ-5 ≦ α ≦ θ + 2 (9)
  11.  連続鋳造中または連続鋳造中の鋳型幅変更完了後に前記αを測定し、
     前記比X/W(Gs/mm)が0.30以上0.45未満の場合であって前記αが前記(8)式を満たさない場合に前記(8)式を満たすように浸漬ノズルの吐出方向を変更し、
     前記比X/W(Gs/mm)が0.45以上0.55未満の場合であって前記αが前記(9)式を満たさない場合に前記(9)式を満たすように浸漬ノズルの吐出方向を変更する請求項10に記載のスラブ鋳片の連続鋳造方法。
    Measure the α after completion of mold width change during continuous casting or during continuous casting,
    When the ratio X / W (Gs / mm) is 0.30 or more and less than 0.45, and the α does not satisfy the equation (8), the submerged nozzle is discharged so as to satisfy the equation (8). Change direction,
    When the ratio X / W (Gs / mm) is 0.45 or more and less than 0.55 and the α does not satisfy the equation (9), the submerged nozzle is discharged so as to satisfy the equation (9). The continuous casting method of a slab cast according to claim 10, wherein the direction is changed.
PCT/JP2016/004124 2015-09-16 2016-09-12 Continuous casting method for slab casting piece WO2017047058A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187006856A KR102088117B1 (en) 2015-09-16 2016-09-12 Continuous casting method for slab casting piece
EP16845932.9A EP3332889B1 (en) 2015-09-16 2016-09-12 Continuous casting method for slab casting piece
BR112018004704-0A BR112018004704B1 (en) 2015-09-16 2016-09-12 CONTINUOUS SHEET CASTING METHODS USING A SHEET CONTINUOUS CASTING MACHINE
JP2016568067A JP6115690B1 (en) 2015-09-16 2016-09-12 Continuous casting method of slab slab
CN201680052423.5A CN108025354B (en) 2015-09-16 2016-09-12 Continuous casting method of slab

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-182787 2015-09-16
JP2015182787 2015-09-16
JP2016-143908 2016-07-22
JP2016143908 2016-07-22

Publications (1)

Publication Number Publication Date
WO2017047058A1 true WO2017047058A1 (en) 2017-03-23

Family

ID=58288531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004124 WO2017047058A1 (en) 2015-09-16 2016-09-12 Continuous casting method for slab casting piece

Country Status (7)

Country Link
EP (1) EP3332889B1 (en)
JP (1) JP6115690B1 (en)
KR (1) KR102088117B1 (en)
CN (1) CN108025354B (en)
BR (1) BR112018004704B1 (en)
TW (1) TWI599417B (en)
WO (1) WO2017047058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017224A1 (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Molding equipment and continuous casting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109047695B (en) * 2018-08-01 2019-06-18 东北大学 A kind of immersed nozzle for continuous casting mould Argon control method
CN112658223A (en) * 2021-01-13 2021-04-16 东北特殊钢集团股份有限公司 Large round billet continuous casting foot-spanning roller type crystallizer electromagnetic stirrer and process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263199A (en) * 1999-03-18 2000-09-26 Kawasaki Steel Corp Method for continuously casting molten steel
JP2006000896A (en) * 2004-06-17 2006-01-05 Kobe Steel Ltd Continuous casting method
JP2015085370A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Continuous casting method of steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743489A (en) 1981-06-25 1982-03-11 Sanken Electric Co Ltd Method of producing cirucit board
KR100618362B1 (en) * 2000-03-09 2006-08-30 제이에프이 스틸 가부시키가이샤 Production method for continuous casting cast billet
JP4932985B2 (en) * 2000-09-08 2012-05-16 Jfeスチール株式会社 Steel continuous casting method
US20050045303A1 (en) * 2003-08-29 2005-03-03 Jfe Steel Corporation, A Corporation Of Japan Method for producing ultra low carbon steel slab
JP4285345B2 (en) 2004-07-09 2009-06-24 住友金属工業株式会社 Continuous casting method
JP5045132B2 (en) * 2007-02-06 2012-10-10 Jfeスチール株式会社 Steel continuous casting method and steel plate manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263199A (en) * 1999-03-18 2000-09-26 Kawasaki Steel Corp Method for continuously casting molten steel
JP2006000896A (en) * 2004-06-17 2006-01-05 Kobe Steel Ltd Continuous casting method
JP2015085370A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Continuous casting method of steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3332889A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017224A1 (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Molding equipment and continuous casting method

Also Published As

Publication number Publication date
TW201716162A (en) 2017-05-16
JPWO2017047058A1 (en) 2017-09-14
CN108025354A (en) 2018-05-11
EP3332889A1 (en) 2018-06-13
TWI599417B (en) 2017-09-21
BR112018004704A2 (en) 2018-09-25
EP3332889A4 (en) 2018-10-03
KR20180039686A (en) 2018-04-18
JP6115690B1 (en) 2017-04-19
BR112018004704B1 (en) 2022-10-11
KR102088117B1 (en) 2020-03-11
CN108025354B (en) 2020-07-07
EP3332889B1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US8397793B2 (en) Steel continuous casting method
US8376028B2 (en) Steel continuous casting method
JP6129435B1 (en) Continuous casting method
JP6115690B1 (en) Continuous casting method of slab slab
JP5929872B2 (en) Steel continuous casting method
JP2008279501A (en) Continuous casting device of slab and its continuous casting method
WO2018198181A1 (en) Continuous casting method for steel
JP7332885B2 (en) Molten metal continuous casting method and continuous casting apparatus
JP6331810B2 (en) Metal continuous casting method
JP4407260B2 (en) Steel continuous casting method
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP2010058148A (en) Continuous casting method of steel
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JP2001047195A (en) Continuous casting method
JP7388599B1 (en) Immersion nozzle for continuous casting and continuous casting method of steel
JP6036144B2 (en) Continuous casting method
JP2010000518A (en) Method and apparatus for controlling flow of molten steel in continuous casting mold
JP6287901B2 (en) Steel continuous casting method
JP4569320B2 (en) Continuous casting method of ultra-low carbon steel slab slab
JP2008221243A (en) Continuously casting method and apparatus for steel
JP2008221242A (en) Continuously casting method for steel
JP2005205441A (en) Method for continuously casting slab

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016568067

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016845932

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187006856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018004704

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018004704

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180309