JP2002248551A - Continuous casting method for steel - Google Patents

Continuous casting method for steel

Info

Publication number
JP2002248551A
JP2002248551A JP2001048698A JP2001048698A JP2002248551A JP 2002248551 A JP2002248551 A JP 2002248551A JP 2001048698 A JP2001048698 A JP 2001048698A JP 2001048698 A JP2001048698 A JP 2001048698A JP 2002248551 A JP2002248551 A JP 2002248551A
Authority
JP
Japan
Prior art keywords
immersion nozzle
flow
steel
molten steel
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001048698A
Other languages
Japanese (ja)
Other versions
JP3524507B2 (en
Inventor
Toru Kato
徹 加藤
Yujo Marukawa
雄浄 丸川
Yuichi Tsukaguchi
友一 塚口
Masayuki Kawamoto
正幸 川本
Shigeta Hara
茂太 原
Shinichiro Yokoya
真一郎 横谷
Kazuo Nonobe
和男 野々部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Refractories Co Ltd
Nippon Steel Corp
Original Assignee
Kyushu Refractories Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd, Sumitomo Metal Industries Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP2001048698A priority Critical patent/JP3524507B2/en
Publication of JP2002248551A publication Critical patent/JP2002248551A/en
Application granted granted Critical
Publication of JP3524507B2 publication Critical patent/JP3524507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the single flow or the pulsation of the discharge flow of molten metal to be supplied into a mold through an immersion nozzle to make operation stable and to reduce the occurrence of surface flaws on a plate stock after rolled. SOLUTION: In supplying the molten metal into the mold by means of an immersion nozzle having two or more discharge holes and continuous-casting a cast steel piece having a rectangular or roughly rectangular section 600 mm or more in width, the molten metal to be supplied into the mold from a tundish is given a whirl within the range of an angular velocity between 6π and 15π (rad/sec) inside the immersion nozzle. This reduces the single flow or the pulsation of the discharge flow of the molten metal to be supplied into the mold from the tundish, in the continuous casting of a bloom or slab, thereby enabling stable casting with decreased meniscus variation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2孔あるいはそれ
以上の複数の吐出孔を有する浸漬ノズルを使用して連続
鋳造する際に、浸漬ノズルを介して鋳型内に供給される
溶鋼吐出流の片流れや脈動を減少して操業を安定化し、
圧延後の板材の表面疵の発生を低減することが可能な鋼
の連続鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for discharging molten steel discharged from a molten steel supplied into a mold through a submerged nozzle during continuous casting using a submerged nozzle having two or more discharge holes. Stabilize operations by reducing one-sided flow and pulsation,
The present invention relates to a continuous casting method for steel capable of reducing the occurrence of surface flaws on a sheet material after rolling.

【0002】[0002]

【従来の技術】鋼の連続鋳造においては、多くの場合、
鋳型への溶鋼の供給に浸漬ノズルが使用されるが、アル
ミキルド鋼などの連続鋳造時にはノズル内面にアルミナ
などの付着物が堆積する。ノズル内面に付着物が堆積す
ると、浸漬ノズルからの吐出流が左右不均等になり、圧
延時に表面疵が発生するという問題がある。自動車外装
用に使用される鋼板などでは表面性状に関する要求レベ
ルが高く、これらの疵発生は大きな問題となる。
2. Description of the Related Art In continuous casting of steel, in many cases,
An immersion nozzle is used to supply molten steel to the mold, but during continuous casting of aluminum killed steel or the like, deposits such as alumina deposit on the inner surface of the nozzle. When deposits accumulate on the inner surface of the nozzle, the discharge flow from the immersion nozzle becomes uneven left and right, and there is a problem that surface defects occur during rolling. In steel plates and the like used for automobile exteriors, the required level of surface properties is high, and generation of these flaws is a serious problem.

【0003】こういった問題を解決するために、鋳型内
の溶鋼流を制御することがしばしば行われてきた。例え
ば浸漬ノズルから吐出する溶鋼流に電磁力を作用させて
溶鋼流を加速あるいは減速し、鋳型内の流動を制御する
方法などが種々提案されている。また、通常左右に2孔
ある吐出孔に新たな孔を加えたり、孔形状を加工するな
ど浸漬ノズルの形状に工夫を加える方法なども種々実施
されている。さらに、浸漬ノズル自体に関しても材質の
変更や不活性ガスなどの導入によりアルミナなどの付着
を防止し、初期の流動状況を維持する方法などに関して
も数多くの検討がなされている。
[0003] In order to solve these problems, it has often been practiced to control the flow of molten steel in a mold. For example, various methods have been proposed for controlling the flow in a mold by accelerating or decelerating the molten steel flow by applying an electromagnetic force to the molten steel flow discharged from an immersion nozzle. In addition, various methods have been implemented in which a new hole is added to the discharge holes, which are usually two on the left and right sides, or a method of modifying the shape of the immersion nozzle, such as processing the hole shape. Further, many studies have been made on a method of preventing the adhesion of alumina or the like by changing the material of the immersion nozzle itself or introducing an inert gas and maintaining the initial flow state.

【0004】このほかにも、最近では浸漬ノズル内を通
過する溶鋼流に旋回を付与することが提案されている。
この提案は、もともとは丸断面あるいは正多角形、さら
には正方形に近い矩形断面を有する鋳片の連続鋳造時
に、鋳型内で旋回流を生じさせて介在物の侵入深さを軽
減し、鋳片の清浄度を向上したり、鋳型内のメニスカス
部分の温度を確保し、この部分での皮張りを防止するこ
とを目的に、浸漬ノズル内の溶鋼流に旋回を生じさせる
ことが検討されていたものである。
In addition, recently, it has been proposed to impart a swirl to a molten steel flow passing through an immersion nozzle.
This proposal is to reduce the penetration depth of inclusions by generating a swirling flow in the mold during continuous casting of cast pieces originally having a round cross section or a regular polygon, and even a rectangular cross section close to a square, In order to improve the cleanliness of the steel, to maintain the temperature of the meniscus portion in the mold, and to prevent skinning at this portion, it was studied to generate a swirl in the molten steel flow in the immersion nozzle. Things.

【0005】これらの知見を、通常2孔の吐出孔を有す
る浸漬ノズルを使用して鋳造する一般にスラブとかブル
ームと呼ばれる矩形断面を有する鋳片の連続鋳造に応用
した例が報告されている。これらの知見によれば浸漬ノ
ズル内の溶鋼流に旋回を付与することにより、2孔の
吐出孔からの最大吐出流速が低減すること、鋳型内の
偏流が防止できること、溶鋼内の介在物を凝集肥大化
させること、など種々の効果が期待できることが報告さ
れている。
There has been reported an example in which these findings are applied to continuous casting of a slab or a bloom having a rectangular cross section generally called a bloom, which is generally cast using an immersion nozzle having two discharge holes. According to these findings, by imparting swirl to the molten steel flow in the immersion nozzle, the maximum discharge flow velocity from the two discharge holes can be reduced, drift in the mold can be prevented, and inclusions in the molten steel can be aggregated. It is reported that various effects can be expected such as enlargement.

【0006】しかしながら、これらの流動に及ぼす影響
を調査した知見はその多くが水モデルで測定した結果に
基づくもので、溶鋼系での検討はほとんどが流動解析に
よる結果である。水モデルでの知見は、比重や界面張
力、粘度などの物性値が実際とは大きく異なるので、溶
鋼系に直接適用することはできない。また、水モデルや
流動解析では実際の製造時に効果がある疵発生率の改善
効果などを見極めることができないという問題もある。
このような事情からこれまでに旋回付与による溶鋼吐出
流の変化に関する報告はあるものの、実際の鋼の連続鋳
造鋳片において品質向上効果のある旋回付与条件などは
明らかではなかった。
[0006] However, most of the findings investigating the effects on the flow are based on the results measured with a water model, and most of the investigations on molten steel are based on the results of flow analysis. The knowledge from the water model cannot be directly applied to molten steel because the physical properties such as specific gravity, interfacial tension, and viscosity are greatly different from actual ones. In addition, there is a problem in that it is impossible to determine the effect of improving the flaw generation rate which is effective during actual manufacturing with a water model or flow analysis.
Under such circumstances, although there have been reports on the change of the molten steel discharge flow due to the application of swirl, the conditions for imparting swirl that have the effect of improving the quality of the continuous cast slab of actual steel have not been clarified.

【0007】例えば旋回を付与する手段として、特開平
11−47896号には内壁に螺旋状突起を設けたノズ
ルを使用する方法が提案されている。この方法によりあ
る程度の効果が得られることは示されているとおりであ
るが、螺旋のない軸心部分を流れる溶鋼はほとんど旋回
することなく流下してしまうので、十分な効果を得るこ
とはできない。加えて浸漬ノズル内のアルミナ付着が進
行すると、さらにその効果は減少する。
For example, Japanese Patent Application Laid-Open No. H11-47896 proposes a method of using a nozzle provided with a spiral projection on the inner wall as means for imparting swirling. Although it has been shown that this method can provide a certain effect, the molten steel flowing through the shaft portion without the spiral flows down almost without turning, so that a sufficient effect cannot be obtained. In addition, as the alumina deposition in the immersion nozzle progresses, the effect further decreases.

【0008】また、特公平6−47691号には管外に
設置した磁界発生装置により管内の溶鋼に電磁気力を作
用させ、流れと垂直方向の旋回流を付与して介在物の凝
集肥大化を図る方法が提案されている。しかしながら、
吐出流や鋳型内の流動の改善効果が得られる程度の速い
回転流速を与えるためには長大な回転磁界発生装置が必
要となり、現実の連続鋳造プロセスに組み入れることは
困難であるばかりでなく設備コストも増加することから
現実的ではない。
In Japanese Patent Publication No. 6-47691, an electromagnetic force is applied to molten steel in a pipe by a magnetic field generator installed outside the pipe to impart a swirling flow in a direction perpendicular to the flow to increase the coagulation and enlargement of inclusions. A method has been proposed. However,
A long rotating magnetic field generator is required to provide a high rotational velocity that can improve the discharge flow and the flow in the mold, and it is not only difficult to incorporate it into the actual continuous casting process, but also equipment cost Is also not realistic because it will increase.

【0009】さらに、特開平7−303949号あるい
は特開平11−239852号、特開平11−9059
3号にはそれぞれ浸漬ノズルヘの溶鋼の供給構造を工夫
することにより旋回流を付与する方法が、また、特開平
10−263765号にはガス吹き込み構造を工夫する
方法が提案されている。
Further, JP-A-7-303949, JP-A-11-239852, and JP-A-11-9059
No. 3 proposes a method of imparting a swirling flow by devising a supply structure of molten steel to an immersion nozzle, and JP-A-10-263765 proposes a method of devising a gas blowing structure.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記し
た鋳型への溶鋼流に旋回を与える提案は、何れの提案で
あっても、実際の連続鋳造を行う溶鋼系での必要な旋回
条件、鋳造条件の詳細は明らかにされていなかった。ま
た、旋回付与方法が不適切なために十分な回転速度の旋
回を付与できず、目的とする効果を充分得られないとい
う問題があった。
However, any of the above proposals for imparting swirl to the molten steel flow to the casting mold requires the necessary swirling conditions and casting conditions in a molten steel system for performing actual continuous casting. Details were not disclosed. In addition, there is a problem that a rotation at a sufficient rotation speed cannot be provided due to an inappropriate rotation applying method, and a desired effect cannot be sufficiently obtained.

【0011】本発明は、上記した従来の問題点に鑑みて
なされたものであり、実際の連続鋳造を行う溶鋼系での
必要な旋回条件、鋳造条件の詳細を明らかにし、浸漬ノ
ズルからの吐出流に十分な回転速度の旋回を付与し、目
的とする効果を充分得ることができる鋼の連続鋳造方法
を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems. The present invention clarifies the details of the necessary swirling conditions and casting conditions in a molten steel system for actual continuous casting, and discharges them from a submerged nozzle. It is an object of the present invention to provide a continuous casting method of steel capable of imparting a swirl at a sufficient rotation speed to a flow and sufficiently obtaining an intended effect.

【0012】[0012]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る鋼の連続鋳造方法は、2孔或いは
それ以上の複数の吐出孔を有する浸漬ノズルを使用して
鋳型内に溶鋼を供給し、幅が600(mm)以上の矩形
あるいは概略矩形断面を有する鋼鋳片を連続鋳造するに
際し、タンディッシュから鋳型に供給される溶鋼に浸漬
ノズル内で角速度が6π〜15π(rad/sec)の
範囲内の旋回を与えることとしている。そして、このよ
うにすることで、ブルームあるいはスラブと呼ばれる形
状の鋳片を連続鋳造する際に、タンディッシュから鋳型
内に供給される浸漬ノズルからの吐出流の片流れや脈動
を減少する事が可能となり、鋳型内メニスカス変動など
の少ない、安定した鋳造が可能となる。さらにこのよう
な鋳片を、圧延する事により板材の表面疵の発生を低減
することが可能となる。
In order to achieve the above-mentioned object, a method for continuously casting steel according to the present invention is provided in a mold using a dip nozzle having two or more discharge holes. In supplying molten steel and continuously casting a steel slab having a rectangular or substantially rectangular cross section having a width of 600 (mm) or more, an angular velocity of 6π to 15π (rad) is applied to molten steel supplied to a mold from a tundish in a nozzle. / Sec). By doing so, it is possible to reduce one-sided flow and pulsation of the discharge flow from the immersion nozzle supplied from the tundish into the mold when continuously casting slabs of a shape called bloom or slab Thus, stable casting with little variation in meniscus in the mold can be performed. Further, by rolling such a slab, it is possible to reduce the occurrence of surface flaws on the sheet material.

【0013】[0013]

【発明の実施の形態】本発明者らは実際の鋼の連続鋳造
における旋回付与条件を種々変化して検討した結果、製
品疵を防止するために好適な条件を見出し、以下のよう
な本発明を成立させた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied various conditions for imparting turning in actual continuous casting of steel, and as a result, have found suitable conditions for preventing product flaws. Was established.

【0014】すなわち、本発明に係る第1の鋼の連続鋳
造方法は、2孔或いはそれ以上の複数の吐出孔を有する
浸漬ノズルを使用して鋳型内に溶鋼を供給し、幅が60
0(mm)以上の矩形あるいは概略矩形断面を有する鋼
鋳片を連続鋳造するに際し、タンディッシュから鋳型に
供給される溶鋼に浸漬ノズル内で角速度が6π〜15π
(rad/sec)の範囲内の旋回を与えるものであ
る。
That is, in the first continuous casting method for steel according to the present invention, molten steel is supplied into a mold using a dip nozzle having two or more discharge holes, and a width of 60 mm or more.
When continuously casting steel slabs having a rectangular or approximately rectangular cross section of 0 (mm) or more, the angular velocity in a nozzle immersed in molten steel supplied from a tundish to a mold is 6π to 15π.
(Rad / sec).

【0015】先ず、本発明に係る第1の鋼の連続鋳造方
法において、適正な旋回角速度を上記したように定めた
理由について述べる。図1(a)(b)に示すような螺
旋状の旋回付与機構部1、あるいは、図2に示すような
浸漬ノズル管内の直径を順次回転方向にずらして捩りを
つけた旋回付与機構部1を浸漬ノズル内に挿入し、連続
鋳造を行った。
First, the reason why the appropriate turning angular velocity is determined as described above in the first continuous casting method for steel according to the present invention will be described. 1 (a) and 1 (b), or a swiveling mechanism 1 shown in FIG. 2 in which the diameter in the immersion nozzle tube is sequentially shifted in the rotational direction and twisted. Was inserted into the immersion nozzle, and continuous casting was performed.

【0016】この時の旋回角速度を以下のように算出
し、この時の製品疵発生状況と比較した。旋回角速度
は、単位時間当りの溶鋼吐出流量Qと流路断面積Aと旋
回付与機構部の長さHから計算できる旋回付与機構部の
通過所要時間T=A×(H/Q)と、旋回付与機構部の
構造により通過中に流路に沿って理想的に旋回が付与さ
れたと仮定して幾何的に計算できる旋回角度θとから算
出できる値θ/Tである。
The turning angular velocity at this time was calculated as follows, and was compared with the state of occurrence of product defects at this time. The swirling angular velocity is calculated as follows: the required time T = A × (H / Q) for passing through the swiveling mechanism, which can be calculated from the molten steel discharge flow rate Q per unit time, the flow path cross-sectional area A, and the length H of the swirling mechanism. It is a value θ / T that can be calculated from a turning angle θ that can be geometrically calculated assuming that turning is ideally applied along the flow path during passage by the structure of the applying mechanism.

【0017】浸漬ノズル中に上記した旋回付与機構部1
を設置し、旋回速度の異なる条件で鋳造を行い、コイル
表面の疵発生状況を調査した結果を図3に示す。調査
は、コイル表面を目視観察し、不合格となったコイル本
数の割合を調べることにより行なった。
In the immersion nozzle, the above-mentioned swiveling mechanism 1 is provided.
Are installed, casting is performed under conditions with different turning speeds, and the results of investigating the occurrence of flaws on the coil surface are shown in FIG. The investigation was performed by visually observing the coil surface and examining the ratio of the number of failed coils.

【0018】図3における旋回角速度が0(rad/s
ec)は、従来から使用されている旋回付与機構部を有
しない浸漬ノズルを使用したときの結果であるが、この
場合には、2.5〜3%程度の欠陥が発生した。また、
旋回角速度が6π(rad/sec)よりも小さいとき
には旋回付与の効果が小さく、鋳型内流動は通常の旋回
を付与しないときと同様に片流れや脈動を生じることと
なり、従来の操業条件と同等の製品疵が発生した。
The turning angular velocity in FIG. 3 is 0 (rad / s).
ec) is the result when using a conventionally used immersion nozzle having no swirling mechanism, but in this case, about 2.5 to 3% of defects occurred. Also,
When the swirling angular velocity is smaller than 6π (rad / sec), the effect of imparting swirling is small, and the flow in the mold causes one-sided flow and pulsation as in the case where ordinary swirling is not applied. Scratches occurred.

【0019】一方、旋回角速度を大きくするためにはよ
り緻密な旋回機構部の構造が必要となり、特に旋回角速
度が15π(rad/sec)より大きい場合には、こ
の部分で詰まりが生じたり、流動抵抗が大きくなるばか
りでなく浸漬ノズル内の特定場所が溶損するなどの問題
があり好ましくないことが判明した。
On the other hand, in order to increase the turning angular velocity, a more precise structure of the turning mechanism is required. In particular, when the turning angular velocity is higher than 15π (rad / sec), clogging occurs in this portion, and the flow rate increases. It has been found that not only the resistance is increased but also a problem such as melting of a specific location in the immersion nozzle is not preferable.

【0020】そこで、本発明では、適切な旋回角速度と
して6π(rad/sec)以上、15π(rad/s
ec)以下と規定した。この旋回角速度の範囲は、旋回
流を付与するための旋回付与機構部1の構造が図1や図
2に示したような構造のものに限らず、例えば図4に示
すような構造によるものなど、一般に関して同様の考え
方が成立する。
Therefore, in the present invention, an appropriate turning angular velocity is not less than 6π (rad / sec) and not less than 15π (rad / s).
ec) It was specified as follows. The range of the swirling angular velocity is not limited to the structure of the swirling applying mechanism 1 for applying the swirling flow as shown in FIGS. A similar concept holds for general.

【0021】また、旋回を付与する方法としては、浸漬
ノズル内に上記した旋回付与機構部を設ける方法以外
に、電磁気力を作用させる方法や浸漬ノズルヘの入り口
部分の構造を工夫する方法などが考えられる。これらの
方法では角速度を幾何的に算出することが不可能である
という問題があるものの、この場合にも角速度として6
π〜15π(rad/sec)の旋回を付与できさえす
れば同様の効果が得られることは言うまでもない。但
し、これらの方法であっても、6πを上回る早い旋回速
度を得ることが技術的に困難であるということは、浸漬
ノズル内に旋回付与機構部を設ける方法と同様である。
In addition to the above-described method of providing the swirling mechanism in the immersion nozzle, a method of applying the electromagnetic force and a method of devising the structure of the entrance to the immersion nozzle can be considered as a method of imparting the swirl. Can be Although there is a problem that it is impossible to calculate the angular velocity geometrically by these methods, in this case as well, the angular velocity is 6
It goes without saying that the same effect can be obtained as long as a turn of π to 15π (rad / sec) can be provided. However, even with these methods, it is technically difficult to obtain a high turning speed exceeding 6π as in the method of providing the turning imparting mechanism in the immersion nozzle.

【0022】このように本発明に係る第1の鋼の連続鋳
造方法は旋回付与構造を規定するものではなく、旋回付
与の効果、製作コストや耐久性などの観点で選択すれば
よいが、浸漬ノズルのノズル孔内で横断面内の流速分布
が点対称に近い分布となるような構造が好ましい。
As described above, the first method for continuously casting steel according to the present invention does not specify the structure for imparting the turning, and may be selected in view of the effect of imparting the turning, the production cost, the durability, and the like. A structure is preferable in which the flow velocity distribution in the cross section in the nozzle hole of the nozzle becomes a distribution close to point symmetry.

【0023】しかしながら、例えば特開平11−478
96号に提案されているような内壁に螺旋状突起を設置
する方法では、より好適な態様として螺旋断面の高さが
最大でもノズル内径の25%と述べているが、螺旋のな
い軸心部分を流れる溶鋼はほとんど旋回することなく流
下してしまうため好ましくないことは先に説明した通り
である。
However, for example, Japanese Patent Application Laid-Open No. 11-478
In a method of installing a spiral projection on the inner wall as proposed in Japanese Patent No. 96, the height of the spiral cross section is at most 25% of the inner diameter of the nozzle as a more preferable embodiment. As described above, the molten steel flowing through the pipe flows down almost without turning.

【0024】ところで、浸漬ノズル内で付与した旋回流
はノズル孔の内壁との間の流動抵抗などによって流下に
伴い減衰する。特に溶鋼と耐火物の間では鋳造開始後時
間が経過するとともにノズル孔の内面に侵食や付着物の
生成が生じ、水モデルなどで得られる結果に比較して減
衰が顕著になる。
Incidentally, the swirling flow imparted in the immersion nozzle is attenuated as it flows down due to flow resistance between the inner wall of the nozzle hole and the like. In particular, between the molten steel and the refractory, as time elapses after the start of casting, erosion and formation of deposits occur on the inner surface of the nozzle hole, and the attenuation becomes remarkable as compared with the result obtained with a water model or the like.

【0025】そこで、本発明者らは、旋回付与機構部で
6π〜15π(rad/sec)の旋回を付与し、旋回
付与機構部の下端から吐出孔の上端間の距離を種々変化
させて鋳造を行い疵発生率を調査した。その結果を図5
に示すが、本発明者らの実験では、タンディッシュの直
下に旋回付与機構部を設置し、旋回付与機構部の出口か
ら吐出孔までの距離が600mmを越えた場合には疵発
生率は旋回を付与しなかった場合とほとんど差がないこ
とが判明した。すなわち、適切な角速度である6π〜1
5π(rad/sec)の旋回を付与しても旋回付与後
の長さが長くなると期待した効果が得られないことが明
らかとなった。
Therefore, the inventors of the present invention provide a swivel of 6π to 15π (rad / sec) by the swivel applying mechanism, and variously change the distance from the lower end of the swivel applying mechanism to the upper end of the discharge hole. And the flaw occurrence rate was investigated. The result is shown in FIG.
As shown in the experiment of the present inventors, in the experiment of the present invention, the swirling mechanism was installed immediately below the tundish, and when the distance from the outlet of the swirling mechanism to the discharge hole exceeded 600 mm, the flaw generation rate was swirled. It was found that there was almost no difference from the case where no was given. That is, an appropriate angular velocity of 6π to 1
It has been clarified that even if a turn of 5π (rad / sec) is given, the expected effect cannot be obtained if the length after the turn is given becomes long.

【0026】このように、本発明者らの実験によれば、
旋回付与機構部の下端から吐出孔の上端までの距離は6
00mm以内とすることが望ましいことが判明した。な
お、旋回角速度を高めに設定すればこの距離は増加する
が、600mmを越えると浸漬ノズルの全長が長くな
り、操業の安定性及びコスト面から好ましくない。
Thus, according to the experiments of the present inventors,
The distance from the lower end of the rotation applying mechanism to the upper end of the discharge hole is 6
It has been found that it is desirable to be within 00 mm. This distance increases when the turning angular velocity is set to a high value. However, when the turning angular velocity exceeds 600 mm, the total length of the immersion nozzle becomes longer, which is not preferable in terms of operation stability and cost.

【0027】一方、本発明者らの実験によれば、旋回付
与機構部の設置位置を下げ、吐出孔直上より100mm
未満の位置に旋回付与機構部を設置した場合にも疵低減
の効果が少ないことが判明した。また、凝固後の鋳片組
織を調査したところ浸漬ノズル近傍部分に凝固遅れ部が
存在することも判明した。このような凝固遅れ部が発生
すると縦割れやブレークアウトが発生する懸念がある。
これは旋回付与機構部の出口近傍では流動の乱れが大き
いことが原因と考えられる。以上の知見をもとに、本発
明に係る第2の鋼の連続鋳造方法では、圧延後の疵発生
を防止するために、旋回付与機構部の下部が浸漬ノズル
の吐出孔上端から100mm以上、600mm以下の位
置になるように旋回付与機構部を設置することとした。
On the other hand, according to an experiment conducted by the present inventors, the installation position of the swiveling mechanism was lowered to 100 mm above the discharge hole.
It was also found that the effect of reducing flaws was small even when the turning imparting mechanism was installed at a position less than. Further, when the structure of the cast slab after solidification was examined, it was found that there was a solidification delay portion near the immersion nozzle. When such a solidification delay portion occurs, there is a concern that a vertical crack or breakout may occur.
This is considered to be because the turbulence of the flow is large near the exit of the turning imparting mechanism. Based on the above findings, in the second continuous casting method of steel according to the present invention, in order to prevent the occurrence of flaws after rolling, the lower part of the swirling mechanism is 100 mm or more from the upper end of the discharge hole of the immersion nozzle, The turning imparting mechanism is set to be at a position of 600 mm or less.

【0028】旋回付与機構部はその構造上、流動抵抗と
なる。この流動抵抗が大きくなると必要な流量を流すた
めの圧力が大きくなり、旋回付与機構部の上方に設置し
た流量制御機構による流量制御が困難になるという問題
がある。この流動抵抗の大きさは、旋回付与機構部の流
路断面積が小さいときや、短い旋回付与部長さで旋回角
度を大きくしたときに増加する。
The swiveling mechanism has a flow resistance due to its structure. If the flow resistance increases, the pressure required to flow the required flow rate increases, and there is a problem in that it becomes difficult to control the flow rate by a flow rate control mechanism installed above the swirling mechanism. The magnitude of the flow resistance increases when the cross-sectional area of the flow path of the swirling mechanism is small or when the swirling angle is increased with a short swiveling length.

【0029】流路断面積がS(cm2 )の経路に流量が
Q(ton/分)の流体を流す際に必要な溶鋼ヘッド高
さをhとすると、流量Qは下記の数式1のように表すこ
とができる。
Assuming that the height of the molten steel head required for flowing a fluid having a flow rate of Q (ton / min) through a path having a flow path cross-sectional area of S (cm 2 ) is h, the flow rate Q is represented by the following equation (1). Can be expressed as

【0030】[0030]

【数1】Q=ρcS(2gh)1/2 ## EQU1 ## Q = ρcS (2gh) 1/2

【0031】上記数式1で、ρは流体の密度、cは流路
の抵抗係数であり、流路抵抗により変化する値である。
本発明者らは、種々の条件で連続鋳造した結果、旋回付
与機構部では流路の抵抗係数cを0.85とし、必要流
量を流量制御位置から旋回付与機構部の上端迄の高さh
1 (m)と、旋回付与機構部の最小流路断面積S1 (c
2 )から上記した数式1により計算できる値より小さ
くしなければ流量制御が困難となることを知見した。両
辺を整理して得られた式が下記の数式2である。
In the above formula 1, ρ is the density of the fluid, c is the resistance coefficient of the flow path, and is a value that changes depending on the flow path resistance.
As a result of continuous casting under various conditions, the present inventors set the resistance coefficient c of the flow path to 0.85 in the swirling mechanism and set the required flow rate to the height h from the flow control position to the upper end of the swirling mechanism.
1 (m) and the minimum flow path cross-sectional area S1 (c
From m 2 ), it was found that the flow rate control would be difficult unless the value was smaller than the value that could be calculated by the above-described formula 1. The equation obtained by rearranging both sides is Equation 2 below.

【0032】[0032]

【数2】Q/S1 ≦0.186×(h1 )1/2 [Equation 2] Q / S1 ≦ 0.186 × (h1) 1/2

【0033】ここで上記高さh1 を求めるのに必要とな
る流量制御位置とは、スライディングゲートやストッパ
ーなどの流動制御部の流路断面積が最小となる部分のこ
とを指す。
Here, the flow control position required to determine the height h1 refers to a portion where the cross-sectional area of the flow control section such as a sliding gate or a stopper is minimized.

【0034】さらに、旋回付与機構部の長さを短くし、
短時間に大きな角度の旋回を与えるような構造とする
と、この旋回付与機構部の流動抵抗が大きくなり流動制
御が困難となる。本発明者らが種々の旋回付与構造を使
用して鋳造を行った結果、旋回付与機構部の入口側から
出口側迄の間の長さをL(m)、旋回付与機構部の直径
をd(m)、その部分で付与される旋回角度をnπ(r
ad)とした場合に、前記L、d、nの間に、下記数式
3の関係を満足するノズル内溶鋼流への旋回付与機構部
とすれば鋳造上の問題が発生しないことを知った。
Further, the length of the turning applying mechanism is shortened,
If the structure is such that a large angle of rotation is provided in a short time, the flow resistance of the rotation applying mechanism becomes large, and flow control becomes difficult. As a result of casting performed by the present inventors using various turning imparting structures, the length from the inlet side to the outlet side of the turning imparting mechanism is L (m), and the diameter of the turning imparting mechanism is d. (M), the turning angle given at that portion is nπ (r
In the case of ad), it has been found that a casting problem does not occur if the mechanism for imparting swirl to the molten steel flow in the nozzle satisfies the relationship of the following equation 3 between L, d, and n.

【0035】[0035]

【数3】L≧1.1×n×d## EQU3 ## L ≧ 1.1 × n × d

【0036】本発明者らはこれらの知見をもとに、溶鋼
供給量をQ(ton/分)、浸漬ノズルに設けた旋回付
与機構部の最小流路断面積をSl (cm2 )、流量制御
位置から旋回付与機構部上端までの高さをhl (m)と
した場合に数式2の関係を満足し、かつ、旋回付与機構
部の入口側から出口側迄の間の長さをL(m)、旋回付
与機構部の直径をd(m)、その部分で付与される旋回
角度をnπ(rad)とした場合に、前記L、d、nの
間に数式3の関係を満足するノズル内溶鋼流への旋回付
与機構を使用する本発明に係る第3の鋼の連続鋳造方法
を完成した。
Based on these findings, the present inventors set the molten steel supply amount to Q (ton / min), the minimum flow path cross-sectional area of the swirling mechanism provided in the immersion nozzle to Sl (cm 2 ), and the flow rate When the height from the control position to the upper end of the turning applying mechanism is defined as hl (m), the relationship of Expression 2 is satisfied, and the length from the entrance side to the exit side of the turning applying mechanism is L ( m), when the diameter of the swiveling mechanism is d (m), and the swiveling angle given at that portion is nπ (rad), the nozzle satisfying the relationship of Equation 3 between L, d and n The third continuous casting method for steel according to the present invention using a mechanism for imparting swirl to the inner molten steel flow has been completed.

【0037】本発明者らはさらに旋回付与機構部より下
部の流路構造について検討した。本発明者らはQ(to
n/分)の溶鋼通過量で浸漬ノズルの形状を種々変化し
て実際に連続鋳造を行い、製造した鋳片を圧延し冷延鋼
板の表面性状を調査した結果、溶鋼供給量をQ(ton
/分)、旋回付与機構部より下部における浸漬ノズルの
最小流路断面積をS0 (cm2 )とした場合、下記の数
式4の関係を満足するように鋳造すれば、表面疵の少な
い鋼板を製造できることを知見した。これが本発明に係
る第4の鋼の連続鋳造方法である。
The present inventors further studied the flow path structure below the turning imparting mechanism. We have Q (to
n / min), the shape of the immersion nozzle was variously changed and the continuous casting was actually performed. The cast slab was rolled, and the surface properties of the cold-rolled steel sheet were investigated.
/ Min), assuming that the minimum flow path cross-sectional area of the immersion nozzle below the swirl imparting mechanism is S0 (cm 2 ), a steel sheet with less surface flaws can be obtained by casting so as to satisfy the following equation (4). It was found that it can be manufactured. This is the fourth steel continuous casting method according to the present invention.

【0038】[0038]

【数3】0.07≦Q/S0 ≦0.1[Equation 3] 0.07 ≦ Q / S0 ≦ 0.1

【0039】本発明に係る第4の鋼の連続鋳造方法にお
いて、Q/S0 が0.1より大きい場合、すなわち溶鋼
通過量に対して旋回付与機構部より下部における最小流
路断面積が過剰に小さい場合には、この旋回付与機構部
での流動抵抗が大きくなり、浸漬ノズル上部に配置され
たスライディングゲートやストッパーなどによる流量調
整の感度が低下するという問題が生じる。
In the fourth continuous casting method for steel according to the present invention, when Q / S0 is larger than 0.1, that is, the minimum flow path cross-sectional area below the swirling mechanism is excessive with respect to the amount of molten steel passed. If it is small, the flow resistance in the swiveling mechanism increases, and the sensitivity of flow adjustment by a sliding gate, a stopper, or the like arranged above the immersion nozzle decreases.

【0040】一方、Q/S0 が0.07より小さい場
合、すなわち溶鋼通過量に対して旋回付与機構部より下
部における最小流路断面積が相対的に大きい場合には旋
回流付与機構部の上部における溶鋼圧力変動が大きくな
り、浸漬ノズル内の溶鋼流が旋回付与機構部の上部に均
等に流入しなくなり、鋳型内流動安定効果が低減する。
この知見をもとに、本発明に係る第4の鋼の連続鋳造方
法では、Q/S0 を0.07以上、0.1以下の範囲に
規定した。このように溶鋼流に旋回を付与する時には溶
鋼の流量に応じて各部の流路断面積を適正な範囲にする
ことにより、より好適な鋳造条件が得られる。
On the other hand, when Q / S0 is smaller than 0.07, that is, when the minimum flow path cross-sectional area in the lower part of the swirling mechanism is relatively large with respect to the amount of molten steel passing, the upper part of the swirling flow applying mechanism is used. , The molten steel pressure in the immersion nozzle does not flow evenly into the upper part of the swirling mechanism, and the flow stabilizing effect in the mold is reduced.
Based on this finding, in the fourth continuous casting method for steel according to the present invention, Q / S0 is specified in the range of 0.07 or more and 0.1 or less. As described above, when imparting a swirl to the molten steel flow, more suitable casting conditions can be obtained by adjusting the flow path cross-sectional area of each part to an appropriate range according to the flow rate of the molten steel.

【0041】ところで、浸漬ノズルの閉塞を防止するた
めに、浸漬ノズル内にArなどの不活性ガスを吹き込む
ことがしばしば行われている。本発明の方法においても
不活性ガスの吹き込みは浸漬ノズルの閉塞防止に有効で
あるが、本発明者らの実験によれば、10Nリットル/
分を越える多量に吹き込むと浸漬ノズル内を流下する溶
鋼流が旋回付与機構部に均等に流入しなくなるという問
題がある。従って、本発明において、浸漬ノズル内にA
rなどの不活性ガスを吹き込む場合には、吹き込みガス
量は10Nリットル/分以下にすることが望ましい。
Incidentally, in order to prevent clogging of the immersion nozzle, an inert gas such as Ar is often blown into the immersion nozzle. In the method of the present invention, the blowing of the inert gas is effective for preventing the clogging of the immersion nozzle.
If a large amount is blown in, the molten steel flowing down the immersion nozzle may not flow evenly into the swirling mechanism. Therefore, in the present invention, A
When an inert gas such as r is blown, it is desirable that the flow rate of the blown gas be 10 N l / min or less.

【0042】また、浸漬ノズル内の溶鋼流に旋回を付与
することはビレットと呼ばれる小断面積の丸鋳片あるい
は正方形に近い矩形断面の鋳片の連続鋳造時に適用する
ことも当然可能である。この様な鋳片の連続鋳造ではス
トレートタイプのノズルを使用することが多いが、この
場合にも旋回の付与により溶鋼の潜り込み深さを低減で
きるなどの効果が得られる。
It is of course possible to apply a swirl to the molten steel flow in the immersion nozzle at the time of continuous casting of round cast pieces having a small sectional area called billets or cast pieces having a rectangular cross section close to a square. In the continuous casting of such a slab, a straight type nozzle is often used, but in this case also, the effect of reducing the immersion depth of the molten steel can be obtained by imparting swirling.

【0043】しかしながら、本発明の目的はブルームあ
るいはスラブと呼ばれる形状の鋳片を連続鋳造する際
に、タンディッシュから鋳型内に供給される溶鋼の吐出
流の片流れなどを減少し、圧延後に発生する板材の表面
疵を低減することが目的であり、このための条件を規定
したものである。
However, an object of the present invention is to reduce the one-sided flow of molten steel discharged from a tundish into a mold during continuous casting of a slab having a shape called bloom or slab, which occurs after rolling. The purpose is to reduce the surface flaws of the plate material, and the conditions for this are specified.

【0044】従って、このような用途の鋳片を鋳造する
条件である幅600mm以上の矩形あるいは概略矩形断
面を有する鋼鋳片を鋳型内に2孔あるいはそれ以上の複
数の吐出孔を有する浸漬ノズルを使用して連続鋳造する
際に本発明は有効である。
Accordingly, a steel slab having a rectangular or substantially rectangular cross section having a width of 600 mm or more, which is a condition for casting a slab for such an application, is provided with a immersion nozzle having two or more discharge holes in a mold. The present invention is effective in continuous casting using

【0045】また、浸漬ノズル内で旋回を付与した溶鋼
流を、通常の2孔ノズルから吐出して広幅の鋳片を鋳造
すると、溶鋼吐出流が鋳片の長辺面に衝突し、局部的な
凝固遅れが顕著な場合にはブレークアウトが発生するこ
とがある。従って、実際の連続鋳造では吐出孔の設置方
向を鋳片幅に平行ではなく、ある角度を持たせたり、或
いは、鋳片厚み中心面に対して非対称とするなどの対応
を併せて実施することが望ましい。但し、これらの適正
条件は吐出流量や旋回速度により変化することから、鋳
造条件に応じて条件を適正に設定する必要がある。
Further, when the molten steel flow swirled in the immersion nozzle is discharged from a normal two-hole nozzle to cast a wide cast slab, the molten steel discharge flow collides with the long side surface of the cast slab. Breakout may occur if a severe coagulation delay is noticeable. Therefore, in actual continuous casting, the installation direction of the discharge holes should not be parallel to the slab width, but should be a certain angle, or should be asymmetric with respect to the slab thickness center plane. Is desirable. However, since these appropriate conditions change depending on the discharge flow rate and the turning speed, it is necessary to appropriately set the conditions according to the casting conditions.

【0046】[0046]

【実施例】以下に本発明の実施例を説明する。本発明の
効果を確認するために垂直曲げ型の連続鋳造機を使用し
て鋳造した。厚さが210mm、幅が1800mmの極
低炭素鋼鋳片を鋳造速度1.1〜1.6m/分で鋳造し
た。鋳造は浸漬ノズルの内部構造、溶鋼旋回条件、溶鋼
供給量などを種々変化して行なった。これらを結果と共
に下記表1に示す。
Embodiments of the present invention will be described below. In order to confirm the effect of the present invention, casting was performed using a vertical bending type continuous casting machine. An extremely low carbon steel slab having a thickness of 210 mm and a width of 1800 mm was cast at a casting speed of 1.1 to 1.6 m / min. The casting was carried out by changing the internal structure of the immersion nozzle, the swirling condition of the molten steel, the supply amount of the molten steel, and the like. These are shown in Table 1 below together with the results.

【0047】浸漬ノズル内に配設する旋回付与機構部
は、図1或いは図2に示した構造の耐火物を使用した。
疵発生の有無は冷延後のコイル表面を目視観察すること
により行い、不合格となったコイル本数の割合を調査し
た。
A refractory having the structure shown in FIG. 1 or FIG. 2 was used for the swiveling mechanism provided in the immersion nozzle.
The presence or absence of flaws was determined by visually observing the coil surface after cold rolling, and the proportion of failed coils was investigated.

【0048】[0048]

【表1】 [Table 1]

【0049】旋回を付与しなかった比較例1では2.8
%という高い疵発生率であった。これに対して角速度が
6πから15πの旋回を付与した実施例1〜7ではいず
れも1.5%以下の疵発生に留まり、改善効果は明白で
ある。加えて、実施例1〜7では鋳型内の湯面変動や浸
漬ノズルの左右湯面高さの差も減少した。これは、片流
れや脈動を抑制し鋳型内流動を安定化できた効果と考え
られる。
In Comparative Example 1 in which no rotation was given, 2.8 was obtained.
%. On the other hand, in Examples 1 to 7 in which the turning of the angular velocity was from 6π to 15π, all the flaws were 1.5% or less, and the improvement effect was obvious. In addition, in Examples 1 to 7, the fluctuation of the molten metal surface in the mold and the difference between the left and right molten metal surface heights of the immersion nozzle were also reduced. This is considered to be the effect of suppressing the one-sided flow and the pulsation and stabilizing the flow in the mold.

【0050】一方、旋回を付与した場合でも角速度が
5.4πの比較例2では付与しなかった場合と同程度の
疵発生率であった。高い割合で疵の発生した条件では鋳
型銅板の温度に浸漬ノズルの左右で大きな温度差が発生
するという現象が認められた。これは鋳型内に供給され
る溶鋼流に片流れが発生していることに起因する現象で
ある。
On the other hand, even in the case where the turning was given, the flaw generation rate was almost the same as that in the case where the turning was not given in Comparative Example 2 where the angular velocity was 5.4π. Under the condition where the flaw was generated at a high rate, a phenomenon was observed in which a large temperature difference occurred between the left and right of the immersion nozzle in the temperature of the mold copper plate. This is a phenomenon caused by one-sided flow in the molten steel flow supplied into the mold.

【0051】但し、上記した顕著な改善効果を奏する実
施例であっても、旋回付与機構部の設置高さを吐出孔近
くとした実施例3では僅かに疵発生率が悪化した。ま
た、凝固シェルに凝固遅れ部分が発生していた。一方、
スライディングゲ−ト直下に旋回付与機構部を設置した
実施例4では、従来方法ほどではないものの、1.5%
という高い疵発生率となった。これは付与した旋回が浸
漬ノズル内で減衰し、効果が低下したためと考えられ
る。また、この実施例4では流量制御部と旋回付与機構
部の距離が少なく、流量制御部の開閉による応答性が若
干低下し、タンディッシュ内の溶鋼量が低下したときに
鋳造速度を低下せざるを得なくなり、この部分の品質が
悪化した。
However, even in the embodiment having the remarkable improvement effect described above, the flaw occurrence rate was slightly deteriorated in the embodiment 3 in which the installation height of the swirl imparting mechanism was set near the discharge hole. In addition, a solidification delay portion occurred in the solidified shell. on the other hand,
In the fourth embodiment in which the turning imparting mechanism is installed immediately below the sliding gate, although not as large as the conventional method, 1.5%
High flaw generation rate. This is considered to be because the imparted rotation was attenuated in the immersion nozzle, and the effect was reduced. In the fourth embodiment, the distance between the flow control unit and the turning mechanism is small, the responsiveness due to the opening and closing of the flow control unit is slightly reduced, and the casting speed must be reduced when the amount of molten steel in the tundish decreases. And the quality of this part deteriorated.

【0052】また、旋回付与機構部の長さを短縮した実
施例5でも同様に流量制御部の開閉による応答性が若干
低下する問題が発生した。これは旋回付与機構部の抵抗
が大きくなったため発生したものと考えられる。
Also, in the fifth embodiment in which the length of the swiveling mechanism is shortened, the responsiveness due to the opening and closing of the flow control unit is slightly reduced. It is considered that this occurred because the resistance of the turning applying mechanism increased.

【0053】また、旋回付与機構部より下部のノズル内
径を拡大した実施例6では片流れが発生し、疵発生率が
若干増加した。反対に、旋回付与機構部より下部のノズ
ル内径を小さくした実施例7では疵発生状況には大きな
変化はなかったものの、流量制御部の開閉による応答性
が若干低下した。
Further, in Example 6 in which the inner diameter of the nozzle below the turning imparting mechanism was enlarged, one-sided flow occurred, and the flaw occurrence rate slightly increased. Conversely, in Example 7 in which the inner diameter of the nozzle below the swirl applying mechanism was smaller, the responsiveness due to the opening and closing of the flow control unit was slightly reduced, although the flaw occurrence state did not change significantly.

【0054】[0054]

【発明の効果】以上説明したように、本発明の方法を適
用することにより、ブルームあるいはスラブと呼ばれる
形状の鋳片の連続鋳造の際に、タンディッシュから鋳型
内に供給される溶鋼の吐出流の片流れや脈動を減少する
事が可能となり、鋳型内メニスカス変動などの少ない安
定した鋳造が可能となる。さらにこのような鋳片を圧延
する事により、板材の表面疵の発生を低減することが可
能となる。
As described above, by applying the method of the present invention, the discharge flow of molten steel supplied from the tundish into the mold during continuous casting of a slab having a shape called bloom or slab. Pulsation and pulsation can be reduced, and stable casting with little variation in meniscus in the mold can be achieved. Further, by rolling such a slab, it is possible to reduce the occurrence of surface flaws on the sheet material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)はノズル内の溶鋼流に旋回を付与
する機構の第1の例を示した図である。
FIGS. 1A and 1B are diagrams showing a first example of a mechanism for imparting a swirl to a molten steel flow in a nozzle.

【図2】ノズル内の溶鋼流に旋回を付与する機構の第2
の例を示した図である。
FIG. 2 shows a second mechanism for imparting a swirl to the molten steel flow in the nozzle.
FIG. 3 is a diagram showing an example of the above.

【図3】旋回角速度を種々変化した場合の疵発生率の変
化を示した図である。
FIG. 3 is a diagram showing a change in a flaw occurrence rate when the turning angular velocity is variously changed.

【図4】ノズル内の溶鋼流に旋回を付与する機構の第3
の例を示した図である。
FIG. 4 is a third view of a mechanism for imparting a swirl to the molten steel flow in the nozzle.
FIG. 3 is a diagram showing an example of the above.

【図5】ノズル内の旋回付与機構部の下端と吐出孔間の
距離を種々変化した場合の疵発生率の変化を示した図で
ある
FIG. 5 is a diagram showing a change in the flaw occurrence rate when the distance between the lower end of the swirl applying mechanism in the nozzle and the discharge hole is variously changed.

【符号の説明】[Explanation of symbols]

1 旋回付与機構部 1 Turning mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸川 雄浄 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 塚口 友一 和歌山県和歌山市湊1850番地 住友金属工 業株式会社和歌山製鉄所内 (72)発明者 川本 正幸 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 原 茂太 大阪府吹田市山田丘2−1 大阪大学工学 部内 (72)発明者 横谷 真一郎 埼玉県南埼玉郡宮代町学園台4−1 日本 工業大学内 (72)発明者 野々部 和男 岡山県備前市浦伊部1175 九州耐火煉瓦株 式会社内 Fターム(参考) 4E004 FB10 MB20 NB01 NB02 NC01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yujo Marukawa 4-33, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Inside Sumitomo Metal Industries, Ltd. (72) Inventor Yuichi Tsukaguchi 1850 Minato, Wakayama-shi, Wakayama Sumitomo Inside the Wakayama Works, Metal Industry Co., Ltd. (72) Masayuki Kawamoto 4-33, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Inside Sumitomo Metal Industries Co., Ltd. (72) Shigeta Hara 2- Yamadaoka, Suita City, Osaka Prefecture 1 Osaka University Faculty of Engineering (72) Inventor Shinichiro Yokotani 4-1 Miyashiromachi Gakuendai, Minamisaitama-gun, Saitama 4-1 Within Japan Institute of Technology (72) Inventor Kazuo Nonobe 1175 Urayaibe, Bizen-shi, Okayama Prefecture Reference) 4E004 FB10 MB20 NB01 NB02 NC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2孔或いはそれ以上の複数の吐出孔を有
する浸漬ノズルを使用して鋳型内に溶鋼を供給し、幅が
600(mm)以上の矩形あるいは概略矩形断面を有す
る鋼鋳片を連続鋳造するに際し、タンディッシュから鋳
型に供給される溶鋼に浸漬ノズル内で角速度が6π〜1
5π(rad/sec)の範囲内の旋回を与えることを
特徴とする鋼の連続鋳造方法。
1. A molten steel is supplied into a mold using an immersion nozzle having two or more discharge holes, and a steel slab having a rectangular or roughly rectangular cross section having a width of 600 (mm) or more is obtained. During continuous casting, the angular velocity in the molten steel supplied from the tundish to the mold is 6π to 1 in the immersion nozzle.
A method for continuously casting steel, wherein a turning is provided within a range of 5π (rad / sec).
【請求項2】 浸漬ノズル内における角速度が6π〜1
5π(rad/sec)の範囲内の旋回を、浸漬ノズル
内の吐出孔上端から100〜600(mm)の位置に設
置した旋回付与機構によって与えることを特徴とする請
求項1記載の鋼の連続鋳造方法。
2. An immersion nozzle having an angular velocity of 6π to 1
2. The steel continuity according to claim 1, wherein the turning within a range of 5π (rad / sec) is given by a turning imparting mechanism installed at a position of 100 to 600 (mm) from the upper end of the discharge hole in the immersion nozzle. Casting method.
【請求項3】 溶鋼供給量をQ(ton/分)、浸漬ノ
ズルに設けた旋回付与機構部の最小流路断面積をSl
(cm2 )、流量制御位置から旋回付与機構部上端まで
の高さをhl (m)とした場合に下記式の関係を満足
し、かつ、旋回付与機構部の入口側から出口側迄の間の
長さをL(m)、旋回付与機構部の直径をd(m)、そ
の部分で付与される旋回角度をnπ(rad)とした場
合に、前記L、d、nの間に式の関係を満足するノズ
ル内溶鋼流への旋回付与機構を使用することを特徴とす
る請求項1又は2記載の連続鋳造方法。 Q/S1 ≦0.186×(h1 )1/2 … L≧1.1×n×d …
3. The supply amount of molten steel is Q (ton / min), and the minimum flow path cross-sectional area of the swirling mechanism provided in the immersion nozzle is Sl.
(Cm 2 ), when the height from the flow control position to the upper end of the swirling mechanism is hl (m), the relationship of the following formula is satisfied, and between the inlet side and the outlet side of the swirling mechanism. Is the length of L (m), the diameter of the turning applying mechanism is d (m), and the turning angle given at that portion is nπ (rad). The continuous casting method according to claim 1 or 2, wherein a mechanism for imparting a swirl to the molten steel flow in the nozzle that satisfies the relationship is used. Q / S1≤0.186 * (h1) 1/2 ... L≥1.1 * nxd ...
【請求項4】 溶鋼供給量をQ(ton/分)、旋回付
与機構部より下部における浸漬ノズルの最小流路断面積
をS0 (cm2 )とした場合、下記式の関係を満足す
るように鋳造することを特徴とする請求項1〜3の何れ
か記載の鋼の連続鋳造方法。 0.07≦Q/S0 ≦0.1 …
4. When the molten steel supply amount is Q (ton / min) and the minimum flow path cross-sectional area of the immersion nozzle below the swirl applying mechanism is S0 (cm 2 ), the relation of the following equation is satisfied. The method for continuously casting steel according to claim 1, wherein the steel is cast. 0.07 ≦ Q / S0 ≦ 0.1 ...
JP2001048698A 2001-02-23 2001-02-23 Steel continuous casting method Expired - Fee Related JP3524507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048698A JP3524507B2 (en) 2001-02-23 2001-02-23 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048698A JP3524507B2 (en) 2001-02-23 2001-02-23 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2002248551A true JP2002248551A (en) 2002-09-03
JP3524507B2 JP3524507B2 (en) 2004-05-10

Family

ID=18909922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048698A Expired - Fee Related JP3524507B2 (en) 2001-02-23 2001-02-23 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3524507B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100333865C (en) * 2005-08-03 2007-08-29 东北大学 Molten steel spin type continuous casting pouring basket
JP2008006456A (en) * 2006-06-28 2008-01-17 Kyocera Corp Stoke and low pressure casting apparatus using it
JP2013202684A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumitomo Metal Corp Method of continuously casting molten metal
CN103521730A (en) * 2013-10-14 2014-01-22 山西太钢不锈钢股份有限公司 Method of multi-furnace continuous casting of ferritic stainless steel rectangular blanks
JP2019209368A (en) * 2018-06-07 2019-12-12 日本製鉄株式会社 Molten-metal injection nozzle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100333865C (en) * 2005-08-03 2007-08-29 东北大学 Molten steel spin type continuous casting pouring basket
JP2008006456A (en) * 2006-06-28 2008-01-17 Kyocera Corp Stoke and low pressure casting apparatus using it
JP4671922B2 (en) * 2006-06-28 2011-04-20 京セラ株式会社 Stoke and low pressure casting equipment using the same
JP2013202684A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumitomo Metal Corp Method of continuously casting molten metal
CN103521730A (en) * 2013-10-14 2014-01-22 山西太钢不锈钢股份有限公司 Method of multi-furnace continuous casting of ferritic stainless steel rectangular blanks
CN103521730B (en) * 2013-10-14 2015-11-25 山西太钢不锈钢股份有限公司 A kind of method of ferritic stainless steel rectangular bloom many stoves continuous casting
JP2019209368A (en) * 2018-06-07 2019-12-12 日本製鉄株式会社 Molten-metal injection nozzle
JP7059816B2 (en) 2018-06-07 2022-04-26 日本製鉄株式会社 Molten metal injection nozzle

Also Published As

Publication number Publication date
JP3524507B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP6129435B1 (en) Continuous casting method
EP2269750A1 (en) Method for continuous casting of steel and electromagnetic stirrer usable therefor
WO1999015291A1 (en) Immersion nozzle
JP2021079418A (en) Twin-roll-type continuous casting apparatus, and twin-roll-type continuous casting method
CN108025354B (en) Continuous casting method of slab
JP2002248551A (en) Continuous casting method for steel
JP2002239690A (en) Immersion nozzle for continuous casting and continuous casting method
WO2011111858A1 (en) Method for continuously casting steel and process for producing steel sheet
JPH07303949A (en) Continuous casting method and nozzle for continuous casting
JP3324598B2 (en) Continuous slab casting method and immersion nozzle
JP4407260B2 (en) Steel continuous casting method
JP6331757B2 (en) Equipment for continuous casting of steel
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method
JP3583954B2 (en) Continuous casting method
JP2001087846A (en) Continuous casting method of steel slab and continuous casting device
JP4211573B2 (en) Steel continuous casting method
JP4983320B2 (en) Method and apparatus for continuous casting of steel
JP4492333B2 (en) Steel continuous casting method
JP2018058097A (en) Immersion nozzle, continuous casting machine, and continuous casting method
JP2000126850A (en) Continuous casting method
JP2001321903A (en) Method for producing continuously cast slab
JP2013202684A (en) Method of continuously casting molten metal
JP2002103009A (en) Continuous casting method
JP2024047886A (en) Continuous casting mold and method of manufacturing the same
RU2030958C1 (en) Immersion nozzle for metal continuous casting

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20031203

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040212

Free format text: JAPANESE INTERMEDIATE CODE: A61

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130220

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130220

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20140220

LAPS Cancellation because of no payment of annual fees