JP4211573B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4211573B2
JP4211573B2 JP2003375633A JP2003375633A JP4211573B2 JP 4211573 B2 JP4211573 B2 JP 4211573B2 JP 2003375633 A JP2003375633 A JP 2003375633A JP 2003375633 A JP2003375633 A JP 2003375633A JP 4211573 B2 JP4211573 B2 JP 4211573B2
Authority
JP
Japan
Prior art keywords
nozzle
molten steel
flow
swirl
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003375633A
Other languages
Japanese (ja)
Other versions
JP2005138132A (en
Inventor
浩史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003375633A priority Critical patent/JP4211573B2/en
Publication of JP2005138132A publication Critical patent/JP2005138132A/en
Application granted granted Critical
Publication of JP4211573B2 publication Critical patent/JP4211573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、内管部に捩り板型旋回羽根を設置して、該内管部を流下する溶鋼に旋回流を付与する連続鋳造用浸漬ノズル(以下、「旋回流ノズル」ともいう)を用いた連続鋳造方法に関するものである。   The present invention uses a continuous casting immersion nozzle (hereinafter also referred to as a “swirl flow nozzle”) in which a twisted plate type swirl vane is installed in the inner pipe portion and a swirl flow is imparted to the molten steel flowing down the inner pipe portion. The present invention relates to a continuous casting method.

内管部に旋回羽根を設置し、底部近傍側壁に対向する2つの吐出孔を設けた浸漬ノズル(2孔ノズル)をタンディッシュと鋳型の間の溶鋼移送に用いると、浸漬ノズル内を流下する溶鋼に旋回流が付与され、遠心力により2つの吐出孔に溶鋼が強制的に分配されて吐出するので、2つの吐出孔からの吐出流量や吐出速度の変動が小さくなって吐出孔からの吐出流の状態が安定し、鋳型内に不均等な流動が生じ難くなる。その効果として、鋳型内の凝固シェルへの非金属介在物、気泡、モールドパウダー等の捕捉に起因する鋳片表面疵を低減することができ、特に矩形比の大きな広幅スラブ連鋳を行う場合に有効であることが知られている。例えば、特許文献1、特許文献2には、浸漬ノズル内に溶鋼を旋回させるための羽根を設置した旋回流ノズル技術が開示されている。また、旋回流ノズルの有効性については、例えば、非特許文献1に紹介されている。   When a swirl vane is installed in the inner pipe part and an immersion nozzle (two-hole nozzle) provided with two discharge holes facing the side wall near the bottom is used for transferring molten steel between the tundish and the mold, it flows down in the immersion nozzle. A swirl flow is applied to the molten steel, and the molten steel is forcibly distributed and discharged to the two discharge holes by centrifugal force, so fluctuations in the discharge flow rate and discharge speed from the two discharge holes are reduced and the discharge from the discharge holes is reduced. The flow state is stable, and uneven flow is less likely to occur in the mold. As its effect, it is possible to reduce slab surface flaws caused by trapping non-metallic inclusions, bubbles, mold powder, etc. in the solidified shell in the mold, especially when performing wide slab continuous casting with a large rectangular ratio It is known to be effective. For example, Patent Document 1 and Patent Document 2 disclose a swirl flow nozzle technique in which blades for swirling molten steel are installed in an immersion nozzle. Moreover, the effectiveness of the swirl flow nozzle is introduced in Non-Patent Document 1, for example.

しかし、それぞれの開示技術には、以下の様な問題点があった。旋回流ノズルでは、旋回羽根設置部位の流路横断面が小さいことから、アルミナなどの非金属介在物付着による閉塞が起こり易く、長時間使用しているうちに、旋回羽根もしくは旋回羽根装着部周辺のノズル内面にアルミナなど非金属介在物の付着が進行し、ノズル内の溶鋼が良好な旋回流とならない状態となる。一般的に、浸漬ノズルの閉塞対策として、浸漬ノズル内にArガスを供給する方法が用いられる。多量のArガスを流下する溶鋼に吹込むと、ノズル内面へのアルミナなどの付着量が減少し、鋳造時間を延ばすことが可能である。しかし、モールド内の溶鋼中にArガスの気泡によるボイリングが発生し、モールドパウダーを巻込み、鋳片表皮下にパウダー性欠陥を生じたり、また鋳片にArガスの気泡が捕捉され、気泡性欠陥を生じることが知られている。   However, each disclosed technique has the following problems. With swirling nozzles, the flow passage cross section of the swirling blade installation site is small, so clogging due to adhesion of non-metallic inclusions such as alumina is likely to occur. Adhesion of non-metallic inclusions such as alumina proceeds on the inner surface of the nozzle, and the molten steel in the nozzle is not in a favorable swirl flow. Generally, a method of supplying Ar gas into the immersion nozzle is used as a countermeasure against the blockage of the immersion nozzle. When a large amount of Ar gas is blown into the molten steel, the amount of alumina or the like attached to the inner surface of the nozzle is reduced, and the casting time can be extended. However, boiling due to Ar gas bubbles occurs in the molten steel in the mold, mold powder is entrained, and powder defects occur in the surface of the slab, or Ar gas bubbles are trapped in the slab, resulting in a It is known to cause defects.

特開平11−815291号Japanese Patent Laid-Open No. 11-815291 特開平11−90593号JP-A-11-90593 CAMP−ISIJ Vol.15(2002),165CAMP-ISIJ Vol. 15 (2002), 165

従って、ノズル閉塞を防止しつつ鋳片欠陥を抑制するために、旋回流ノズル内のArガス吹込み量(流量)の適正範囲を知る必要がある。更に、旋回流ノズルの有効性を得る上で、旋回流ノズル内にて十分な旋回強度の形成が必要である。
しかしながら従来、内管部に捩り板型旋回羽根を設置した旋回流ノズルを連続鋳造方法において実用化するために要求される条件については、充分に検討されていない。
本発明は、かかる実情に鑑みてなされたものであり、内管部に捩り板型旋回羽根を設置した旋回流ノズルを実用化するのに際し、最適な連続鋳造方法を提供することを目的とする。
Therefore, in order to suppress slab defects while preventing nozzle blockage, it is necessary to know an appropriate range of the Ar gas blowing amount (flow rate) in the swirling nozzle. Furthermore, in order to obtain the effectiveness of the swirl flow nozzle, it is necessary to form a sufficient swirl strength in the swirl flow nozzle.
However, the conditions required for putting a swirl flow nozzle having a twisted plate swirl vane in the inner pipe portion into practical use in a continuous casting method have not been sufficiently studied.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an optimum continuous casting method for practical use of a swirl flow nozzle in which a twist plate swirl blade is installed in an inner tube portion. .

本発明者は、内管部に捩り板型旋回羽根を設置した旋回流ノズルを実用化するために最適な連続鋳造方法を見出すべく、各種実験やシミュレーションを重ねた。その結果、溶鋼流の旋回強度は、ノズル内への溶鋼供給量(溶鋼通過量)が増加するに伴い上昇するが、溶鋼供給量が低い場合には安定した旋回流が形成されないことが明らかとなった。
上記知見に基づき、本発明においては、タンディッシュと鋳型の間に、底部近傍側壁に対向して開口する2つの吐出孔を有し且つ溶鋼流を旋回させるための捩り板型旋回羽根を内部に設けた浸漬ノズルを設け、タンディッシュ内の溶鋼を前記浸漬ノズル内を通過させて鋳型内に供給し、かつ、該浸漬ノズル内を通過する溶鋼中に不活性ガスを供給する連続鋳造において、浸漬ノズル内を通過させる溶鋼の供給量Q(ton/min)を2.5≦Q≦5.2の範囲に制御し、かつ、溶鋼中へ供給する不活性ガスの流量q(Nリットル/min)を2≦q≦15の範囲に制御する。
また、上記本発明の方法では、タンディッシュから前記浸漬ノズル内を通過し鋳型内へ供給される溶鋼の供給量Qを前記範囲に制限するため、タンディッシュと前記浸漬ノズルとの間に2層式構造スライディングゲートを設ける。
The present inventor has conducted various experiments and simulations in order to find an optimum continuous casting method for practical use of a swirl flow nozzle in which a twisted plate swirl blade is installed in the inner pipe portion. As a result, it is clear that the swirl strength of the molten steel flow increases as the molten steel supply amount (molten steel passage amount) into the nozzle increases, but when the molten steel supply amount is low, a stable swirl flow is not formed. became.
Based on the above knowledge, in the present invention, the twist plate type swirl vane for swirling the molten steel flow is provided inside the tundish and the mold, which has two discharge holes opened facing the side wall near the bottom. In continuous casting in which the provided immersion nozzle is provided, the molten steel in the tundish is passed through the immersion nozzle and supplied into the mold, and the inert gas is supplied into the molten steel passing through the immersion nozzle. The flow rate q (N liters / min) of the inert gas supplied into the molten steel while controlling the supply amount Q (ton / min) of the molten steel passing through the nozzle in a range of 2.5 ≦ Q ≦ 5.2. Is controlled in the range of 2 ≦ q ≦ 15.
Moreover, in the method of the present invention, two layers are provided between the tundish and the immersion nozzle in order to limit the supply amount Q of the molten steel that passes from the tundish through the immersion nozzle and is supplied into the mold to the above range. Formula structure sliding gate is provided.

本発明によれば、旋回流ノズルを用いる連続鋳造において、旋回羽根が有効に機能し、ノズル底部側面の吐出孔からの吐出流量や吐出速度の変動が小さくなるため、安定化する。
また、本発明によれば、溶鋼中への不活性ガス吹込みにより旋回羽根やノズル内面の付着物が堆積しにくくなるため、旋回流の不均一化、不安定化、ノズル閉塞が効果的に防止される。
従って、鋳型内に不均等な流動が生じ難く、鋳型内流動の不均等に起因する鋳片表面疵を低減し、良好な表面品質を有する鋳片を安定生産する効果が期待できる。
According to the present invention, in continuous casting using a swirl flow nozzle, swirl vanes function effectively, and fluctuations in discharge flow rate and discharge speed from the discharge holes on the side surface of the nozzle bottom are reduced, so that stabilization is achieved.
In addition, according to the present invention, it becomes difficult for deposits on the swirl vane and the inner surface of the nozzle to be deposited due to the blowing of inert gas into the molten steel. Is prevented.
Therefore, it is difficult to cause uneven flow in the mold, and the effect of stably producing a slab having good surface quality can be expected by reducing slab surface flaws resulting from uneven flow in the mold.

本発明の連続鋳造方法は、タンディッシュと鋳型の間に旋回流ノズルを設置し、タンディッシュから鋳型内へ溶鋼を供給する際に、タンディッシュ内の溶鋼を旋回流ノズルの入り口からノズル内管部に供給、通過させて旋回流を発生させると共に、不活性ガスを旋回流ノズルの上流の位置又は旋回流ノズル内壁から、流下する溶鋼中に吹き込む。ノズル流路内を通過した溶鋼は、旋回流となってノズルの底部近傍側壁に設けた吐出孔から鋳型内に供給される。
本発明においては、均一で安定した旋回流を鋳型内へ長時間に渡り吐出し、良好な表面品質を有する鋳片を安定生産するために、前記旋回流ノズル内を通過させる溶鋼供給量Qを2.5ton/min以上、7.0ton/min以下、好ましくは3.5ton/min以上、7.0ton/min以下とし、溶鋼中に供給する不活性ガス流量qを2Nリットル/min以上、15Nリットル/min以下、好ましくは2Nリットル/min以上、10Nリットル/min以下とする。
In the continuous casting method of the present invention, when a swirl flow nozzle is installed between the tundish and the mold, and molten steel is supplied from the tundish into the mold, the molten steel in the tundish is fed from the entrance of the swirl flow nozzle to the nozzle inner tube. The swirl flow is generated by supplying and passing through the section, and the inert gas is blown into the flowing steel from the position upstream of the swirl flow nozzle or the inner wall of the swirl flow nozzle. The molten steel that has passed through the nozzle flow path is turned into a swirl flow and supplied into the mold from a discharge hole provided in the side wall near the bottom of the nozzle.
In the present invention, in order to stably produce a slab having a good surface quality by discharging a uniform and stable swirling flow into a mold for a long time, a molten steel supply amount Q passing through the swirling flow nozzle is set to 2.5 ton / min or more and 7.0 ton / min or less, preferably 3.5 ton / min or more and 7.0 ton / min or less, and the inert gas flow rate q supplied into the molten steel is 2 N liter / min or more and 15 N liter. / Min or less, preferably 2 N liter / min or more and 10 N liter / min or less.

鋳片表面品質を向上せしめるためには、ある程度以上のノズル内への溶鋼供給が必要である。溶鋼供給量が2.5ton/min未満の場合には、旋回付与に必要なエネルギーが不足し旋回流の安定性が悪くなる結果、良好な鋳片表面品質が得られにくい。
一方、溶鋼供給量が7.0ton/minを超えると、旋回力又は吐出圧が強すぎるため鋳型内湯面レベルが局部的に変動しやすくなる。その結果、モールドパウダーの巻込みによりパウダー性欠陥が発生しやすい。
また、旋回流ノズルの閉塞対策として旋回流ノズル内へ不活性ガスを吹き込むが、不活性ガス流量が2Nリットル/min未満の場合には閉塞防止効果が充分ではないため、旋回羽根やノズル内面に付着物が堆積して旋回流が不均一又は不安定になり、良好な鋳片表面品質が得られにくいばかりでなく、閉塞により操業が中断される場合がある。
一方、旋回流ノズル内への吹込みArガス流量が15Nリットル/minを超えると、吹込み量が多すぎるためモールドパウダーの巻込みによるパウダー性欠陥や、気泡性欠陥を生じやすくなる。
In order to improve the surface quality of the slab, it is necessary to supply molten steel into the nozzle to some extent. When the molten steel supply rate is less than 2.5 ton / min, the energy required for swirling is insufficient and the stability of the swirling flow is deteriorated. As a result, it is difficult to obtain good slab surface quality.
On the other hand, when the molten steel supply rate exceeds 7.0 ton / min, the swivel force or the discharge pressure is too strong, and the mold surface level in the mold tends to fluctuate locally. As a result, powdery defects are likely to occur due to the entrainment of mold powder.
In addition, as an anti-clogging measure for the swirl flow nozzle, an inert gas is blown into the swirl flow nozzle. However, if the flow rate of the inert gas is less than 2 N liters / min, the clogging prevention effect is not sufficient. The deposits accumulate and the swirl flow becomes uneven or unstable, and it is difficult to obtain good slab surface quality, and the operation may be interrupted due to blockage.
On the other hand, when the flow rate of Ar gas blown into the swirling flow nozzle exceeds 15 N liters / min, the amount of blown air is too large, and therefore, a powdery defect and a bubble defect are likely to occur due to the mold powder being caught.

図1に、本発明の連続鋳造方法を実施し得る装置の一構成例を示す。図1の連続鋳造装置1は、連続鋳造用タンデュッシュ2の底部に設けられた出口に、上ノズル3、2層式構造のスライディングゲート4、旋回流ノズル5が、順次接続されている。旋回流ノズル5の底部(下端)は鋳型6内の溶鋼中に浸漬され、底部近傍側壁に設けられた対向する2つの吐出孔(5a)は鋳型内溶鋼中に没している。
図2は、図1の装置内に設置された2層構造スライディングゲート4と旋回流ノズル5の概略を示す拡大断面図である。2層式構造スライディングゲートは、上プレート4aと下プレート4bとが、これら上下いずれか一方又は両方がスライド可能な状態で重ねられている。上プレートには不活性ガス吹込みノズル4cが設けられ、多孔質耐火物製の流路内壁4dに接続されている。不活性ガスは、吹込みノズル4cを通り、上プレートの多孔質耐火物製流路内壁4dから溶鋼へ吹き込まれる。
旋回流ノズル5の内管部には、捩り板型旋回羽根7が設置されており、この旋回羽根の位置を溶鋼が通過する時に旋回流が発生する。旋回流ノズルの寸法は、通常、内径が50〜300mm程度、長さが500〜1000mm程度である。旋回流ノズル本体は、例えば、アルミナ−カーボン質や、アルミナ−シリカ−カーボン質等により形成される。
図3(a)(b)(c)に捩り板型旋回羽根を示す。図中の符号については、Lが捩り板長さ、Dが捩り板幅、Tは捩り板厚を意味する。捩り板型の旋回羽根は通常、窒化ホウ素焼結品等の耐火物により形成される。旋回羽根は、通常、長さLと幅Dの比(L/D)が0.4〜2.0、捩り角θが90°〜180°、捩りピッチが0.8〜2.0回転の範囲内とされる。ここで、捩りピッチとは、捩り板が180°捩られるのに幅Dの何倍の長さLを要するかという、捩り強さを表す指標である。
FIG. 1 shows an example of the configuration of an apparatus that can carry out the continuous casting method of the present invention. In the continuous casting apparatus 1 of FIG. 1, an upper nozzle 3, a two-layer sliding gate 4, and a swirling flow nozzle 5 are sequentially connected to an outlet provided at the bottom of a continuous casting tundush 2. The bottom part (lower end) of the swirl flow nozzle 5 is immersed in the molten steel in the mold 6, and the two opposing discharge holes (5a) provided in the side wall near the bottom part are immersed in the molten steel in the mold.
FIG. 2 is an enlarged sectional view showing an outline of the two-layer structure sliding gate 4 and the swirl flow nozzle 5 installed in the apparatus of FIG. In the two-layer structure sliding gate, the upper plate 4a and the lower plate 4b are overlapped so that either one or both of them can slide. The upper plate is provided with an inert gas blowing nozzle 4c and is connected to a flow path inner wall 4d made of porous refractory. The inert gas passes through the blowing nozzle 4c and is blown into the molten steel from the porous refractory flow passage inner wall 4d of the upper plate.
A torsion plate type swirl vane 7 is installed in the inner tube portion of the swirl flow nozzle 5, and swirl flow is generated when the molten steel passes through the position of the swirl vane. The dimensions of the swirl nozzle are usually about 50 to 300 mm in inner diameter and about 500 to 1000 mm in length. The swirl flow nozzle body is made of, for example, alumina-carbon, alumina-silica-carbon, or the like.
FIGS. 3A, 3B and 3C show a twisted plate type swirl blade. Regarding the reference numerals in the figure, L means the torsion plate length, D means the torsion plate width, and T means the torsion plate thickness. The torsion plate type swirl blade is usually formed of a refractory material such as a boron nitride sintered product. The swirl vanes usually have a length L / width D ratio (L / D) of 0.4 to 2.0, a twist angle θ of 90 ° to 180 °, and a twist pitch of 0.8 to 2.0 rotations. Within range. Here, the torsion pitch is an index representing the torsional strength, which is how many times the width D is required for the torsion plate to be twisted 180 °.

上記装置の構成は適宜変更できる。例えば、タンデュッシュと旋回流ノズルは、必要に応じて中間ノズル等の他の部材を介して接続することができる。また、タンデュッシュと旋回流ノズルの間には、溶鋼供給量を調節するためのゲートを設けても良い。ゲートとしては、例えば、2層式又は3層式構造等のスライディングゲートやストッパー等を用いることができるが、2層式構造スライディングゲートを用いる場合には、旋回流ノズル内の捻り板型旋回羽根の直上位置におけるノズル横断面に対し、溶鋼が均一に流下し、均一な旋回流を形成しやすいので好ましい。
旋回流ノズルの吐出孔は、底部近傍側壁に複数開口させるか又は底部に開口させても良い。旋回流ノズルの底部近傍側壁に吐出孔を設ける場合、その数は特に制限されないが、通常は2個又は3個の吐出孔を均等の間隔で設ける。特に、底部近傍側壁に対向する2つの吐出孔を有する2孔ノズルは、旋回流を伴う溶鋼が遠心力により2つの吐出孔に強制的に分配されて吐出するので、2つの吐出孔からの吐出流量や吐出速度の変動が小さくなる。その結果、吐出流の状態が安定し、鋳型内に不均等な流動が生じ難くなる。
The configuration of the apparatus can be changed as appropriate. For example, the tundush and the swirl flow nozzle can be connected via other members such as an intermediate nozzle as necessary. Further, a gate for adjusting the molten steel supply amount may be provided between the tundush and the swirl nozzle. As the gate, for example, a sliding gate such as a two-layer structure or a three-layer structure, a stopper, or the like can be used. When a two-layer structure sliding gate is used, a twisted plate-type swirl vane in a swirl flow nozzle is used. Since the molten steel flows down uniformly and easily forms a uniform swirling flow with respect to the nozzle cross-section at a position immediately above, it is preferable.
A plurality of discharge holes of the swirl flow nozzle may be opened in the side wall near the bottom or may be opened in the bottom. When the discharge holes are provided in the side wall near the bottom of the swirl flow nozzle, the number of discharge holes is not particularly limited, but usually two or three discharge holes are provided at equal intervals. In particular, a two-hole nozzle having two discharge holes facing the side wall in the vicinity of the bottom portion discharges molten steel accompanied by a swirl flow to the two discharge holes forcibly by centrifugal force and discharges them. Variations in flow rate and discharge speed are reduced. As a result, the state of the discharge flow is stabilized, and uneven flow is less likely to occur in the mold.

不活性ガスとしては、Ar(アルゴン)ガスが好ましく用いられるが、特に限定されない。不活性ガスを供給する手段は、タンディッシュ底部の出口から浸漬ノズルの吐出孔に至る流路上の如何なる位置に設けても良く、例えば、タンディッシュ内の上ノズル、スライディングゲートのプレート、浸漬ノズルなどの位置で吹き込みを行うことができる。吹込み部分の構造、材質としては、通常用いられている鋼製の細管、多孔質耐火物などを用いればよい。
捩り板状旋回羽根の位置での閉塞を防止するためには、旋回羽根の上流側で不活性ガスを流路内へ供給し、溶鋼が不活性ガスを充分に含んだ状態で捩り板状旋回羽根の位置を通過させることが好ましい。かかる観点から、不活性ガス供給手段は、タンディッシュ内の上ノズルやスライディングゲートのプレート等のように、スライディングゲート周辺の装置から吹き込むことが好ましい。
すなわち、本発明において、浸漬ノズル内を通過する溶鋼中に不活性ガスを供給するとは、溶鋼が不活性ガスを含んだ状態で浸漬ノズル内を通過できるように不活性ガスを供給することを意味し、浸漬ノズル内を通過中の溶鋼に不活性ガスを供給する場合だけに限られない。
As the inert gas, Ar (argon) gas is preferably used, but is not particularly limited. The means for supplying the inert gas may be provided at any position on the flow path from the outlet of the bottom of the tundish to the discharge hole of the submerged nozzle. For example, the upper nozzle in the tundish, the plate of the sliding gate, the submerged nozzle, etc. Blowing can be performed at the position. As the structure and material of the blowing portion, a steel thin tube, a porous refractory, or the like that is usually used may be used.
In order to prevent clogging at the position of the torsional plate-like swirl vane, an inert gas is supplied into the flow channel upstream of the swirl vane and the twisted plate-like swirl is performed with the molten steel sufficiently containing the inert gas. It is preferable to pass the position of the blade. From this point of view, the inert gas supply means is preferably blown from an apparatus around the sliding gate such as an upper nozzle in the tundish or a sliding gate plate.
That is, in the present invention, supplying the inert gas into the molten steel passing through the immersion nozzle means supplying the inert gas so that the molten steel can pass through the immersion nozzle in a state containing the inert gas. However, the present invention is not limited to the case where the inert gas is supplied to the molten steel passing through the immersion nozzle.

以下に、図1に示す基本構成をもち、1860mm巾×210mm厚みの鋳型、2層式構造のスライディングゲート及び2孔旋回流ノズル(浸漬ノズル形状:内径φ70mm;吐出孔形状:2孔,55mm高さ×90mm巾,上向き10°;旋回羽根形状(図3参照):直径D=100mm,長さL=100mm,ねじり角θ=120°,捩り板厚T=15mm)を具備した連続鋳造装置を用い、Arガス吹き込みを行いながら、[C]≦30ppmの極低炭素鋼の溶鋼を、溶鋼量合計が460tonに達するまで連続鋳造し、鋳片表面疵発生率を調査した結果について記す。また、上記試験と比較するため、上記旋回流ノズルから旋回羽根を取り外した通常の2孔ノズルを用い、他の条件は同様にして連続鋳造を行った。   The following is a mold having the basic configuration shown in FIG. 1, a 1860 mm wide × 210 mm thick mold, a two-layered sliding gate and a two-hole swirl nozzle (immersion nozzle shape: inner diameter φ70 mm; discharge hole shape: two holes, 55 mm high) Length × 90 mm width, upward 10 °; swirl blade shape (see FIG. 3): continuous casting apparatus having diameter D = 100 mm, length L = 100 mm, twist angle θ = 120 °, twist plate thickness T = 15 mm) The results of the continuous casting of the molten steel of ultra-low carbon steel with [C] ≦ 30 ppm until the total molten steel amount reaches 460 tons while performing Ar gas blowing, and the slab surface flaw occurrence rate will be described. For comparison with the above test, a normal two-hole nozzle in which the swirling blades were removed from the swirling flow nozzle was used, and continuous casting was performed in the same manner under other conditions.

旋回流ノズルを用いた場合の溶鋼供給量と鋳片表面疵発生率の関係は、図4のグラフに示す結果となった。溶鋼供給量が2.5ton/min未満の場合には、旋回付与に必要なエネルギーが不足し旋回流の安定性が悪くなる結果、良好な鋳片表面品質が得られなかった。
一方、溶鋼供給量が7.0ton/minを超えると、旋回力又は吐出圧が強すぎるため鋳型内湯面レベルが局部的に変動しやすくなる結果、モールドパウダーの巻込みにより鋳片表面にパウダー性欠陥が発生しやすくなった。
When the swirl flow nozzle is used, the relationship between the molten steel supply amount and the slab surface flaw occurrence rate is the result shown in the graph of FIG. When the molten steel supply rate is less than 2.5 ton / min, the energy required for swirling is insufficient and the stability of the swirling flow is deteriorated. As a result, good slab surface quality cannot be obtained.
On the other hand, if the molten steel supply rate exceeds 7.0 ton / min, the swirl force or discharge pressure is too strong, and the mold surface level tends to fluctuate locally. Defects are likely to occur.

旋回流ノズルを用いた場合のArガス流量と鋳片表面疵発生率の関係は、図5のグラフに示す結果となった。通常の2孔ノズルを用いた比較試験の結果も同じグラフ上に示す。
旋回流ノズルの閉塞対策としてノズル内にArガスを吹込む際に、ノズル内への吹込みArガス流量が15Nリットル/minを超えると、モールドパウダーの巻込みによるパウダー性欠陥や、気泡性欠陥を生じやすくなる結果、鋳片表面品質が悪化した。
The relationship between the Ar gas flow rate and the slab surface flaw occurrence rate when the swirl flow nozzle was used was the result shown in the graph of FIG. The results of a comparative test using a normal two-hole nozzle are also shown on the same graph.
When Ar gas is blown into the nozzle as a countermeasure against clogging of the swirling flow nozzle, if the flow rate of Ar gas into the nozzle exceeds 15 N liters / min, powder defects and bubble defects due to entrainment of mold powder As a result, the surface quality of the slab deteriorated.

旋回流ノズルを用いた場合のArガス流量とノズル内管部の介在物付着厚みの関係は、図6のグラフに示す結果となった。通常の2孔ノズルを用いた比較試験の結果も同じグラフ上に示す。旋回流ノズルの閉塞対策としてノズル内にArガスを吹込む際に、Arガス流量が2Nリットル/min未満の場合には、ノズル閉塞が発生した。   The relationship between the Ar gas flow rate when the swirl flow nozzle is used and the inclusion adhesion thickness of the nozzle inner tube portion is the result shown in the graph of FIG. The results of a comparative test using a normal two-hole nozzle are also shown on the same graph. When Ar gas was blown into the nozzle as a countermeasure against clogging of the swirling flow nozzle, nozzle clogging occurred when the Ar gas flow rate was less than 2 N liters / min.

上記図5、図6は、通常の2孔ノズルと本発明で用いる旋回流ノズルの適正なArガス吹き込み量の比較を示している。
通常の2孔ノズルを用いた場合、少量のArガスを流すことにより、浸漬ノズル詰まりを防止できるが、2〜3Nリットル/min以上の流量では、鋳片表面にパウダー性欠陥や気泡性欠陥などの鋳片表面欠陥が発生しやすいことが分かる。通常の2孔ノズルを用いた場合、鋳型内の溶鋼の流動が不均一な場合があり、その状態でArガスを吹き込むことにより、溶鋼の流動がさらに不均一となる結果、鋳片表面欠陥が発生しやすくなると考えられる。
FIG. 5 and FIG. 6 show a comparison of the proper Ar gas blowing amount between the normal two-hole nozzle and the swirl flow nozzle used in the present invention.
When a normal two-hole nozzle is used, clogging of the immersion nozzle can be prevented by flowing a small amount of Ar gas. However, at a flow rate of 2 to 3 N liters / min or more, powder defects or bubble defects are present on the surface of the slab. It can be seen that slab surface defects are likely to occur. When a normal two-hole nozzle is used, the flow of molten steel in the mold may be uneven, and by blowing Ar gas in that state, the flow of molten steel becomes more uneven, resulting in slab surface defects. This is likely to occur.

それに対し、本願発明の方法で用いる旋回流ノズルの場合、Arガス流量を2Nリットル/min以上とすることで、浸漬ノズル詰まりを効果的に防止でき、かつ、15Nリットル/min以下とすることで上記の鋳片表面欠陥を防止できることが分かる。
このように、本願発明の方法で用いる旋回流ノズルの場合には、Arガス流量の適正流量範囲が広くなる。旋回流ノズルを用いることにより、鋳型内の溶鋼の流動が均一化されるため、Arガスの吹き込み流量を多くすることができる。
On the other hand, in the case of the swirling flow nozzle used in the method of the present invention, by setting the Ar gas flow rate to 2 N liter / min or more, it is possible to effectively prevent the clogging of the immersion nozzle and to make it 15 N liter / min or less. It turns out that said slab surface defect can be prevented.
Thus, in the case of the swirl flow nozzle used in the method of the present invention, the appropriate flow rate range of the Ar gas flow rate becomes wide. By using the swirl flow nozzle, the flow of the molten steel in the mold is made uniform, so that the Ar gas blowing flow rate can be increased.

一方、旋回流ノズル内を流下する溶鋼は、ノズル内管部に設置した捩り板型旋回羽根により2つの流れに分岐され、かつ、流れにねじれを生じさせたあと、旋回羽根下端において合流して、2つの高流速部位が2重ラセン状に分布する旋回流が形成される。この旋回流形成過程において、ノズル内管部を流下する溶鋼を捩り板型旋回羽根の両側に均等に分配することによって、より均一な旋回流が形成され、鋳片品質が向上する。従って、ノズル内管部を通過する溶鋼流が、旋回羽根の直上位置において、ノズル内管横断面に対し全体に広がって、偏りが少ないことが望ましい。   On the other hand, the molten steel flowing down in the swirling nozzle is branched into two flows by a twisted plate swirling blade installed in the nozzle inner pipe, and after twisting the flow, it joins at the lower end of the swirling blade. A swirling flow in which two high flow velocity portions are distributed in a double spiral shape is formed. In this swirl flow forming process, the molten steel flowing down the nozzle inner pipe portion is evenly distributed on both sides of the twisted plate swirl blade, whereby a more uniform swirl flow is formed and the slab quality is improved. Therefore, it is desirable that the molten steel flow that passes through the nozzle inner pipe portion spreads over the entire cross section of the nozzle inner pipe at the position directly above the swirl vane and is less biased.

ノズル内管横断面に対する溶鋼流の偏りは、スライディングゲートの構造により影響を受ける。
2層式構造のスライディングゲートの場合、通常、下プレートをスライディングさせて流量調整するので、溶鋼はスライディングゲート出口から、扇形状に浸漬ノズルの上部内管全体に広がって、捩り板型旋回羽根の直上に到達する。
一方、3層式の場合は、上下のプレートは固定であり、中間のプレートで溶鋼流量を調節するため、溶鋼は、スライディグゲート出口から、広がることなく、そのまま真下に浸漬ノズル内管内を流下する。
従って、3層式よりも2層式構造のスライディングゲートの方が、捻り板型旋回羽根の直上位置に到達した溶鋼が、ノズル横断面に対し全体に広がった、均一な溶鋼流となるので、より安定した旋回流が形成され、旋回流ノズルの効果が大きくなる。
The deviation of the molten steel flow relative to the nozzle inner tube cross-section is affected by the structure of the sliding gate.
In the case of a two-layer sliding gate, the flow rate is adjusted by sliding the lower plate, so the molten steel spreads from the sliding gate outlet to the entire upper inner pipe of the immersion nozzle in the shape of a fan. Reach directly above.
On the other hand, in the case of the three-layer type, the upper and lower plates are fixed, and the flow rate of the molten steel is adjusted by an intermediate plate. Therefore, the molten steel flows down from the sliding gate outlet directly below the inner pipe of the immersion nozzle. To do.
Therefore, since the sliding gate of the two-layer structure rather than the three-layer structure has reached a position directly above the twisted plate-type swirl blade, the molten steel spreads over the entire nozzle cross section, resulting in a uniform molten steel flow. A more stable swirl flow is formed, and the effect of the swirl flow nozzle is increased.

表1に2層式と3層式のスライディングゲートを用いた場合の、浸漬ノズル内溶鋼流動の流動解析シミュレーション結果の1例を示す。鋳型形状;1800mm巾×250mm厚さ,鋳造速度;1.2m/min、浸漬ノズル形状:内径φ;70mm,吐出孔;90mm高さ×55mm巾,吐出角度;上向き10°の条件で流動解析を行った。   Table 1 shows an example of the flow analysis simulation result of the molten steel flow in the submerged nozzle when two-layer and three-layer sliding gates are used. Mold shape: 1800 mm width x 250 mm thickness, casting speed: 1.2 m / min, immersion nozzle shape: inner diameter φ: 70 mm, discharge hole: 90 mm height x 55 mm width, discharge angle: upward flow 10 ° went.

Figure 0004211573
Figure 0004211573

表1において「偏差」とは、左右の吐出孔からの溶鋼吐出流速の比であり、偏差の増加に伴いノズル断面を流下する溶鋼の横断面の均一性が損なわれることを意味し、下記式により定義される。
(偏差の定義式)
偏差(%)=(左側吐出孔の溶鋼吐出量−右側吐出孔の溶鋼吐出量)/[(左側吐出孔の溶鋼吐出量+右側吐出孔の溶鋼吐出量)/2]×100
表1に示すとおり、左右の吐出孔から流出する溶鋼流量の差である偏差は、3層式の場合よりも2層式の場合の方が小さいことが流動解析結果から分かる。
In Table 1, “deviation” is the ratio of the molten steel discharge flow rate from the left and right discharge holes, and means that the uniformity of the cross section of the molten steel flowing down the nozzle cross section is impaired as the deviation increases. Defined by
(Definition formula for deviation)
Deviation (%) = (Molten steel discharge amount of left discharge hole-Molten steel discharge amount of right discharge hole) / [(Molten steel discharge amount of left discharge hole + Molten steel discharge amount of right discharge hole) / 2] × 100
As shown in Table 1, it can be seen from the flow analysis results that the deviation, which is the difference between the flow rates of the molten steel flowing out from the left and right discharge holes, is smaller in the two-layer type than in the three-layer type.

以上の知見から、本発明者らは、旋回流ノズル適用の際、適切な連続鋳造方法を定めるに到った。本発明者らは、さらに本発明に効果を確認するために、以下に示す如く様々な条件で極低炭素鋼([C]≦30ppm)のスラブ連続鋳造試験(実施例、比較例)を行って、吐出流偏差(%)、ノズル閉塞評価、表面疵発生率(%)、表面疵評価を調査した。
表2に本発明の実施例と比較例の条件及びその結果を示す。鋳片サイズは表2に示すとおりである。浸漬ノズル形状は、通常の2孔ノズルの場合、ノズル内径80mm、吐出孔幅55mm、吐出孔高さ90mm、吐出孔上向き角度10°とした。旋回流ノズルの場合、上記2孔ノズルのサイズのうち、耐火物製旋回羽根を設ける位置の内管部径を100mmとしたノズルを用いた。旋回羽根の形状は直径D=100mm、長さL=100mm、ねじり角θ=120°、捩り板厚T=15mmとした。
From the above knowledge, the present inventors have come up with an appropriate continuous casting method when applying a swirl flow nozzle. In order to further confirm the effect of the present invention, the present inventors conducted slab continuous casting tests (Examples and Comparative Examples) of ultra-low carbon steel ([C] ≦ 30 ppm) under various conditions as shown below. The discharge flow deviation (%), nozzle clogging evaluation, surface flaw occurrence rate (%), and surface flaw evaluation were investigated.
Table 2 shows the conditions and results of Examples and Comparative Examples of the present invention. The slab size is as shown in Table 2. In the case of a normal two-hole nozzle, the immersion nozzle shape was such that the nozzle inner diameter was 80 mm, the discharge hole width was 55 mm, the discharge hole height was 90 mm, and the discharge hole upward angle was 10 °. In the case of a swirling flow nozzle, a nozzle having an inner tube diameter of 100 mm at a position where a swirl vane made of refractory material is provided among the sizes of the two-hole nozzles was used. The shape of the swirl vane was a diameter D = 100 mm, a length L = 100 mm, a twist angle θ = 120 °, and a twist plate thickness T = 15 mm.

調査項目のうち、吐出流偏差(%)は、左右吐出孔各々の吐出量を測定し、上述した偏差の定義式により計算した。ノズル閉塞評価では、極低炭素鋼([C]≦30ppm)の浸漬ノズル内溶鋼通過量合計を460tonとして鋳造終了後のノズル内部を観察し、ノズル内管の介在物付着厚みを測定し、○:付着厚み最大≦5mm,△:付着厚み最大=6〜10mm,×:付着厚み最大≧11mmと分類した。また、表面疵発生率は、鋳片を熱間圧延後に3.0mm厚に冷間圧延して得られたコイル表面に発生したアルミナスリバー欠陥に対し、該当コイルの切下げ(格下げ)重量比である。表面疵評価では、前記表面疵発生率により、◎:表面疵発生率<0.5%,○:0.5%≦表面疵発生率<2.0%,△:2.0%≦表面疵発生率<5.0%,×:5.0%≦表面疵発生率と分類した。   Among the investigation items, the discharge flow deviation (%) was calculated by measuring the discharge amount of each of the left and right discharge holes and calculating the deviation as described above. In the nozzle clogging evaluation, the total amount of molten steel passing through the immersion nozzle of ultra-low carbon steel ([C] ≦ 30 ppm) was set to 460 tons, the inside of the nozzle after casting was observed, and the inclusion adhesion thickness of the nozzle inner tube was measured. : Maximum adhesion thickness ≦ 5 mm, Δ: Maximum adhesion thickness = 6 to 10 mm, ×: Maximum adhesion thickness ≧ 11 mm In addition, the surface flaw occurrence rate is the weight ratio of the coil being downgraded (downgraded) to the alumina sliver defect generated on the coil surface obtained by cold rolling the slab to 3.0 mm after hot rolling. is there. In the evaluation of surface flaws, ◎: surface flaw occurrence rate <0.5%, ○: 0.5% ≦ surface flaw occurrence rate <2.0%, Δ: 2.0% ≦ surface flaw Occurrence rate <5.0%, x: 5.0% ≦ surface flaw occurrence rate.

Figure 0004211573
Figure 0004211573

実施例F〜J及びL〜Nは、浸漬ノズル内の溶鋼供給量が2.5〜7.0ton/minの範囲内であり、ノズル内への吹込みArガス流量が2〜15Nリットル/minの範囲内で、かつ2層式構造のスライディングゲートを採用した結果、均一で必要十分な旋回流が形成され、優れた鋳片表面品質が得られた。実施例K及びOは、2層式に代えて3層式構造のスライディングゲートを採用したが、やはり満足する鋳片表面品質が得られた。   In Examples F to J and L to N, the molten steel supply amount in the immersion nozzle is in the range of 2.5 to 7.0 ton / min, and the Ar gas flow rate into the nozzle is 2 to 15 N liters / min. As a result of adopting a sliding gate having a two-layer structure within the range, a uniform and necessary swirl flow was formed, and excellent slab surface quality was obtained. In Examples K and O, a sliding gate having a three-layer structure was adopted instead of the two-layer structure, but satisfactory slab surface quality was obtained.

実施例F、G、Lでは、鋳型サイズが同じで、Arガス流量も2Nリットル/minで同じであり、溶鋼供給量Qを変化させた。ノズル閉塞評価、鋳片表面疵発生率及びその評価ともに、実施例F、G、Lの順で良くなっている。浸漬ノルズ閉塞状況は、溶鋼供給量の増加に伴って鋳込時間短縮が図れて改善され、また、表面疵状況も溶鋼供給量の増加に伴って、鋳型内の凝固シェルの洗浄効果、及び溶鋼メニスカス温度の向上効果が図れて改善された。
実施例H、I、Jでは、鋳型サイズが同じで、溶鋼供給量Qも4.0ton/minで同じとし、Arガス流量を変化させた。溶鋼供給量が同じであるので、浸漬ノズルの閉塞状況は同じとなり、Arガス流量が少ないほうが鋳片表面疵は良好となった。
In Examples F, G, and L, the mold size was the same, the Ar gas flow rate was the same at 2 N liter / min, and the molten steel supply amount Q was changed. The nozzle clogging evaluation, the slab surface flaw occurrence rate, and the evaluation thereof are improved in the order of Examples F, G, and L. The immersion Nords blockage situation is improved by reducing the casting time as the molten steel supply amount increases, and the surface flaw state also improves the cleaning effect of the solidified shell in the mold and the molten steel as the molten steel supply amount increases. The improvement effect of the meniscus temperature was improved.
In Examples H, I, and J, the mold size was the same, the molten steel supply amount Q was also the same at 4.0 ton / min, and the Ar gas flow rate was changed. Since the molten steel supply amount was the same, the clogging situation of the immersion nozzle was the same, and the smaller the Ar gas flow rate, the better the slab surface flaw.

実施例GとKでは、2層式と3層式のスライディングゲートの違いがあるだけで、その他の条件は同じである。2層式を用いた実施例Gの方が鋳片表面疵発生率及びその評価は良好であった。
実施例Mは、実施例Fに比べて、Ar流量は同じで、鋳型サイズが小さく、溶鋼供給量Qが少ない。溶鋼供給量が少ない分、鋳片表面疵発生率が若干悪くなっている。
同じく、実施例Nは、実施例Hに比べて、Ar流量は同じで、鋳型サイズが小さく、溶鋼供給量Qが少ない。溶鋼供給量が少ない分、鋳片表面疵発生率が若干悪くなっている。
In Examples G and K, only the difference between the two-layer type and the three-layer type sliding gate is different, and other conditions are the same. In Example G using the two-layer system, the slab surface flaw occurrence rate and the evaluation thereof were better.
In Example M, the Ar flow rate is the same as in Example F, the mold size is small, and the molten steel supply amount Q is small. Since the molten steel supply amount is small, the slab surface flaw occurrence rate is slightly worse.
Similarly, compared with Example H, Example N has the same Ar flow rate, a small mold size, and a small amount of molten steel supply Q. Since the molten steel supply amount is small, the slab surface flaw occurrence rate is slightly worse.

これらに対し、比較例A〜Cは、底部近傍側壁に対向する2つの吐出孔を有する通常の2孔ノズルを使用した場合の試験であり、鋳片に表面疵が発生した。比較例Dは、旋回流ノズル適用時において、ノズル内を流下する溶鋼流量が小さく、十分な旋回強度が得られず、ノズル閉塞と鋳片表面疵が発生した。比較例Eは、ノズル内のArガス吹込み流量が過大で表面疵が多く発生した。   On the other hand, Comparative Examples A to C are tests in the case of using a normal two-hole nozzle having two discharge holes facing the side wall near the bottom, and surface flaws occurred on the slab. In Comparative Example D, when the swirl flow nozzle was applied, the flow rate of the molten steel flowing down the nozzle was small, sufficient swirl strength could not be obtained, and nozzle blockage and slab surface flaws occurred. In Comparative Example E, the Ar gas blowing flow rate in the nozzle was excessive, and many surface defects were generated.

なお、本発明は上記した実施例に限らないことは勿論であり、上記した実施例以外であっても、上記した実施例に付加した或いは削除した構成の作用効果が付加されたり、削減されたりしても差し支えない。   Of course, the present invention is not limited to the above-described embodiments, and the effects of the configuration added to or deleted from the above-described embodiments can be added to or reduced from other embodiments. It doesn't matter.

旋回流ノズルを含む連続鋳造装置の構成概略図である。It is a structure schematic diagram of the continuous casting apparatus containing a swirl flow nozzle. 2層構造スライディングゲートと旋回流ノズルの概略を示す拡大断面図である。It is an expanded sectional view showing the outline of a two-layer structure sliding gate and a swirl flow nozzle. 図3(a)は捩り板型旋回羽根の斜視図であり、図3(b)は捩り板型旋回羽根の平面図であり、図3(c)は捩り板型旋回羽根の側面図である。3A is a perspective view of a torsion plate type swirl blade, FIG. 3B is a plan view of the torsion plate type swirl blade, and FIG. 3C is a side view of the torsion plate type swirl blade. . 鋳片表面疵に及ぼす溶鋼供給量の影響を示したグラフである。It is the graph which showed the influence of the molten steel supply amount which has on the slab surface defect. 鋳片表面疵に及ぼすAr流量の影響を示したグラフである。It is the graph which showed the influence of the Ar flow volume which has on the slab surface flaw. ノズル内管の介在物付着厚みに及ぼすAr流量の影響を示したグラフである。It is the graph which showed the influence of the Ar flow volume which acts on the inclusion adhesion thickness of the pipe | tube in a nozzle.

符号の説明Explanation of symbols

1…連続鋳造装置
2…タンデュッシュ
3…上ノズル
4…2層式構造スライディングゲート
4a…上プレート
4b…下プレート
4c…不活性ガス吹込みノズル
4d…流路内壁
5…旋回流ノズル
5a…吐出孔
6…鋳型
7…捩り板型旋回羽根
DESCRIPTION OF SYMBOLS 1 ... Continuous casting apparatus 2 ... Tandush 3 ... Upper nozzle 4 ... Two-layer structure sliding gate 4a ... Upper plate 4b ... Lower plate 4c ... Inert gas blowing nozzle 4d ... Channel inner wall 5 ... Swirling flow nozzle 5a ... Discharge hole 6 ... Mold 7 ... Twist plate type swirl blade

Claims (1)

タンディッシュと鋳型との間に、底部近傍側壁に対向して開口する2つの吐出孔を有し且つ溶鋼流を旋回させるための捩り板型の旋回羽根を内部に設けた浸漬ノズルを設け、タンディッシュ内の溶鋼を前記浸漬ノズル内を通過させて鋳型内に供給し、かつ、該浸漬ノズル内を通過する溶鋼中に不活性ガスを供給する連続鋳造方法であって、該浸漬ノズル内を通過させる溶鋼供給量Qを2.5ton/min以上、5.2ton/min以下とし、溶鋼中に供給する不活性ガス流量qを2Nリットル/min以上、15Nリットル/min以下とするとともに、タンディッシュから前記浸漬ノズル内を通過し鋳型内へ供給される溶鋼の供給量Qを前記範囲に制限するため、タンディッシュと前記浸漬ノズルとの間に2層式構造スライディングゲートを設けることを特徴とする鋼の連続鋳造方法。 Between the tundish and the mold, there is provided an immersion nozzle having two discharge holes opening facing the side wall near the bottom and having a twisted plate type swirl blade for swirling the molten steel flow inside. A continuous casting method in which molten steel in a dish is passed through the immersion nozzle and supplied into a mold, and an inert gas is supplied into the molten steel that passes through the immersion nozzle, and passes through the immersion nozzle. The molten steel supply amount Q to be set is 2.5 ton / min to 5.2 ton / min, the inert gas flow q supplied into the molten steel is set to 2 N liter / min to 15 N liter / min, and tundish In order to limit the supply amount Q of molten steel that passes through the immersion nozzle and is supplied into the mold to the above range, a two-layer structure sliding between the tundish and the immersion nozzle Continuous casting method of steel, characterized in that provided over bets.
JP2003375633A 2003-11-05 2003-11-05 Steel continuous casting method Expired - Fee Related JP4211573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375633A JP4211573B2 (en) 2003-11-05 2003-11-05 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375633A JP4211573B2 (en) 2003-11-05 2003-11-05 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2005138132A JP2005138132A (en) 2005-06-02
JP4211573B2 true JP4211573B2 (en) 2009-01-21

Family

ID=34686948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375633A Expired - Fee Related JP4211573B2 (en) 2003-11-05 2003-11-05 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4211573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671922B2 (en) * 2006-06-28 2011-04-20 京セラ株式会社 Stoke and low pressure casting equipment using the same
JP5626036B2 (en) * 2011-03-07 2014-11-19 新日鐵住金株式会社 Method for continuous casting of molten metal

Also Published As

Publication number Publication date
JP2005138132A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP5099265B2 (en) Combined equipment for continuous hot dipping and continuous annealing
US7559353B2 (en) Distributor for use in a method of casting hot metal
JP4419934B2 (en) Method for continuous casting of molten metal
WO1999015291A1 (en) Immersion nozzle
JP3050101B2 (en) Continuous casting pouring equipment
JP4211573B2 (en) Steel continuous casting method
JP3524507B2 (en) Steel continuous casting method
JP7131328B2 (en) Rectifying member, pouring nozzle, twin roll type continuous casting apparatus, and method for producing thin cast slab
JP2018051598A (en) Bottom pouring ingot-making equipment
JP2002301549A (en) Continuous casting method
JP5206584B2 (en) Tundish for continuous casting and continuous casting method
JP5768751B2 (en) Method for continuous casting of molten metal
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method
JP3861861B2 (en) Immersion nozzle for continuous casting and continuous casting method
JP2001047203A (en) Continuous casting method
KR20050021278A (en) submerged entry nozzle for continuous casting
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JP4494550B2 (en) Method for controlling flow of molten steel in mold
JPH04220148A (en) Molten steel supplying nozzle
JP2001321901A (en) Method for continuously casting steel
KR101969105B1 (en) Nozzle
JP2004322140A (en) Continuous casting method for steel
JP4200793B2 (en) Immersion nozzle for continuous casting
WO2005021187A1 (en) Submerged entry nozzle for continuous casting
JP3460687B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030