JP2001321901A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JP2001321901A
JP2001321901A JP2000141674A JP2000141674A JP2001321901A JP 2001321901 A JP2001321901 A JP 2001321901A JP 2000141674 A JP2000141674 A JP 2000141674A JP 2000141674 A JP2000141674 A JP 2000141674A JP 2001321901 A JP2001321901 A JP 2001321901A
Authority
JP
Japan
Prior art keywords
slab
discharge
immersion nozzle
discharge hole
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000141674A
Other languages
Japanese (ja)
Inventor
Koji Takatani
幸司 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000141674A priority Critical patent/JP2001321901A/en
Publication of JP2001321901A publication Critical patent/JP2001321901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for continuously casting a steel with which center segregation can stably be reduced over the whole width and the whole length of a cast slab in an inexpensive facility. SOLUTION: In the continuous casting method for casting a slab having a rectangle in the cross sectional shape by using an immersion nozzle having two spouting holes, in which the direction of spouting flow is respective short wall side directions at both sides of the width direction of a mold, the shape of these spouting holes is rectangle and the dimension of the spouting hole and the inner diameter of the immersion nozzle satisfy the conditions in the following formulas (A) and (B). W/H<=0.6...(A), (W×H)/(D×D)>=0.8...(B), wherein, W: the horizontal width (mm) of the spouting hole, H: the vertical length (mm) of the spouting hole, D: the inner diameter (mm) of the immersion nozzle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中心偏析の少ない
鋳片を得る鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel to obtain a slab with less center segregation.

【0002】[0002]

【従来の技術】鋼の連続鋳造法によって得られる鋳片の
厚さ中心部には、中心偏析と呼ばれる内部欠陥が発生す
る場合がある。この欠陥は、鋳片の最終凝固部にC、
S、P、Mnなどの偏析成分が濃化して現れるものであ
る。この鋳片の欠陥が、製品である厚板の靱性の低下
や、厚板から曲げ加工後溶接して製造される大径鋼管の
水素誘起割れを引き起こす原因となる。この中心偏析の
生成機構は、次のように考えられている。凝固が進み、
凝固組織の一つであるデンドライト樹間に偏析成分が濃
化し、この濃化溶鋼が凝固時の鋳片の収縮またはバルジ
ングと呼ばれる鋳片のふくれなどによりデンドライト樹
間から流出し、最終凝固部の凝固完了点に向かって流動
し、そのまま凝固して濃化帯を形成する。この濃化帯が
中心偏析である。中心偏析の防止対策として、デンドラ
イト樹間に残った濃化溶鋼の移動を防止することと、濃
化溶鋼の局所的な集積を防ぐことが効果的である。たと
えば、特開平9−57410号公報には、未凝固部を含
む鋳片をバルジングさせ、最終凝固部の鋳造方向の上流
側で、バルジング量相当分を圧下する方法が提案されて
いる。この方法では、凝固が完了した鋳片の両端短辺部
を圧下することがないので、圧下ロール対による圧下力
が、未凝固部の鋳片の圧下に効果的に働く。したがっ
て、濃化溶鋼を鋳造方向の上流側に排出でき、中心偏析
の軽減が期待できる。
2. Description of the Related Art Internal defects called center segregation may occur at the center of the thickness of a slab obtained by continuous casting of steel. This defect, C, in the final solidification part of the slab
The segregated components such as S, P, and Mn appear in a concentrated manner. The defects in the cast slab cause a reduction in toughness of a thick plate as a product and a cause of hydrogen-induced cracking of a large-diameter steel pipe manufactured by bending and welding a thick plate. The mechanism of generation of this center segregation is considered as follows. Solidification progresses,
Segregated components are concentrated between dendrite trees, which are one of the solidified structures, and this concentrated molten steel flows out of the dendrite trees due to shrinkage of the slab during solidification or blistering of the slab called bulging, and the final solidified part It flows toward the solidification completion point and solidifies as it is to form a thickened zone. This concentrated zone is the center segregation. As measures to prevent center segregation, it is effective to prevent the movement of the concentrated molten steel remaining between the dendrite trees and to prevent local accumulation of the concentrated molten steel. For example, Japanese Patent Application Laid-Open No. 9-57410 proposes a method in which a slab including an unsolidified portion is bulged, and an amount corresponding to the bulging amount is reduced upstream of the final solidified portion in the casting direction. In this method, since the short sides of both ends of the slab after solidification are not reduced, the rolling force by the pair of reduction rolls effectively acts on the reduction of the slab of the unsolidified portion. Therefore, the concentrated molten steel can be discharged to the upstream side in the casting direction, and reduction of center segregation can be expected.

【0003】しかし、この方法でも、鋳片の全幅にわた
って中心偏析を安定して軽減することが困難な場合があ
る。未凝固部を含む鋳片の圧下効果は、鋳片の最終凝固
部を正確に圧下することにより得られる。しかし、最終
凝固部の位置は、鋳片の幅方向で変化しやすい。通常用
いられる2つの吐出孔を備えた浸漬ノズルを用いた場合
に、比較的温度の高い溶鋼が鋳片の両側に流れやすいの
で、最終凝固部の先端形状が、いわゆるW型プロフィー
ルの形状となりやすい。一方、圧下ロール対による鋳片
の圧下の場合には、鋳造方向に直角な線状での圧下とな
る。したがって、圧下ロール対を用いて、鋳片の全幅の
最終凝固部を同時に圧下することは困難であるので、鋳
片の全幅にわたって中心偏析を安定して軽減することが
困難となる。
However, even with this method, it is sometimes difficult to stably reduce center segregation over the entire width of the slab. The rolling effect of the slab including the unsolidified portion is obtained by accurately reducing the final solidified portion of the slab. However, the position of the final solidified portion tends to change in the width direction of the slab. When a commonly used immersion nozzle having two discharge holes is used, the molten steel having a relatively high temperature easily flows to both sides of the slab, so that the tip shape of the final solidified portion tends to have a so-called W-shaped profile. . On the other hand, when the slab is reduced by the pair of reduction rolls, the reduction is performed in a linear shape perpendicular to the casting direction. Therefore, it is difficult to simultaneously reduce the final solidified portion of the entire width of the slab using the reduction roll pair, and it is difficult to stably reduce the center segregation over the entire width of the slab.

【0004】一方、特開平5−237621号公報に
は、鋳型内に連続的に供給される溶融金属の流動を電磁
力によって制御し、鋳片内部の最終凝固部の先端形状が
鋳片幅方向で均一に揃っている形状としつつ、鋳片を圧
下する方法が提案されている。しかし、この方法では、
鋳型に電磁力発生装置などの重量物を装着するために、
鋳型および鋳型振動装置などが過大な設備となる。
On the other hand, Japanese Patent Application Laid-Open No. Hei 5-237621 discloses that the flow of a molten metal continuously supplied into a mold is controlled by an electromagnetic force, and the tip shape of a final solidified portion inside the slab is changed in the slab width direction. There has been proposed a method of rolling down a slab while keeping the shape uniform. But with this method,
In order to attach a heavy object such as an electromagnetic force generator to the mold,
The mold and the mold vibrator become excessive equipment.

【0005】ところで、特開平9−47852号公報に
は、吐出流の方向が鋳型幅方向の両側の短辺方向である
吐出孔を浸漬ノズルの側部に複数備え、さらに、吐出流
の方向が下方である吐出孔を浸漬ノズルの底部に複数備
え、かつ、未凝固部の鋳片を圧下する方法が提案されて
いる。この方法では、前述の電磁力発生装置のような過
大な設備を必要としない。
Japanese Patent Application Laid-Open No. 9-47552 discloses that a plurality of discharge holes are provided on the side of a submerged nozzle in which the direction of the discharge flow is the short side direction on both sides in the width direction of the mold. A method has been proposed in which a plurality of lower discharge holes are provided at the bottom of the immersion nozzle, and the slab of the unsolidified portion is reduced. This method does not require excessive equipment such as the above-described electromagnetic force generator.

【0006】しかし、この方法では、複数の吐出孔を備
えるために、それぞれの吐出孔が小さくなるので、鋳造
中にそれら吐出孔が溶鋼中のAlの酸化物などにより詰
まりやすくなる。極端な場合には、鋳造の継続が困難と
なる。さらに、鋳造中に一部の吐出孔が詰まることによ
り、鋳片の幅方向で吐出流の流速分布が不均一になりや
すい。このような場合には、鋳片幅方向で均一に揃った
最終凝固部の先端形状が得られにくいので、鋳片の全幅
および全長にわたって中心偏析の少ない鋳片を安定して
得られない。
However, in this method, since a plurality of discharge holes are provided, each of the discharge holes becomes small, so that the discharge holes are liable to be clogged with an oxide of Al in molten steel during casting. In extreme cases, continuation of casting becomes difficult. Further, since some of the discharge holes are clogged during casting, the flow velocity distribution of the discharge flow in the width direction of the slab tends to be non-uniform. In such a case, it is difficult to obtain a uniform tip end shape of the final solidified portion in the slab width direction, so that a slab having a small center segregation over the entire width and the entire length of the slab cannot be stably obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、安価な設備
で、鋳片の全幅および全長にわたって中心偏析を安定し
て軽減する鋼の連続鋳造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a continuous casting method for steel in which center segregation can be stably reduced over the entire width and length of a slab with inexpensive equipment.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、吐出流
の方向が鋳型幅方向の両側のそれぞれの短辺方向である
吐出孔を2つ有する浸漬ノズルを用いて断面形状が長方
形の鋳片を鋳造する連続鋳造方法であって、これら吐出
孔の形状が長方形で、かつ、吐出孔の寸法と浸漬ノズル
の内径とが下記(A)式および(B)式の条件を満足す
る浸漬ノズルを用いて鋳片を鋳造し、さらに鋳片の未凝
固領域を連続的に圧下する鋼の連続鋳造方法にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a method of forming a rectangular cross section by using an immersion nozzle having two discharge holes in which the direction of the discharge flow is the short side direction on each side of the mold width direction. A continuous casting method for casting pieces, wherein the shape of the discharge holes is rectangular, and the dimensions of the discharge holes and the inner diameter of the immersion nozzle satisfy the following conditions (A) and (B): The present invention is directed to a continuous casting method for steel in which a slab is cast by using the method and the unsolidified region of the slab is continuously reduced.

【0009】 W/H≦0.6 ・・・(A) (W×H)/(D×D)≧0.8 ・・・(B) ここで、W:吐出孔の横幅(mm) H:吐出孔の縦長さ(mm) D:浸漬ノズルの内径(mm) 図1は、浸漬ノズルの形状を模式的に示す図である。図
中に示す符号Wが長方形の吐出孔の横幅を示し、符号H
はその縦長さを示す。また符号Dは浸漬ノズル内部の溶
鋼が通過する部分の内径を示す。
W / H ≦ 0.6 (A) (W × H) / (D × D) ≧ 0.8 (B) where W: width of discharge hole (mm) H : Vertical length of discharge hole (mm) D: Inner diameter of immersion nozzle (mm) FIG. 1 is a diagram schematically showing the shape of the immersion nozzle. The symbol W shown in the figure indicates the width of the rectangular discharge hole, and the symbol H
Indicates its vertical length. Symbol D indicates the inside diameter of the portion through which molten steel passes inside the immersion nozzle.

【0010】吐出流の方向が鋳型幅方向の両側のそれぞ
れの短辺方向である吐出孔を2つ有する通常の浸漬ノズ
ルを用いて断面形状が長方形の鋳片を鋳造する場合に、
最終凝固部の形状がW型プロフィールの形状になりやす
いのは、次の理由による。
In the case of casting a slab having a rectangular cross-section using a normal immersion nozzle having two discharge holes in which the direction of the discharge flow is the direction of each short side on both sides of the mold width direction,
The reason that the shape of the final solidified portion tends to be the shape of the W-shaped profile is as follows.

【0011】図2は、長方形の吐出孔からの吐出流の流
速分布を模式的に示す図である。片側の吐出孔近傍のみ
を示している。吐出孔2の大きさが横幅W;10〜10
0(mm)、縦長さH;60〜200(mm)、内径
D;60〜100(mm)である浸漬ノズル1を用いる
場合に、有限体積法を用い、三次元の非圧縮性のナビエ
・ストークス方程式と連続の式から吐出流の流速分布を
解析して求めた結果を示す。
FIG. 2 is a diagram schematically showing a flow velocity distribution of a discharge flow from a rectangular discharge hole. Only the vicinity of one ejection hole is shown. The size of the discharge hole 2 is the width W;
0 (mm), vertical length H; 60 to 200 (mm), inner diameter D; 60 to 100 (mm). When using the immersion nozzle 1, a three-dimensional incompressible Navier The results obtained by analyzing the flow velocity distribution of the discharge flow from the Stokes equation and the continuous equation are shown.

【0012】図2(a)は、吐出孔を2つ有する通常の
浸漬ノズルを用いる際の不均一な吐出流の流速分布の解
析結果の例、図2(b)は、本発明の方法で規定する浸
漬ノズルを用いる際の均一な吐出流の流速分布の解析結
果の例をそれぞれ示す。それぞれ図中の矢印は吐出流の
速度ベクトル3を示す。
FIG. 2A shows an example of an analysis result of a non-uniform discharge flow velocity distribution when a normal immersion nozzle having two discharge holes is used, and FIG. 2B shows a result of the method of the present invention. An example of an analysis result of a flow velocity distribution of a uniform discharge flow when using a prescribed immersion nozzle will be described. Each arrow in the figure indicates a velocity vector 3 of the discharge flow.

【0013】吐出孔を2つ有する通常の浸漬ノズルを用
いる際には、図2(a)に示すように、吐出孔の下部か
らの吐出流の流速が速く、吐出孔の上部では、吐出する
よりも、むしろ少量であるが吸い込まれていることがわ
かる。このような不均一な吐出流速の分布になるのは、
吐出孔の出口部において吐出流の圧力損失が小さいため
である。吐出流の流速分布が均一でないために、比較的
温度の高い溶鋼が鋳片の両側に流れやすく、最終凝固部
の形状がW型プロフィールの形状となりやすい。ところ
で、単に吐出孔の断面積を大きくすると、さらに吐出流
の圧力損失が小さくなり、より不均一な吐出流の流速分
布となりやすい。
When a normal immersion nozzle having two discharge holes is used, as shown in FIG. 2A, the flow velocity of the discharge flow from the lower part of the discharge hole is high, and the discharge is performed at the upper part of the discharge hole. Rather, it is understood that a small amount is sucked. Such uneven distribution of the discharge flow velocity is caused by
This is because the pressure loss of the discharge flow is small at the outlet of the discharge hole. Since the flow velocity distribution of the discharge flow is not uniform, molten steel having a relatively high temperature tends to flow on both sides of the cast slab, and the shape of the final solidified portion tends to have a W-shaped profile. By the way, if the sectional area of the discharge hole is simply increased, the pressure loss of the discharge flow is further reduced, and the flow velocity distribution of the discharge flow is more likely to be uneven.

【0014】そこで、本発明の方法では、吐出孔を2つ
備え、その吐出孔の形状が長方形であって、吐出孔の大
きさと浸漬ノズルの内径とが前述の(A)式および
(B)式の条件を満足する浸漬ノズルを用いて鋳造す
る。(A)式を満足するように吐出孔の形状を扁平と
し、かつ、(B)式を満足するように浸漬ノズルの溶鋼
が上方から下方に通過する部分の断面積に対して、吐出
孔の断面積を適正な範囲で大きくすると、図2(b)に
示すように均一な吐出流の流速分布となる。吐出孔の出
口部において吐出流の圧力損失が大きくなるからであ
る。吐出流の流速分布が均一になるので、比較的温度の
高い溶鋼が鋳片の幅方向に均一に流れやすく、最終凝固
部の先端形状が鋳片幅方向で均一に揃った形状となる。
Therefore, in the method of the present invention, two discharge holes are provided, the shape of the discharge hole is rectangular, and the size of the discharge hole and the inner diameter of the immersion nozzle are determined by the above-mentioned formulas (A) and (B). Casting is performed using an immersion nozzle that satisfies the conditions of the formula. The shape of the discharge hole is made flat so as to satisfy the expression (A), and the cross section of the portion of the immersion nozzle where the molten steel passes from above to below so as to satisfy the expression (B). When the cross-sectional area is increased within an appropriate range, a uniform discharge flow velocity distribution is obtained as shown in FIG. This is because the pressure loss of the discharge flow increases at the outlet of the discharge hole. Since the flow velocity distribution of the discharge flow becomes uniform, the molten steel having a relatively high temperature tends to flow uniformly in the width direction of the slab, and the tip shape of the final solidified portion becomes uniform in the width direction of the slab.

【0015】さらに、本発明の方法では、前述の(A)
式および(B)式の条件を満足する浸漬ノズルを用いて
鋳造した鋳片の未凝固領域を連続的に圧下する。最終凝
固部の先端形状が鋳片幅方向で均一に揃っている形状に
なっているので、鋳片の未凝固領域を連続的に圧下する
ことにより、最終凝固部近傍の偏析成分が濃化した溶鋼
を鋳片の全幅にわたって鋳造方向の上流側に効果的に排
出できる。
Further, in the method of the present invention, the aforementioned (A)
The unsolidified region of the cast slab is continuously reduced by using an immersion nozzle that satisfies the conditions of the equations (B) and (B). Since the shape of the tip of the final solidified part is uniformly aligned in the slab width direction, the segregation component near the final solidified part was concentrated by continuously reducing the unsolidified area of the slab. The molten steel can be effectively discharged to the upstream side in the casting direction over the entire width of the slab.

【0016】また、本発明の方法では、2つの吐出孔を
有する浸漬ノズルを用いるので、前述の複数の吐出孔を
有する浸漬ノズルに比べて、吐出孔の断面積を比較的大
きくできる。したがって、鋳造中に浸漬ノズルの詰まり
は発生しにくい。吐出孔が詰まり難いので、長時間の鋳
造中の間、吐出孔からの流速分布を均一に確保でき、鋳
片の全長にわたって最終凝固部近傍の偏析成分が濃化し
た溶鋼を鋳造方向の上流側に効果的に排出できる。
Further, in the method of the present invention, since the immersion nozzle having two discharge holes is used, the cross-sectional area of the discharge hole can be relatively large as compared with the immersion nozzle having a plurality of discharge holes. Therefore, clogging of the immersion nozzle hardly occurs during casting. Since the discharge hole is not easily clogged, the flow velocity distribution from the discharge hole can be secured uniformly during prolonged casting, and the molten steel in which the segregated component near the final solidification part is concentrated over the entire length of the slab is effective upstream in the casting direction. Can be discharged.

【0017】[0017]

【発明の実施の形態】前述の(A)式および(B)式を
満足する浸漬ノズルを用いると、吐出孔からの吐出流の
流速分布がより均一な分布となることを、以下に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The use of an immersion nozzle satisfying the above-described equations (A) and (B) will result in a more uniform distribution of the flow velocity of the discharge flow from the discharge holes. .

【0018】図3は、吐出流の流速分布に及ぼす浸漬ノ
ズルの吐出孔形状の影響を示す図である。横軸は、浸漬
ノズルの内径Dに対する長方形の吐出孔の横幅Wの比W
/Dである。縦軸は、吐出孔の出口部での吐出流の圧力
損失を考慮したときの吐出流の最大流速Umaxを、吐
出孔全体にわたって均一な流速分布で吐出流が形成され
ると仮定した場合の平均吐出流速Umで除した比Uma
x/Umである。(W×H)の値を(D×D)の値と同
じとする条件での吐出流の流速分布に及ぼす吐出孔の形
状の影響を示す図である。前述と同じ解析手法を用いて
吐出流の流速分布を解析した結果を示す。
FIG. 3 is a diagram showing the influence of the shape of the discharge hole of the immersion nozzle on the flow velocity distribution of the discharge flow. The horizontal axis represents the ratio W of the width W of the rectangular discharge hole to the inner diameter D of the immersion nozzle.
/ D. The vertical axis represents the maximum flow velocity Umax of the discharge flow when the pressure loss of the discharge flow at the outlet of the discharge hole is considered, and the average when the discharge flow is formed with a uniform flow distribution over the entire discharge hole. Ratio Uma divided by discharge flow rate Um
x / Um. It is a figure which shows the influence of the shape of a discharge hole on the flow velocity distribution of the discharge flow on the conditions which make the value of (W * H) the same as the value of (D * D). The result of analyzing the flow velocity distribution of the discharge flow using the same analysis method as described above is shown.

【0019】図2から、W/Dを0.6以下とすること
により、Umax/Umは、ほぼ1.6の一定の最小の
値となることがわかる。つまり、(W×H)=(D×
D)の条件下では、W/Dを0.6以下とすることによ
り、吐出流の最大流速Umaxを低減でき、吐出流の流
速分布をより均一にできることがわかる。
FIG. 2 shows that Umax / Um becomes a constant minimum value of approximately 1.6 by setting W / D to 0.6 or less. That is, (W × H) = (D ×
Under the condition D), by setting the W / D to 0.6 or less, the maximum flow velocity Umax of the discharge flow can be reduced, and the flow velocity distribution of the discharge flow can be made more uniform.

【0020】浸漬ノズルの内径Dは、長方形の鋳片断面
サイズと鋳造速度によって決めるべき一定の数値である
ので、(W×H)=(D×D)の条件とは、吐出孔の断
面積が一定の場合に相当する。したがって、W/Dを
0.6以下と小さくすることは、吐出孔の断面積を一定
として、吐出孔の横幅Wを小さくすることを意味する。
すなわち、長方形の吐出孔の形状を扁平にすることであ
る。吐出孔の形状を扁平にすることにより、吐出孔の出
口部の圧力損失が増大するので、吐出流の流速分布が均
一になるのである。
Since the inner diameter D of the immersion nozzle is a constant value to be determined according to the rectangular cross section size of the slab and the casting speed, the condition of (W × H) = (D × D) is defined as Corresponds to a constant case. Therefore, reducing the W / D to 0.6 or less means reducing the lateral width W of the discharge hole while keeping the sectional area of the discharge hole constant.
That is, the shape of the rectangular discharge hole is made flat. By making the shape of the discharge hole flat, the pressure loss at the outlet of the discharge hole increases, so that the flow velocity distribution of the discharge flow becomes uniform.

【0021】W/Dは0.1以上とするのが望ましい。
0.1未満では、吐出孔が扁平になりすぎて、吐出孔上
部からの吐出流が、溶鋼のメニスカス部に影響を与え、
モールドパウダを溶鋼中に巻き込みやすくなる。
It is desirable that W / D be 0.1 or more.
If less than 0.1, the discharge hole is too flat, the discharge flow from the upper part of the discharge hole affects the meniscus portion of the molten steel,
It becomes easy to get the mold powder into the molten steel.

【0022】図4は、吐出流の流速分布に及ぼす浸漬ノ
ズルの吐出孔形状の影響を示す図である。図3で用いた
のと同じ解析手法で解析し、W/Dの値が0.6のとき
の吐出孔形状の影響を示す図である。(W×H)/(D
×D)を0.8以上とすることにより、吐出流の最大流
速Umaxを、吐出孔形状が一辺の長さDの正方形の場
合の吐出流の最大流速Umaxoで除したUmax/U
maxoは0.42のほぼ一定の最小の値となり、吐出
流の流速分布をより均一にできることがわかる。
FIG. 4 is a diagram showing the influence of the shape of the discharge hole of the immersion nozzle on the flow velocity distribution of the discharge flow. FIG. 4 is a diagram illustrating the effect of the ejection hole shape when the value of W / D is 0.6, analyzed by the same analysis method as used in FIG. 3. (W × H) / (D
XD) is set to 0.8 or more, Umax / U obtained by dividing the maximum flow rate Umax of the discharge flow by the maximum flow rate Umaxo of the discharge flow when the shape of the discharge hole is a square having a side length D.
maxo is a substantially constant minimum value of 0.42, and it can be seen that the flow velocity distribution of the discharge flow can be made more uniform.

【0023】浸漬ノズルの内径Dは、前述のとおり、長
方形の鋳片断面サイズと鋳造速度によって決めるべき一
定の数値であり、(W×H)/(D×D)を0.8以上
とすることは、吐出孔の断面積を大きくすることを意味
する。W/Dの値を0.6として吐出孔形状を扁平と
し、吐出孔の断面積を大きくすることにより、吐出孔の
出口部の圧力損失を確保し、吐出流の平均流速を低下さ
せつつ、吐出流の流速分布が均一になる。
As described above, the inner diameter D of the immersion nozzle is a constant value to be determined according to the rectangular slab cross-sectional size and the casting speed, and (W × H) / (D × D) is set to 0.8 or more. This means that the sectional area of the discharge hole is increased. By setting the value of W / D to 0.6 and making the shape of the discharge hole flat and increasing the cross-sectional area of the discharge hole, the pressure loss at the outlet of the discharge hole is secured, and the average flow velocity of the discharge flow is reduced. The flow velocity distribution of the discharge flow becomes uniform.

【0024】(W×H)/(D×D)は2.0以下とす
るのが望ましい。2.0を超えると、吐出孔の断面積が
大きくなりすぎて、吐出孔上部からの吐出流が、溶鋼の
メニスカス部に影響を与え、モールドパウダを溶鋼中に
巻き込みやすくなる。
(W × H) / (D × D) is desirably 2.0 or less. If it exceeds 2.0, the cross-sectional area of the discharge hole becomes too large, and the discharge flow from the upper portion of the discharge hole affects the meniscus portion of the molten steel, so that the mold powder is easily entangled in the molten steel.

【0025】図3および図4から、前述の(A)式およ
び(B)式の条件を満足する浸漬ノズル、すなわち、吐
出孔の断面積を大きくし、その形状を扁平にした浸漬ノ
ズルを用いることにより、吐出流の最大流速Umaxが
低減でき、吐出流の流速分布がより均一になることがわ
かる。吐出流の流速分布が均一になるので、最終凝固部
の先端形状が鋳片幅方向で均一に揃っている形状にな
る。このような形状の最終凝固部である鋳片の未凝固領
域を連続的に圧下するので、最終凝固部近傍の偏析成分
が濃化した溶鋼を鋳片の全幅にわたって鋳造方向の上流
側に効果的に排出できる。したがって、中心偏析を安定
して軽減することができる。
From FIGS. 3 and 4, an immersion nozzle that satisfies the conditions of the above-described expressions (A) and (B), that is, an immersion nozzle in which the cross-sectional area of the discharge hole is large and its shape is flat is used. This indicates that the maximum flow velocity Umax of the discharge flow can be reduced, and the flow velocity distribution of the discharge flow becomes more uniform. Since the flow velocity distribution of the discharge flow becomes uniform, the shape of the tip of the final solidified portion becomes uniform in the slab width direction. Since the unsolidified region of the slab, which is the final solidified portion of such a shape, is continuously reduced, the molten steel in which the segregated component near the final solidified portion is concentrated is effectively applied upstream in the casting direction over the entire width of the slab. Can be exhausted. Therefore, center segregation can be stably reduced.

【0026】[0026]

【実施例】垂直部長さ3.0mの垂直曲げ型連続鋳造機
を用いて、C含有率0.15〜0.20質量%の厚板用
鋼である中炭素鋼を、厚さ235mm、幅1800mm
の鋳片に鋳造した。各試験では、1ヒート約60tの溶
鋼を鋳造した。
EXAMPLE Using a vertical bending type continuous casting machine with a vertical length of 3.0 m, a medium carbon steel, which is a steel for a thick plate having a C content of 0.15 to 0.20 mass%, was 235 mm thick and 235 mm wide. 1800mm
Was cast into a slab. In each test, molten steel of about 60 t per heat was cast.

【0027】メニスカスから16mの位置に1つの圧下
ロール対を配置し、鋳片の幅中央部で厚さ20〜30m
m程度バルジングさせた鋳片を、元の鋳片の厚さまで圧
下した。鋳造速度は約1m/分とし、浸漬ノズルを通過
する溶鋼量を約3.2t/分とした。
One reduction roll pair is arranged at a position 16 m from the meniscus, and the thickness is 20 to 30 m at the center of the width of the slab.
The slab that had been bulged by about m was pressed down to the original thickness of the slab. The casting speed was about 1 m / min, and the amount of molten steel passing through the immersion nozzle was about 3.2 t / min.

【0028】試験に用いた浸漬ノズルは、アルミナグラ
ファイト製で、底部を有する円筒状の浸漬ノズルとし
た。外径は130mm、内径は90mmとした。吐出流
が鋳型の短辺方向に向かう下向き15°の2つの吐出孔
とし、それらの吐出孔の形状は長方形とした。長方形の
サイズは種々変更して試験した。各試験において、鋳造
方向で長さ200mmの鋳片の横断面サンプルを採取し
た。鋳片サンプルの幅中央部および短辺部から200m
m離れた部分について、厚さ中心部を含めて、鋳片の厚
さ方向にそれぞれ11カ所から、直径3mmのドリル刃
により切り削を採取し、C含有率を分析した。そのC含
有率のC値をレードル値C0 で除した比C/C0 で鋳片
の中心偏析の状況を評価した。表1に各試験条件および
各試験結果を示す。
The immersion nozzle used in the test was a cylindrical immersion nozzle made of alumina graphite and having a bottom. The outer diameter was 130 mm and the inner diameter was 90 mm. The discharge flow was two downward 15 ° discharge holes directed toward the short side of the mold, and the shape of the discharge holes was rectangular. The size of the rectangle was varied and tested. In each test, a cross section sample of a 200 mm long slab in the casting direction was taken. 200m from the center and short side of the slab sample
A portion 3 m apart, including the center of the thickness, was cut from 11 locations in the thickness direction of the slab using a drill blade with a diameter of 3 mm, and the C content was analyzed. The state of center segregation of the slab was evaluated by the ratio C / C 0 obtained by dividing the C value of the C content by the ladle value C 0 . Table 1 shows each test condition and each test result.

【0029】[0029]

【表1】 試験No.1では、本発明で規定する条件の範囲内で、
W/Hが0.6、(W×H)/(D×D)が1.0の浸
漬ノズルを用いた。試験No.2では、本発明で規定す
る条件の範囲内で、W/Hが0.6、(W×H)/(D
×D)が0.8の浸漬ノズルを用いた。また、試験N
o.3では、本発明で規定する条件を外し、W/Hが
1.0、(W×H)/(D×D)が1.0の浸漬ノズル
を用いた。
[Table 1] Test No. In the case of 1, within the range defined by the present invention,
An immersion nozzle having W / H of 0.6 and (W × H) / (D × D) of 1.0 was used. Test No. In No. 2, W / H is 0.6 and (W × H) / (D) within the range defined by the present invention.
× D) was used for the immersion nozzle of 0.8. Test N
o. In No. 3, the conditions specified in the present invention were removed, and an immersion nozzle having W / H of 1.0 and (W × H) / (D × D) of 1.0 was used.

【0030】試験No.1およびNo.2では、鋳片の
幅中央部と短辺部から200mm離れた部分での中心偏
析の発生状況はほぼ同じ程度で軽度であり、かつ鋳片の
厚さ中心部のC/C0 の値はほぼ1.05であり、良好
な中心偏析の状況であった。吐出孔の断面積を大きくし
て、かつ吐出孔の形状を扁平にしたことにより、吐出流
の流速分布が均一化され、その効果により中心偏析が良
くなったと思われる。
Test No. 1 and No. 1 In No. 2, the occurrence of center segregation at the part 200 mm away from the center of the width and the short side of the slab is almost the same and mild, and the value of C / C 0 at the center of the slab thickness is It was about 1.05, which was a favorable state of center segregation. It is considered that by increasing the cross-sectional area of the discharge hole and making the shape of the discharge hole flat, the flow velocity distribution of the discharge flow was made uniform, and the center segregation was improved by the effect.

【0031】試験No.3では、鋳片の幅中央部の厚さ
中心部のC/C0 の値はほぼ1.05で良好であった
が、短辺部から200mm離れた鋳片の部分での厚さ中
心部のC/C0 の値は最大1.4であり、著しい中心偏
析が発生した。
Test No. In No. 3, the value of C / C 0 at the center of the thickness at the center of the width of the slab was almost 1.05, which was good, but the center of the slab at a distance of 200 mm from the short side was good. Has a maximum C / C 0 value of 1.4, and significant center segregation has occurred.

【0032】図5は、試験No.3の場合の中心偏析の
状況を示す図である。吐出孔の断面積を、試験No.1
と同じく大きくしたが、吐出孔の形状は扁平とせず、正
方形とした。そのため、吐出流の流速分布が不均一とな
り、最終凝固部の形状がW型プロフィールの形状となっ
たと推定される。短辺部から200mm離れた鋳片の部
分の圧下位置における未凝固部の厚さが幅中央部に比べ
て厚くなり、その鋳片の部分に、著しい中心偏析が発生
したのは、そのためと思われる。
FIG. FIG. 6 is a diagram showing a state of center segregation in the case of No. 3; The cross-sectional area of the discharge hole was measured using Test No. 1
However, the shape of the discharge holes was not flat but square. Therefore, it is presumed that the flow velocity distribution of the discharge flow becomes non-uniform, and the shape of the final solidified portion has a W-shaped profile. The thickness of the unsolidified portion at the rolling position of the portion of the slab 200 mm away from the short side was thicker than the center of the width, and significant center segregation occurred in the portion of the slab. It is.

【0033】[0033]

【発明の効果】本発明の方法の適用により、安価な設備
で、鋳片の全幅および全長にわたって中心偏析を安定し
て軽減することができ、良好な内部品質の鋳片を得るこ
とができる。
According to the method of the present invention, center segregation can be stably reduced over the entire width and the entire length of the slab with inexpensive equipment, and a slab of good internal quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】浸漬ノズルの形状を模式的に示す図である。FIG. 1 is a diagram schematically showing the shape of a submerged nozzle.

【図2】長方形の吐出孔からの吐出流の流速分布を模式
的に示す図である。
FIG. 2 is a diagram schematically illustrating a flow velocity distribution of a discharge flow from a rectangular discharge hole.

【図3】吐出流の流速分布に及ぼす浸漬ノズルの吐出孔
形状の影響を示す図である。
FIG. 3 is a diagram showing the influence of the shape of the discharge hole of the immersion nozzle on the flow velocity distribution of the discharge flow.

【図4】吐出流の流速分布に及ぼす浸漬ノズルの吐出孔
形状の影響を示す図である。
FIG. 4 is a diagram showing the influence of the shape of the discharge hole of the immersion nozzle on the flow velocity distribution of the discharge flow.

【図5】試験No.3の場合の中心偏析の状況を示す図
である。
FIG. FIG. 6 is a diagram showing a state of center segregation in the case of No. 3;

【符号の説明】[Explanation of symbols]

1:浸漬ノズル 2:吐出孔 3:
速度ベクトル W:吐出孔の横幅 H:吐出孔の縦長さ D:
浸漬ノズルの内径
1: Immersion nozzle 2: Discharge hole 3:
Speed vector W: horizontal width of discharge hole H: vertical length of discharge hole D:
Inner diameter of immersion nozzle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/128 350 B22D 11/128 350A 41/50 520 41/50 520 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22D 11/128 350 B22D 11/128 350A 41/50 520 41/50 520

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吐出流の方向が鋳型幅方向の両側のそれぞ
れの短辺方向である吐出孔を2つ有する浸漬ノズルを用
いて断面形状が長方形の鋳片を鋳造する連続鋳造方法で
あって、これら吐出孔の形状が長方形で、かつ、吐出孔
の寸法と浸漬ノズルの内径とが下記(A)式および
(B)式の条件を満足する浸漬ノズルを用いて鋳片を鋳
造し、さらに鋳片の未凝固領域を連続的に圧下すること
を特徴とする鋼の連続鋳造方法。 W/H≦0.6 ・・・(A) (W×H)/(D×D)≧0.8 ・・・(B) ここで、W:吐出孔の横幅(mm) H:吐出孔の縦長さ(mm) D:浸漬ノズルの内径(mm)
1. A continuous casting method for casting a slab having a rectangular cross section using an immersion nozzle having two discharge holes in which the direction of a discharge flow is the direction of each short side on both sides in the mold width direction. Casting a slab using an immersion nozzle in which the shape of these discharge holes is rectangular, and the dimensions of the discharge holes and the inner diameter of the immersion nozzle satisfy the following conditions (A) and (B); A continuous casting method for steel, wherein an unsolidified region of a slab is continuously reduced. W / H ≦ 0.6 (A) (W × H) / (D × D) ≧ 0.8 (B) where W: width of discharge hole (mm) H: discharge hole Vertical length (mm) D: Inner diameter of immersion nozzle (mm)
JP2000141674A 2000-05-15 2000-05-15 Method for continuously casting steel Pending JP2001321901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141674A JP2001321901A (en) 2000-05-15 2000-05-15 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141674A JP2001321901A (en) 2000-05-15 2000-05-15 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JP2001321901A true JP2001321901A (en) 2001-11-20

Family

ID=18648757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141674A Pending JP2001321901A (en) 2000-05-15 2000-05-15 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JP2001321901A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216288A (en) * 2006-02-20 2007-08-30 Jfe Steel Kk Continuous casting method for steel
CN100398229C (en) * 2004-01-23 2008-07-02 住友金属工业株式会社 Immersion nozzle for continuous casting and continuous casting method using the immersion nozzle
JP2011110603A (en) * 2009-11-30 2011-06-09 Sumitomo Metal Ind Ltd Immersion nozzle for continuous casting and continuous casting method
CN104117666A (en) * 2014-07-22 2014-10-29 莱芜钢铁集团有限公司 Submersed nozzle for casting rectangular blank and arrangement mode thereof
KR20170036973A (en) 2015-09-24 2017-04-04 주식회사 포스코 Continuous casting method for cast slab

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398229C (en) * 2004-01-23 2008-07-02 住友金属工业株式会社 Immersion nozzle for continuous casting and continuous casting method using the immersion nozzle
JP2007216288A (en) * 2006-02-20 2007-08-30 Jfe Steel Kk Continuous casting method for steel
JP2011110603A (en) * 2009-11-30 2011-06-09 Sumitomo Metal Ind Ltd Immersion nozzle for continuous casting and continuous casting method
CN104117666A (en) * 2014-07-22 2014-10-29 莱芜钢铁集团有限公司 Submersed nozzle for casting rectangular blank and arrangement mode thereof
KR20170036973A (en) 2015-09-24 2017-04-04 주식회사 포스코 Continuous casting method for cast slab

Similar Documents

Publication Publication Date Title
JP3835185B2 (en) Steel continuous casting method
JP2001321901A (en) Method for continuously casting steel
EP3488947A1 (en) Continuous steel casting method
JP6787359B2 (en) Continuous steel casting method
JP7047495B2 (en) Continuous casting method of slabs
JP2017024079A (en) Continuous casting method for steel
CN109689247B (en) Method for continuously casting steel
JP3214374B2 (en) Continuous casting of steel
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
JP7131328B2 (en) Rectifying member, pouring nozzle, twin roll type continuous casting apparatus, and method for producing thin cast slab
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP3362703B2 (en) Continuous casting method
JPH11156511A (en) Steel slab continuous casting method
JP3111954B2 (en) Continuous casting method
JP3633573B2 (en) Continuous casting method
JP2000218350A (en) Continuous casting method
JP2024142642A (en) Continuous casting method for steel
JP4330518B2 (en) Continuous casting method
JP3876768B2 (en) Continuous casting method
JP3114679B2 (en) Continuous casting method
JP6904132B2 (en) Tandish for continuous casting
JP2023141391A (en) Continuous casting method for steal
JP4432263B2 (en) Steel continuous casting method
JP3297802B2 (en) Continuous casting method
JP3147803B2 (en) Continuous casting method