JP2001047203A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP2001047203A
JP2001047203A JP11226856A JP22685699A JP2001047203A JP 2001047203 A JP2001047203 A JP 2001047203A JP 11226856 A JP11226856 A JP 11226856A JP 22685699 A JP22685699 A JP 22685699A JP 2001047203 A JP2001047203 A JP 2001047203A
Authority
JP
Japan
Prior art keywords
molten steel
mold
magnetic field
immersion nozzle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11226856A
Other languages
Japanese (ja)
Other versions
JP3365362B2 (en
Inventor
Tadashi Hirashiro
正 平城
Makoto Fukagawa
信 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22685699A priority Critical patent/JP3365362B2/en
Publication of JP2001047203A publication Critical patent/JP2001047203A/en
Application granted granted Critical
Publication of JP3365362B2 publication Critical patent/JP3365362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method for steel, with which a cast slab having good quality can be obtd. without clogging an immersion nozzle when the extra-low carbon steel, etc., is cast. SOLUTION: Respective pairs of static magnetic field molten steel fluid control devices, in which inert gas is blown into the molten steel at 1.0-2.5 Nl/ton of molten steel, of flowing quantity and the opposited set interposing the mold is made to one pair at the outside of two long sides in the mold, are disposed, each one pair, near a meniscus (magnetic field intensity B1), near spouting holes in the immersion nozzle (magnetic field intensity B2) and near the lower end of the mold (magnetic field intensity B3). The magnetic field intensities B1, B2 and B3 are acted as the electromagnetic force so as to satisfy the formula: B:B2:B3=0-1:1:1-3 with the B2 as the reference. Wherein, 500 (Gauss)<=B2<=1000 (Gauss) and the magnetic field impressing direction of B2 is made to the reverse direction to the B1 and the B3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳造時のノズル詰
まりがなく、表面品質の良好な鋳片が得られる極低炭素
鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting ultra-low carbon steel which can obtain a slab having good surface quality without clogging of a nozzle during casting.

【0002】[0002]

【従来の技術】表面欠陥が少なく、かつ成形性に優れて
いることが要求される鋼板、たとえば、自動車の外装用
鋼板には、極低炭素鋼が用いられている。真空下での脱
炭処理後にAlによる脱酸処理を行った極低炭素鋼の取
鍋内において、その後の連続鋳造が終了するまでの間
に、溶鋼中のAlとスラグ中のFeOやMnOなどの低
級酸化物とが反応し、Alの酸化物(Al2 3 )が生
成しやすい。
2. Description of the Related Art Ultra-low carbon steel is used for steel sheets which are required to have few surface defects and to be excellent in formability, for example, automotive exterior steel sheets. In the ladle of ultra-low carbon steel that has been deoxidized with Al after decarburization under vacuum, Al in molten steel and FeO and MnO in slag, etc., until the subsequent continuous casting is completed. Reacts with a lower oxide of Al to easily generate an oxide of Al (Al 2 O 3 ).

【0003】このAlの酸化物は、連続鋳造中に浸漬ノ
ズルが閉塞する原因となったり、また、連続鋳造中のタ
ンデイッシュ内や鋳型内の溶鋼から除去されずに鋳片表
層部にAl2 3 系の非金属介在物として残存し、鋼板
の表面欠陥の原因となったりする。
This oxide of Al causes the immersion nozzle to close during continuous casting, and does not remove Al 2 O from the molten steel in the tundish or mold during continuous casting. They remain as O 3 -based nonmetallic inclusions and may cause surface defects of the steel sheet.

【0004】浸漬ノズルの閉塞を防止するために、タン
ディッシュの溶鋼出口から浸漬ノズルの吐出孔までの間
で不活性ガスを溶鋼中に吹き込むことが一般的に行われ
ている。たとえば、特開平2−37948号公報では、
浸漬ノズルを通過する溶鋼中に、鋳造速度に応じた吹き
込み流量で、Arガスを吹き込む方法が提案されてい
る。また、特開平9−192803号公報では、吹き込
んだ不活性ガスの鋳型内の溶鋼中での浮上量が、浸漬ノ
ズルを挟んで両側で同じになるように、鋳型の外側に配
置した移動磁場印加装置を用いて溶鋼の流動を制御する
ことが提案されている。いずれの方法でも、吹き込む不
活性ガスの流量が、3〜5リットル/溶鋼ton程度と
多く、浸漬ノズルの閉塞の防止には効果があるが、鋳片
表層部に気泡性欠陥が発生する場合がある。
[0004] In order to prevent the clogging of the immersion nozzle, it is common practice to blow an inert gas into the molten steel between the molten steel outlet of the tundish and the discharge hole of the immersion nozzle. For example, in JP-A-2-37948,
A method has been proposed in which Ar gas is blown into molten steel passing through an immersion nozzle at a blowing flow rate according to a casting speed. In Japanese Patent Application Laid-Open No. Hei 9-192803, a moving magnetic field applied outside a mold is arranged so that a floating amount of an inert gas blown in molten steel in the mold is the same on both sides of an immersion nozzle. It has been proposed to control the flow of molten steel using an apparatus. In either method, the flow rate of the inert gas to be blown is as large as about 3 to 5 liters / ton of molten steel, which is effective in preventing the clogging of the immersion nozzle. However, in some cases, cellular defects occur in the surface layer of the slab. is there.

【0005】一方、鋳片表層部での非金属介在物の集積
や気泡性欠陥の発生の防止、また、高速鋳造時のブレー
クアウトの発生防止などを目的に、鋳型内の溶鋼の流動
を制動する手段が採られている。たとえば、特開平11
−10290号公報では、鋳型の高さ方向の上段、中段
および下段の3段の位置に静磁場印加装置を配置し、各
段の電磁力の強度を調整して、鋳型内の溶鋼の流動を制
動する方法が提案されている。
On the other hand, the flow of molten steel in the mold is damped for the purpose of preventing accumulation of nonmetallic inclusions and occurrence of bubble defects in the surface layer of the slab, and prevention of breakout during high-speed casting. Means are taken to do so. For example, Japanese Patent Application Laid-Open
According to Japanese Patent No. -10290, a static magnetic field applying device is arranged at three stages of an upper stage, a middle stage and a lower stage in a height direction of a mold, and the strength of the electromagnetic force of each stage is adjusted to control the flow of molten steel in the mold. Braking methods have been proposed.

【0006】しかし、この特開平11−10290号公
報の方法では、吹き込む不活性ガスの流量によっては、
メニスカス近傍の溶鋼の流動が変化することが考慮され
ていない。つまり、鋳型の短辺から浸漬ノズルの方向に
向かうメニスカス近傍の溶鋼の流れに作用させる静磁場
の強度が強く、さらにこのとき、浸漬ノズルを通過する
溶鋼中に多くの流量で不活性ガスを吹き込むと、不活性
ガスの気泡による溶鋼の流れが形成され、そのために、
メニスカス近傍の溶鋼の流れが部分的に停滞したり、溶
鋼の湯面が波立ったりする場合がある。
However, in the method disclosed in Japanese Patent Application Laid-Open No. H11-10290, depending on the flow rate of the inert gas to be blown,
No consideration is given to the change in the flow of the molten steel in the vicinity of the meniscus. In other words, the strength of the static magnetic field acting on the flow of molten steel near the meniscus from the short side of the mold toward the direction of the immersion nozzle is strong, and at this time, an inert gas is blown at a large flow rate into the molten steel passing through the immersion nozzle And the flow of molten steel due to the bubbles of the inert gas is formed,
The flow of the molten steel in the vicinity of the meniscus may partially stagnate, or the molten steel surface may be wavy.

【0007】メニスカス近傍の溶鋼の流れが停滞する
と、鋳片表層部に非金属介在物が集積しやすくなった
り、また、停滞した部分の溶鋼温度が低下するため、溶
融スラグ(溶融したモールドパウダー)の流れ込みが不
均一になり、そのため、鋳片表面に割れが発生する場合
がある。また、溶鋼の湯面が波立つと、溶融スラグや未
溶融のモールドパウダーが鋳型内の溶鋼中に巻き込ま
れ、鋳片表層部にパウダー性欠陥が発生しやすくなる。
If the flow of molten steel near the meniscus stagnates, nonmetallic inclusions tend to accumulate on the surface layer of the slab, and the temperature of the molten steel in the stagnant portion decreases, so that molten slag (molten mold powder) Flow may be non-uniform, which may lead to cracks on the slab surface. Also, when the molten steel surface is wavy, molten slag and unmelted mold powder are caught in the molten steel in the mold, and powder defects are likely to be generated on the surface layer of the slab.

【0008】[0008]

【発明が解決しようとする課題】上述のように、不活性
ガスの吹き込み流量が適正でない場合には、浸漬ノズル
の閉塞を防止できなかったり、浸漬ノズルの閉塞は防止
できても、鋳片表層部にパウダー性欠陥、気泡性欠陥な
どが発生しやすくなる。また、鋳型内の溶鋼に上段、中
段および下段の3段の静磁場の電磁力を印加して、溶鋼
の流動を制動する方法においても、不活性ガスの吹き込
み流量および静磁場の磁場強度を適正にしないと、鋳片
表層部に非金属介在物の集積やパウダー性欠陥の発生、
また、鋳片表面に割れの発生などが起こりやすくなる。
As described above, if the flow rate of the inert gas is not appropriate, the clogging of the immersion nozzle cannot be prevented. Powder defects, bubble defects, and the like are likely to occur in the portion. Also, in the method of applying the electromagnetic force of the upper, middle and lower three static magnetic fields to the molten steel in the mold to brake the flow of the molten steel, the flow rate of the inert gas and the magnetic field strength of the static magnetic field are appropriately adjusted. Otherwise, accumulation of non-metallic inclusions and powder defects on the surface layer of the slab,
Further, cracks and the like easily occur on the surface of the slab.

【0009】本発明は、極低炭素鋼などを鋳造する際
に、浸漬ノズルに詰まりが発生することもなく、安定し
た鋳造作業が可能で、また、鋳片表層部にモールドパウ
ダーを巻き込んだパウダー性欠陥や不活性ガスの気泡を
捕捉した気泡性欠陥などがなく、Al2 3 などの非金
属介在物の集積のない、さらに、鋳片表面に割れなどの
ない、品質の良好な鋳片を得ることができる鋼の連続鋳
造方法を提供することを目的とする。
According to the present invention, when casting ultra-low carbon steel or the like, a stable casting operation can be performed without clogging of the immersion nozzle, and a powder in which mold powder is wrapped around the surface layer of a slab. Slab of good quality with no porosity defects and no porosity defects trapping air bubbles of inert gas, no accumulation of non-metallic inclusions such as Al 2 O 3, and no cracks on the slab surface It is an object of the present invention to provide a continuous casting method for steel capable of obtaining the following.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、つぎの
(a)〜(d)を特徴とする連続鋳造方法にある。
The gist of the present invention resides in a continuous casting method characterized by the following (a) to (d).

【0011】(a)矩形断面鋳片用の鋳型および浸漬ノ
ズルを用いる溶鋼の連続鋳造方法であること。
(A) A method for continuous casting of molten steel using a mold for slabs of rectangular cross section and an immersion nozzle.

【0012】(b)タンディッシュの溶鋼出口から浸漬
ノズルの吐出孔までの間で、溶鋼中に不活性ガスを1.
0〜2.5Nリットル/溶鋼tonの流量で吹き込むこ
と。
(B) Between the molten steel outlet of the tundish and the discharge hole of the immersion nozzle, an inert gas is introduced into the molten steel.
Blow at a flow rate of 0 to 2.5 Nl / ton of molten steel.

【0013】(c)鋳型の2つの長辺の外側に鋳型を挟
んで対向する組を1対とする静磁場の溶鋼流動制動装置
を、浸漬ノズルを挟んでメニスカス近傍、鋳型の両短辺
方向に開口する浸漬ノズルの各吐出孔から流れ出た直後
の吐出流の近傍(以下、吐出孔の近傍と記す)および浸
漬ノズルの延長線を挟んで鋳型の下端近傍に各1対をそ
れぞれ設けること。
(C) A static magnetic field molten steel flow braking device having a pair of sets opposite to each other with the mold interposed outside the two long sides of the mold is provided near the meniscus with the immersion nozzle interposed therebetween, in both short side directions of the mold. Each pair is provided in the vicinity of the discharge flow immediately after flowing out of each discharge hole of the immersion nozzle (hereinafter, referred to as the vicinity of the discharge hole) and near the lower end of the mold with an extension of the immersion nozzle interposed therebetween.

【0014】(d)メニスカス近傍、吐出孔の近傍およ
び鋳型の下端近傍のそれぞれの溶鋼流動制動装置の磁場
強度を、それぞれB1、B2およびB3とし、これらの
磁場強度B1、B2およびB3が、B2を基準として下
記(A)式を満足するように電磁力を作用させること。
(D) The magnetic field strengths of the molten steel flow braking devices in the vicinity of the meniscus, in the vicinity of the discharge hole, and in the vicinity of the lower end of the mold are B1, B2, and B3, respectively, and these magnetic field strengths B1, B2, and B3 are B2 The electromagnetic force is applied so as to satisfy the following equation (A) with reference to

【0015】 B1:B2:B3=0〜1:1:1〜3 ・・・(A) ここで、500(Gauss)≦B2≦1000(Ga
uss) B2の磁場印加方向:B1およびB3と反対方向 本発明者らは、前述する本発明の課題を、下記の、
の知見をもとに、およびの対策を採ることによって
解決した。なお、本発明の方法では、吐出孔が2孔で、
それぞれの吐出流が鋳型の短辺方向に向いている浸漬ノ
ズルを用いる。吐出孔の角度は、とくにこだわらない。
一般的な下向き角度30〜45°のものでよい。
B1: B2: B3 = 0 to 1: 1: 1 to 3 (A) Here, 500 (Gauss) ≦ B2 ≦ 1000 (Ga
uss) B2 magnetic field application direction: opposite direction to B1 and B3 The present inventors described the above-mentioned object of the present invention as follows:
Based on the knowledge of the above, and by taking the following measures. In the method of the present invention, the number of discharge holes is two,
An immersion nozzle is used in which each discharge flow is directed to the short side of the mold. The angle of the discharge hole is not particularly limited.
A general downward angle of 30 to 45 ° may be used.

【0016】メニスカス近傍の溶鋼の流れは、吐出流
の影響によって、鋳型の短辺から浸漬ノズルに向かう流
れとなる。ただし、浸漬ノズルを通過する溶鋼に不活性
ガスを吹き込んでいる場合には、不活性ガスによって形
成されるメニスカス近傍の溶鋼の流れを考慮する必要が
ある。すなわち、浸漬ノズルを通過する溶鋼中に吹き込
まれ不活性ガスの気泡の一部は、吐出孔近傍から、すぐ
に溶鋼中を浮上する。この浮上する気泡によって、メニ
スカス近傍において浸漬ノズル周辺から鋳型の短辺方向
に向かう溶鋼の流れが形成される。
The flow of the molten steel in the vicinity of the meniscus is a flow from the short side of the mold toward the immersion nozzle due to the influence of the discharge flow. However, when the inert gas is blown into the molten steel passing through the immersion nozzle, it is necessary to consider the flow of the molten steel near the meniscus formed by the inert gas. That is, a part of the bubble of the inert gas blown into the molten steel passing through the immersion nozzle immediately floats in the molten steel from near the discharge hole. The floating bubbles form a flow of molten steel from the periphery of the immersion nozzle toward the short side of the mold near the meniscus.

【0017】したがって、浸漬ノズルなどを通過する
溶鋼に不活性ガスを吹き込む場合で、かつ、メニスカス
近傍の溶鋼に静磁場の電磁力を作用させる場合には、吹
き込む不活性ガスの流量および磁場強度を同時に適正な
条件の範囲とする必要がある。すなわち、不活性ガスの
吹き込み流量を考慮せずに、鋳型の短辺から浸漬ノズル
に向かう溶鋼の流れを制動するように静磁場の電磁力を
作用させるとき、不活性ガスによって形成された溶鋼の
流れによる減衰効果に加え、鋳型の短辺から浸漬ノズル
に向かう溶鋼の流れが過度に制動される場合がある。鋳
型の短辺から浸漬ノズルに向かう溶鋼の流れが過度に制
動されると、凝固殻の溶鋼側の面に付着する気泡や酸化
物を洗い流す効果が減少し、鋳片表層部に気泡性欠陥が
発生したり、非金属介在物が集積する。
Therefore, when the inert gas is blown into the molten steel passing through the immersion nozzle or the like and when the electromagnetic force of the static magnetic field is applied to the molten steel near the meniscus, the flow rate and the magnetic field strength of the blown inert gas are reduced. At the same time, it is necessary to set the range of appropriate conditions. In other words, without considering the flow rate of the inert gas, when applying the electromagnetic force of the static magnetic field to brake the flow of the molten steel from the short side of the mold to the immersion nozzle, the molten steel formed by the inert gas In addition to the damping effect of the flow, the flow of molten steel from the short side of the mold toward the immersion nozzle may be excessively damped. If the flow of molten steel from the short side of the mold to the immersion nozzle is excessively damped, the effect of washing out bubbles and oxides adhering to the surface of the solidified shell on the molten steel side is reduced, and cellular defects on the surface layer of the slab are reduced. Or accumulate non-metallic inclusions.

【0018】本発明の方法では、タンディッシュの溶
鋼出口から浸漬ノズルの吐出孔までの間で、溶鋼中に不
活性ガスを1.0〜2.5Nリットル/溶鋼tonの流
量で吹き込む条件下で、鋳型の高さ方向の上段、中段、
下段に配置した静磁場の溶鋼流動制動装置の各磁場強度
を前述する(A)式を満足するように作用させる。これ
によって、メニスカス近傍の鋳型の短辺から浸漬ノズル
に向かう溶鋼の流れを適正に制動できる。そのため、鋳
片表層部の気泡性欠陥やパウダー性欠陥の発生、非金属
介在物の集積および鋳片表面の割れの発生をそれぞれ防
止できる。
In the method of the present invention, an inert gas is blown into the molten steel at a flow rate of 1.0 to 2.5 Nl / ton of molten steel between the molten steel outlet of the tundish and the discharge hole of the immersion nozzle. , The upper, middle,
The respective magnetic field strengths of the molten steel flow braking device of the static magnetic field arranged at the lower stage are made to act so as to satisfy the above-mentioned expression (A). Thereby, the flow of the molten steel from the short side of the mold near the meniscus toward the immersion nozzle can be appropriately braked. For this reason, it is possible to prevent the occurrence of bubble defects and powder defects in the surface layer of the slab, the accumulation of nonmetallic inclusions, and the occurrence of cracks on the slab surface.

【0019】また、本発明の方法では、溶鋼中に吹き
込む不活性ガスの流量の下限を1.0Nリットル/溶鋼
tonとするので、浸漬ノズルの詰まりを防止できる。
In the method of the present invention, the lower limit of the flow rate of the inert gas blown into the molten steel is set to 1.0 Nl / ton of molten steel, so that clogging of the immersion nozzle can be prevented.

【0020】[0020]

【発明の実施の形態】図1は、本発明の方法を実施する
場合の装置の例を模式的に示す図である。溶鋼12は、
タンディッシュ1から鋳型への注入口である上ノズル耐
火物2、溶鋼の流量制御用のスライディングプレート3
(図1では3層プレートの場合で示す)、浸漬ノズル4
(通常用いられる2孔のノズルを示す)を経て、吐出孔
5から鋳型内に注入される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram schematically showing an example of an apparatus for carrying out the method of the present invention. The molten steel 12
Upper nozzle refractory 2, which is an injection port from the tundish 1 to the mold, a sliding plate 3 for controlling the flow rate of molten steel
(Shown in the case of a three-layer plate in FIG. 1), immersion nozzle 4
(Indicating a normally used two-hole nozzle), and is injected into the mold from the discharge hole 5.

【0021】図1では、溶鋼の流量制御用にスライディ
ングプレートを用いる例を示しているが、ロッドタイプ
のストッパーを用いてもよい。また、上ノズル耐火物
2、スライディングプレート3または浸漬ノズル4に配
置した多孔質耐火物や鋼製の細管などからなる不活性ガ
スの吹き込み口10から不活性ガスを溶鋼中に吹き込む
のがよい。図1では、スライディングプレート3−1か
ら吹き込む例を示す。
FIG. 1 shows an example in which a sliding plate is used for controlling the flow rate of molten steel, but a rod type stopper may be used. Inert gas is preferably blown into molten steel from an inert gas injection port 10 formed of a porous refractory, a steel thin tube, or the like disposed in the upper nozzle refractory 2, the sliding plate 3, or the immersion nozzle 4. FIG. 1 shows an example of blowing from the sliding plate 3-1.

【0022】図2は、図1の各位置での水平断面を示す
図である。図2(a)、図2(b)、図2(c)は、そ
れぞれ図1のA1−A2、B1−B2、C1−C2の各
線における水平断面を模式的に示す。鋳型の長辺の外側
には、鋳型を挟んで対向する組を1対とする静磁場の溶
鋼流動制動装置9を、浸漬ノズルを挟んでメニスカス近
傍に9−1、鋳型の両短辺方向に開口する浸漬ノズルの
各吐出孔の近傍に9−2、浸漬ノズルの延長線を挟んで
鋳型の下端近傍に9−3の各1対を、それぞれ配置す
る。
FIG. 2 is a view showing a horizontal section at each position in FIG. FIGS. 2A, 2B, and 2C schematically show horizontal cross sections taken along lines A1-A2, B1-B2, and C1-C2 in FIG. 1, respectively. Outside the long side of the mold, a molten steel flow braking device 9 of a static magnetic field having a pair of pairs facing each other across the mold is provided in the vicinity of the meniscus 9-1 across the immersion nozzle, in both short side directions of the mold. A pair of 9-2 is disposed near each discharge hole of the opening immersion nozzle, and a pair of 9-3 is disposed near the lower end of the mold with an extension of the immersion nozzle interposed therebetween.

【0023】図3は、鋳型内の溶鋼の流動を模式的に示
す図である。吐出流6、6は、短辺側の凝固殻11に衝
突後、上昇流7−1、7−1および下降流7−2、7−
2に分岐する。上昇流は、溶鋼表面に達した後、鋳型の
短辺から浸漬ノズルに向かう溶鋼の流れ7−3、7−3
となる。一方、吹き込まれた不活性ガスの気泡の一部
は、吐出孔近傍から、すぐに溶鋼中を浮上し、その浮上
する気泡によって、溶鋼表面では、浸漬ノズルから鋳型
の短辺方向に向かう溶鋼の流れ8、8が形成される。ま
た、鋳型の短辺から浸漬ノズルに向かう溶鋼の流れ7−
3、7−3は浸漬ノズルの手前で、溶鋼中に潜り込み、
循環流を形成する。これらの溶鋼の流れは、浸漬ノズル
を挟んで左右に形成される。
FIG. 3 is a diagram schematically showing the flow of molten steel in a mold. After colliding with the solidified shell 11 on the short side, the discharge flows 6, 6 rise, and the descending flows 7-1, 7-1 and 7-2, 7-
Branch to 2. After the ascending flow reaches the molten steel surface, the molten steel flows 7-3, 7-3 from the short side of the mold toward the immersion nozzle.
Becomes On the other hand, a part of the bubble of the injected inert gas immediately floats in the molten steel from the vicinity of the discharge hole, and the floating bubble causes the molten steel surface to move from the immersion nozzle toward the short side of the mold from the immersion nozzle. Streams 8, 8 are formed. Also, the flow of molten steel from the short side of the mold toward the immersion nozzle 7-
3, 7-3 is in front of the immersion nozzle, sneaks into the molten steel,
Form a circulating flow. These flows of molten steel are formed on the left and right sides of the immersion nozzle.

【0024】本発明の方法では、鋳型の上段に配置する
静磁場の溶鋼流動制動装置9−1を用いて作用させる電
磁力により、吐出流が鋳片の短辺と衝突した後の上昇流
が溶鋼表面に達して生成した鋳型の短辺から浸漬ノズル
向かう溶鋼の流れ7−3、7−3が制動される。鋳型の
中段に配置する静磁場の溶鋼流動制動装置9−2を用い
て作用させる電磁力によって、吐出流6、6の流速が制
動される。鋳型の下段に配置する静磁場の溶鋼流動制動
装置9−3を用いて作用させる電磁力によって、吐出流
が鋳片の短辺と衝突した後の下降流7−2、7−2が制
動される。
In the method of the present invention, the upward flow after the discharge flow collides with the short side of the slab is generated by the electromagnetic force applied by using the molten steel flow braking device 9-1 of the static magnetic field disposed on the upper stage of the mold. The flow 7-3 of the molten steel from the short side of the mold formed upon reaching the surface of the molten steel toward the immersion nozzle is damped. The flow velocity of the discharge flows 6, 6 is braked by the electromagnetic force applied by using the molten steel flow braking device 9-2 of the static magnetic field arranged in the middle stage of the mold. The downward flow 7-2, 7-2 after the discharge flow collides with the short side of the slab is braked by the electromagnetic force applied by using the molten steel flow braking device 9-3 of the static magnetic field arranged at the lower stage of the mold. You.

【0025】本発明の方法では、タンディッシュの溶鋼
出口から浸漬ノズルの吐出孔までの間で、溶鋼中に不活
性ガスを1.0〜2.5Nリットル/溶鋼tonの流量
で吹き込む。2.5を超えると、鋳型内の湯面がボイリ
ング(湯面が不活性ガス湧出によって泡だつ状態)し、
溶融スラグや未溶融のモールドパウダーを溶鋼中に巻き
込みやすくなる。1.0未満では、浸漬ノズルの閉塞防
止の効果が少ない。
In the method of the present invention, an inert gas is blown into the molten steel at a flow rate of 1.0 to 2.5 Nl / ton of molten steel from the molten steel outlet of the tundish to the discharge hole of the immersion nozzle. If it exceeds 2.5, the surface of the mold in the mold is boiled (the surface of the mold foams due to the generation of inert gas),
Molten slag and unmelted mold powder are easily rolled into molten steel. If it is less than 1.0, the effect of preventing blockage of the immersion nozzle is small.

【0026】一方、静磁場の電磁力を作用させない場合
には、4.0Nリットル/溶鋼tonを超えると、鋳片
表層部に気泡性欠陥が発生しやすい。また、1.0Nリ
ットル/溶鋼ton未満では、鋳片表層部に非金属介在
物が集積しやすい。このように、静磁場の電磁力を作用
させることにより、適正な不活性ガスの吹き込み流量の
範囲を広くすることができる。
On the other hand, when the static magnetic field electromagnetic force is not applied, if it exceeds 4.0 Nl / ton of molten steel, cellular defects are likely to occur in the surface layer of the slab. In addition, if it is less than 1.0 N liter / molten steel ton, nonmetallic inclusions tend to accumulate in the surface layer of the slab. Thus, by applying the electromagnetic force of the static magnetic field, it is possible to widen the range of the flow rate of the appropriate inert gas to be blown.

【0027】本発明の方法では、上段、中段および下段
の静磁場の各溶鋼流動制動装置の磁場強度B1、B2お
よびB3を、B2を基準として、前述する(A)式を満
足する磁場強度の比とする。なお、本発明の方法でいう
静磁場の磁場強度とは、各溶鋼流動制動装置の各コイル
の高さ位置におけるコイル幅の中心位置で、かつ、鋳型
の厚み中心部の位置における磁場強度を意味する。
In the method of the present invention, the magnetic field strengths B1, B2, and B3 of the upper, middle, and lower static magnetic fluid flow braking devices are determined based on B2 with magnetic field strengths satisfying the above-described equation (A). Ratio. The magnetic field strength of the static magnetic field referred to in the method of the present invention means the magnetic field strength at the center position of the coil width at the height position of each coil of each molten steel flow braking device, and at the position of the center of the thickness of the mold. I do.

【0028】浸漬ノズルの吐出孔近傍の溶鋼に作用させ
る磁場強度B2は500〜1000Gaussとする。
この範囲の磁場強度が、吐出流の流速の制動、浸漬ノズ
ルを挟んだ左右の吐出流の流れの方向や流速の均等化に
もっとも効果的である。1000Gaussを超える
と、吐出流の流速が遅くなり、鋳片の短辺に衝突した後
の上昇流の流速が遅すぎる。したがって、鋳型の短辺か
ら浸漬ノズル向かう溶鋼の流れの速度も遅すぎる。その
ため、凝固殻を洗浄する効果が少なくなり、鋳片表層部
に気泡性欠陥が発生したり、非金属介在物などが集積し
やすくなる。また、500Gauss未満では、吐出流
の流速を制動する効果が小さい。したがって、磁場強度
B2は500〜1000Gaussとする。
The magnetic field strength B2 acting on the molten steel near the discharge hole of the immersion nozzle is set to 500 to 1000 Gauss.
The magnetic field strength in this range is most effective for braking the flow velocity of the discharge flow, and for equalizing the flow direction and flow velocity of the left and right discharge flows across the immersion nozzle. If it exceeds 1000 Gauss, the flow velocity of the discharge flow becomes low, and the flow velocity of the upward flow after colliding with the short side of the slab is too low. Therefore, the speed of the flow of the molten steel from the short side of the mold toward the immersion nozzle is also too low. For this reason, the effect of cleaning the solidified shell is reduced, so that bubble defects are generated in the surface layer of the slab, and nonmetallic inclusions and the like are easily accumulated. If it is less than 500 Gauss, the effect of braking the discharge flow velocity is small. Therefore, the magnetic field strength B2 is set to 500 to 1000 Gauss.

【0029】メニスカス近傍の溶鋼に作用させる磁場強
度B1は、磁場強度B2を1とするとき、指数0〜1と
する。
The magnetic field strength B1 acting on the molten steel in the vicinity of the meniscus has an index of 0 to 1 when the magnetic field strength B2 is 1.

【0030】前述するように、溶鋼中に吹き込まれた不
活性ガスの気泡によって形成されるメニスカス近傍の溶
鋼の流れは、メニスカス近傍の溶鋼に作用させる磁場強
度と同じ効果を有する。
As described above, the flow of the molten steel near the meniscus formed by the bubbles of the inert gas blown into the molten steel has the same effect as the magnetic field intensity applied to the molten steel near the meniscus.

【0031】そこで、たとえば1800mm程度以上の
広幅の鋳型の場合には、鋳型の短辺から浸漬ノズル向か
う溶鋼の流れの流速は遅い。このとき、上述のように不
活性ガスの気泡によって形成された溶鋼の流れがあるた
め、磁場強度B1の指数は0または0近傍とする。鋳型
の短辺から浸漬ノズル向かう溶鋼の流れを過度に制動し
ないためである。
Therefore, in the case of a mold having a wide width of, for example, about 1800 mm or more, the flow velocity of the molten steel flowing from the short side of the mold toward the immersion nozzle is low. At this time, the index of the magnetic field strength B1 is set to 0 or near 0 because there is a flow of the molten steel formed by the bubbles of the inert gas as described above. This is because the flow of the molten steel from the short side of the mold toward the immersion nozzle is not excessively damped.

【0032】また、たとえば1600mm程度以下の狭
幅の鋳型の場合には、鋳型の短辺から浸漬ノズル向かう
溶鋼の流れの流速は速い。したがって、上述のように不
活性ガスの気泡によって形成された溶鋼の流れがあって
も、磁場強度B1の指数を1またはそれ以下で1近傍と
する。鋳型の短辺から浸漬ノズル向かう溶鋼の流れを強
く制動するためである。
In the case of a narrow mold of, for example, about 1600 mm or less, the flow velocity of the molten steel flowing from the short side of the mold toward the immersion nozzle is high. Therefore, even if there is a flow of the molten steel formed by the bubbles of the inert gas as described above, the index of the magnetic field strength B1 is set to 1 or less and set to be close to 1. This is for strongly damping the flow of the molten steel from the short side of the mold toward the immersion nozzle.

【0033】したがって、鋳造する鋳型幅の条件から、
磁場強度B1は指数0〜1とする。いずれの場合にも、
鋳型の短辺から鋳型長辺の1/4で、鋳型の長辺から短
辺厚みの1/2の位置での、鋳型の短辺から浸漬ノズル
に向かう溶鋼の流れの流速は30cm/秒程度とするの
が望ましい。
Therefore, from the condition of the casting mold width,
The magnetic field strength B1 is an index 0 to 1. In each case,
The flow rate of the molten steel flowing from the short side of the mold toward the immersion nozzle at a position from the short side of the mold to one-fourth of the long side of the mold and from the long side of the mold to one-half of the thickness of the short side is about 30 cm / sec. It is desirable that

【0034】浸漬ノズルの延長線を挟んで鋳型の下端近
傍の溶鋼に作用させる磁場強度B3は、磁場強度B2を
1とするとき、指数1〜3する。磁場強度B3を作用さ
せるのは、溶鋼の下方への流れを抑制することにより、
相対的に鋳型の上方への溶鋼の流れを増やすためであ
る。これにより、溶鋼中の酸化物の浮上を促進できる
し、また、溶鋼表面の温度を高温に保持できる。指数1
未満では、溶鋼の下方への流れを抑制する効果が少な
い。また、指数3を超えると、溶鋼の下方への流れを過
度に制動するため、鋳型内で偏流が生じやすく、鋳型の
長辺方向での凝固殻の厚みが不均一になり、鋳片表面に
割れが発生したり、鋳片表層部に局部的に非金属介在物
が集積しやすくなる。したがって、磁場強度B3は指数
1〜3とする。
The magnetic field strength B3 acting on the molten steel near the lower end of the mold with the extension line of the immersion nozzle interposed therebetween has exponents 1-3 when the magnetic field strength B2 is 1. The action of the magnetic field strength B3 is to suppress the downward flow of the molten steel,
This is for increasing the flow of molten steel relatively above the mold. Thereby, the floating of the oxide in the molten steel can be promoted, and the temperature of the molten steel surface can be maintained at a high temperature. Index 1
If it is less than the above, the effect of suppressing the downward flow of the molten steel is small. On the other hand, when the index exceeds 3, the downward flow of the molten steel is excessively damped, so that drift is apt to occur in the mold, and the thickness of the solidified shell in the long side direction of the mold becomes uneven, and Cracks occur and non-metallic inclusions tend to accumulate locally on the slab surface layer. Therefore, the magnetic field strength B3 is set to an index of 1 to 3.

【0035】本発明の方法では、吹き込む不活性ガスの
流量および静磁場の磁場強度を同時に適正な条件の範囲
とすることにより、鋳片表面から厚み方向に10mmま
での鋳片表層部の50μm以上の非金属介在物の個数
を、鋼1kg当たり20個以下となるような鋳造条件を
選ぶのが望ましい。20個以下とすることにより、この
鋳片を素材とする鋼板の表面欠陥の発生を効果的に防止
できる。
In the method of the present invention, the flow rate of the inert gas to be blown and the magnetic field strength of the static magnetic field are simultaneously set within appropriate ranges, so that the thickness of the surface layer of the slab from the slab surface to 10 mm in the thickness direction is 50 μm or more. It is desirable to select casting conditions such that the number of non-metallic inclusions is 20 or less per kg of steel. By setting the number to 20 or less, it is possible to effectively prevent the occurrence of surface defects of a steel plate using the cast slab as a raw material.

【0036】本発明の方法は、浸漬ノズル内の溶鋼のス
ループット(単位時間当たりの溶鋼通過量)が6.5t
on/分程度までの範囲で適用すると特に効果的であ
る。
In the method of the present invention, the throughput of molten steel in the immersion nozzle (the amount of molten steel passing per unit time) is 6.5 t.
It is particularly effective if applied within a range of about on / min.

【0037】[0037]

【実施例】垂直曲げ型連続鋳造機を用いて、断面形状が
厚み270mm、幅1500mmの鋳片を鋳造した。用
いた鋼は炭素含有率が0.004重量%の極低炭素鋼
で、1.5m/分の速度で鋳造した。このときの浸漬ノ
ズルのスループットは約4.3ton/分である。各試
験では3ヒートの連々鋳を行った。各ヒートの溶鋼量は
約250tonである。
EXAMPLE A slab having a cross-sectional shape of 270 mm in thickness and 1500 mm in width was cast using a vertical bending type continuous casting machine. The steel used was a very low carbon steel with a carbon content of 0.004% by weight and was cast at a speed of 1.5 m / min. The throughput of the immersion nozzle at this time is about 4.3 ton / min. In each test, three heats were continuously cast. The amount of molten steel in each heat is about 250 tons.

【0038】タンディッシュから鋳型への溶鋼の流量制
御用装置には、図1に示す3層のスライディングプレー
トを用いた。また、3層のスライディングプレートの最
上部のプレートに配置した鋼製の細管から、不活性ガス
を吹き込んだ。内径が1mmである細管を耐火物に10
個埋め込んだものを用いた。不活性ガスの吹き込み流量
は0〜5Nリットル/溶鋼tonの範囲内とした。ま
た、浸漬ノズルはアルミナグラファイト製で、吐出孔が
通常の2孔で、吐出孔の角度は、下向き角度30゜のも
のを用いた。
As the apparatus for controlling the flow rate of molten steel from the tundish to the mold, a three-layer sliding plate shown in FIG. 1 was used. Further, an inert gas was blown from a steel thin tube arranged on the uppermost plate of the three-layer sliding plate. Use a thin tube with an inner diameter of 1 mm as a refractory.
The one embedded individually was used. The blowing flow rate of the inert gas was in the range of 0 to 5 Nl / ton of molten steel. The immersion nozzle was made of alumina graphite, had two normal discharge holes, and had a downward angle of 30 °.

【0039】鋳型の長辺の外側には、鋳型を挟んで対向
する組を1対とする静磁場の溶鋼流動制動装置を、浸漬
ノズルを挟んでメニスカス近傍に各1対、鋳型の短辺方
向に開口する浸漬ノズルの吐出孔の近傍に各1対、浸漬
ノズルの延長線を挟んで鋳型の下端近傍に各1対をそれ
ぞれ配置した。これら上段、中段、下段の静磁場の溶鋼
流動制動装置の磁場強度B1、B2、B3を変化させて
試験した。
On the outside of the long side of the mold, a pair of pairs of opposing sets across the mold are provided with a flow brake device for molten steel of a static magnetic field. And one pair near the lower end of the mold with the extension line of the immersion nozzle interposed therebetween. The test was performed by changing the magnetic field strengths B1, B2, and B3 of the molten steel flow braking devices of the upper, middle, and lower static magnetic fields.

【0040】鋳造中には、カルマン渦流式流速計を用い
て、鋳型の短辺から鋳型長辺の1/4で、鋳型の長辺か
ら短辺の厚みの1/2の位置での鋳型の短辺から浸漬ノ
ズル向かう溶鋼の流速を随時測定した。また、浸漬ノズ
ルに詰まりが発生するかどうか観察した。また、各試験
毎に6ヒートの連々鋳の各ヒートから定常状態で鋳造さ
れた鋳片(10m長さ)を各1個採取した。
During casting, using a Karman eddy current meter, the mold was positioned at a position 1 / of the short side of the mold to the long side of the mold and 1 / of the thickness of the long side to the short side of the mold. The flow velocity of the molten steel from the short side toward the immersion nozzle was measured at any time. In addition, it was observed whether or not the immersion nozzle was clogged. In addition, one slab (10 m length) cast in a steady state was taken from each of the six consecutive heats for each test.

【0041】採取した鋳片については、まず最初に、鋳
片表層部のパウダー性欠陥の発生個数を目視で調査し
た。次に、鋳片の長辺側の表面を全面にわたって、3m
m溶削した後、目視観察により直径1mm以上の気泡性
欠陥の発生個数を調査した。さらに、鋳片表面の割れの
発生状況を目視で観察した。
First, the number of powdery defects generated on the surface layer of the cast slab was visually inspected. Next, over the entire surface on the long side of the slab, 3 m
After m-cutting, the number of foamed defects having a diameter of 1 mm or more was examined by visual observation. Furthermore, the occurrence of cracks on the slab surface was visually observed.

【0042】パウダー性欠陥または気泡性欠陥の発生個
数については、各ヒートの鋳片毎に発生個数を調査し、
その値の平均値を、その試験のパウダー性欠陥または気
泡性欠陥の発生個数とし、その発生個数から次のような
指数1、2および3に区分した。
Regarding the number of powdery defects or bubble defects, the number of occurrences for each slab of each heat was investigated.
The average of the values was defined as the number of powdery defects or bubble defects generated in the test, and was classified into the following indices 1, 2 and 3 from the number of generated defects.

【0043】すなわち、パウダー性欠陥発生指数または
気泡性欠陥発生指数の指数1は、これらの欠陥が発生し
ていないか、発生していても軽微で手入れの必要が無い
程度のものを意味する。指数2は、手入れが必要な程度
のこれらの欠陥が発生しており、もし、手入れしない鋳
片を熱間圧延した場合には、製品に表面欠陥が若干発生
する程度のものを意味する。また、指数3は、これらの
欠陥の発生が著しく、もし鋳片を手入れせずに熱間圧延
した場合には、製品が屑になる程度の表面欠陥が発生す
るものを意味する。
That is, the index 1 of the powder defect index or the bubble defect index indicates that these defects are not generated, or even if they are generated, they are minor and do not require maintenance. The index 2 means that these defects are generated to such an extent that maintenance is required, and if hot rolling is performed on untreated slabs, the surface defects are slightly generated in the product. An index of 3 indicates that these defects are remarkably generated, and if hot rolling is performed without taking care of the slab, surface defects are generated to such an extent that the product is scrapped.

【0044】非金属介在物の集積状況については、鋳片
横断面で、鋳片長辺の幅の1/4、1/2、3/4の各
位置の鋳片表面から厚み10mm、幅90mmで鋳造方
向に120mm(約0.85kg)のサンプルを採取
し、電解法(スライム抽出法)により非金属介在物を抽
出し、50μm以上の大きさの非金属介在物の個数を調
査した。鋳片1kg当たりの非金属介在物の個数に換算
して、非金属介在物の発生状況を評価した。表1に、試
験条件および試験結果を示す。
Regarding the accumulation state of the nonmetallic inclusions, the thickness of the slab was 10 mm and the width was 90 mm from the slab surface at each position of 1 /, 、 3 and / of the width of the long side of the slab in the slab cross section. A sample of 120 mm (about 0.85 kg) was collected in the casting direction, nonmetallic inclusions were extracted by an electrolytic method (slime extraction method), and the number of nonmetallic inclusions having a size of 50 μm or more was investigated. The number of non-metallic inclusions per kg of slab was converted to the number of non-metallic inclusions to evaluate the state of non-metallic inclusions. Table 1 shows test conditions and test results.

【0045】[0045]

【表1】 [Table 1]

【0046】本発明例の試験No.1〜No.4では、
本発明の方法で規定する条件の範囲内の流量でArガス
を溶鋼中に吹き込み、かつ、本発明の方法で規定する条
件の範囲内の静磁場の電磁力を作用させて、鋳型内の溶
鋼の流動を制動した。鋳造中に浸漬ノズルが詰まること
はなく、鋳片表層部にパウダー性欠陥または気泡性欠陥
の発生はなく、また、非金属介在物量は14〜19個/
kgしかなく、非金属介在物の集積は発生しなかった。
さらに、鋳片表面に割れの発生もなかった。これら試験
No.1〜No.4では、鋳型内の溶鋼の流速は、30
〜35cm/秒であった。
Test No. of the present invention example 1 to No. In 4,
Ar gas is blown into molten steel at a flow rate within the range defined by the method of the present invention, and the electromagnetic force of the static magnetic field within the range defined by the method of the present invention is applied to melt the molten steel in the mold. Braked the flow. There is no clogging of the immersion nozzle during casting, no powdery defects or bubble defects on the surface layer of the slab, and the amount of nonmetallic inclusions is 14-19 /
kg and no accumulation of non-metallic inclusions occurred.
Furthermore, no cracks occurred on the slab surface. These test Nos. 1 to No. In 4, the flow rate of molten steel in the mold is 30
3535 cm / sec.

【0047】比較例の試験No.5では、Arガスを吹
き込まなかったが、静磁場の電磁力は3段とも作用さ
せ、本発明の方法で規定する条件の範囲内の静磁場の磁
場強度とした。鋳片表層部の品質は問題なかったが、A
rガスを吹き込まなかったために、鋳造の後半には浸漬
ノズルの詰まりが発生した。
Test No. of Comparative Example In No. 5, no Ar gas was blown in, but the electromagnetic force of the static magnetic field was applied in all three stages, and the magnetic field strength of the static magnetic field was within the range defined by the method of the present invention. There was no problem with the quality of the slab surface layer.
Since the r gas was not blown, clogging of the immersion nozzle occurred in the latter half of the casting.

【0048】比較例の試験No.6では、Arガスを、
本発明の方法で規定する範囲を超える流量の4.65N
リットル/溶鋼tonで吹き込み、また、静磁場の電磁
力は3段とも作用させ、本発明の方法で規定する条件の
範囲内の静磁場の磁場強度として試験した。鋳型内の湯
面にボイリングが発生したため、指数3の著しいパウダ
ー性欠陥が発生した。
Test No. of Comparative Example In 6, the Ar gas is
4.65 N at a flow rate exceeding the range specified by the method of the present invention
It was blown with liter / ton of molten steel, and the electromagnetic force of the static magnetic field was applied to all three stages, and the test was performed as the static magnetic field strength within the range defined by the method of the present invention. Boiling occurred on the surface of the molten metal in the mold, so that a remarkable powder defect having an index of 3 occurred.

【0049】比較例の試験No.7では、Arガスを、
本発明の方法で規定する範囲内の流量の1.16Nリッ
トル/溶鋼tonで吹き込んだが、静磁場の電磁力は作
用させなかった。メニスカス近傍の溶鋼表面が、鋳型の
短辺から浸漬ノズルの方向の溶鋼の流れによって、時々
波立つ現象が見られた。そのため、鋳片表層部には、指
数3の著しいパウダー性欠陥が発生した。また、下段の
静磁場の電磁力を作用させなかったため、メニスカス近
傍の溶鋼の温度が低下し、そのため、溶鋼中の酸化物の
浮上が阻害され、鋳片表層部に非金属介在物量が80個
/kg程度存在し、鋳片品質は不良であった。
Test No. of Comparative Example In 7, the Ar gas is
Blowing was performed at a flow rate within the range specified by the method of the present invention at 1.16 Nl / ton of molten steel, but the electromagnetic force of the static magnetic field was not applied. A phenomenon was observed in which the surface of the molten steel near the meniscus sometimes waved due to the flow of the molten steel from the short side of the mold toward the immersion nozzle. Therefore, a remarkable powder defect having an index of 3 occurred in the surface layer of the slab. In addition, because the electromagnetic force of the lower static magnetic field was not applied, the temperature of the molten steel in the vicinity of the meniscus was lowered, so that the floating of oxides in the molten steel was hindered, and the amount of nonmetallic inclusions on the surface layer of the slab was 80 pieces. / Kg, and the slab quality was poor.

【0050】比較例の試験No.8〜No.11では、
Arガスを、本発明の方法で規定する範囲内の流量の
1.16Nリットル/溶鋼tonで吹き込み、静磁場の
磁場強度は、本発明の方法で規定する条件を外して試験
した。
Test No. of Comparative Example 8 to No. In 11,
Ar gas was blown at a flow rate within the range specified by the method of the present invention at 1.16 Nl / ton of molten steel, and the magnetic field strength of the static magnetic field was tested by removing the conditions specified by the method of the present invention.

【0051】中段の1段のみ静磁場の電磁力を作用させ
た試験No.8では、下段の静磁場の電磁力を作用させ
なかったため、メニスカス近傍の溶鋼の温度が低下し、
そのため、溶鋼中の酸化物の浮上が阻害され、鋳片表層
部の非金属介在物量が75個/kgと悪かった。
Test No. 1 in which an electromagnetic force of a static magnetic field was applied only to the middle stage. In No. 8, since the electromagnetic force of the lower static magnetic field was not applied, the temperature of the molten steel near the meniscus decreased,
As a result, the floating of the oxide in the molten steel was hindered, and the amount of nonmetallic inclusions in the surface layer of the slab was poor at 75 pieces / kg.

【0052】上段と中段の2段の静磁場の電磁力を作用
させ、かつ上段の静磁場の磁場強度を中段の2倍とした
試験No.9では、メニスカスの溶鋼の流速が12cm
/秒に低下し、鋳型内の凝固殻を洗浄する効果が小さく
なったため、指数3の著しい気泡性欠陥が発生するとと
もに、鋳片表層部の非金属介在物量も85個/kgと悪
かった。
Test No. 2 was conducted in which the electromagnetic force of the static magnetic field of the upper stage and the middle stage was applied, and the magnetic field strength of the static magnetic field of the upper stage was twice that of the middle stage. 9, the meniscus flow rate of molten steel is 12 cm
/ Sec, and the effect of cleaning the solidified shell in the mold was reduced. As a result, a remarkable porosity defect having an index of 3 was generated, and the amount of nonmetallic inclusions in the surface layer portion of the slab was as poor as 85 / kg.

【0053】中段と下段の2段の静磁場の電磁力を作用
させ、かつ下段の静磁場の磁場強度を中段の4倍とした
試験No.10では、鋳片表面に割れが発生した。鋳型
内の溶鋼の流れに偏流が発生し、鋳型の幅方向での凝固
殻の厚みが不均一になったためである。また、鋳片表層
部に、部分的に非金属介在物が集積しやすくなったため
に、非金属介在物量も40個/kgと悪かった。
In Test No. 2, the electromagnetic force of the static magnetic field of the middle stage and the lower stage was applied, and the magnetic field strength of the static magnetic field of the lower stage was four times that of the middle stage. In No. 10, cracks occurred on the slab surface. This is because uneven flow occurs in the flow of molten steel in the mold, and the thickness of the solidified shell in the width direction of the mold becomes uneven. In addition, the amount of nonmetallic inclusions was as low as 40 pieces / kg because nonmetallic inclusions were likely to partially accumulate in the surface layer of the slab.

【0054】上段、中段、下段の3段の静磁場の電磁力
を作用させ、かつ上段の静磁場の磁場強度を中段の2倍
とし、下段の静磁場の磁場強度を中段の4倍とした試験
No.11では、試験No.9に比べ、メニスカス近傍
の溶鋼の流速が20cm/秒にまで増加したが、鋳型内
の溶鋼の流れに偏流が発生しやすくなり、溶鋼の流れの
滞留部において、指数3の著しい気泡性欠陥が発生する
とともに、鋳片表層部の非金属介在物量の個数も45個
/kgと悪かった。
The upper, middle, and lower three-stage static magnetic field electromagnetic force is applied, and the magnetic field strength of the upper static magnetic field is set to twice that of the middle magnetic field, and the magnetic field strength of the lower static magnetic field is set to four times that of the middle magnetic field. Test No. In Test No. 11, Test No. Although the flow velocity of the molten steel in the vicinity of the meniscus increased to 20 cm / sec as compared with 9, the drift of the molten steel flow in the mold was more likely to occur, and significant porosity defects having an index of 3 were found in the stagnation portion of the molten steel flow. At the same time, the number of nonmetallic inclusions in the surface layer of the slab was as poor as 45 / kg.

【0055】[0055]

【発明の効果】本発明の方法を適用することにより、極
低炭素鋼などを鋳造する際に、浸漬ノズルの詰まりが発
生することもなく安定した鋳造作業が可能で、鋳片表層
部にモールドパウダーの巻き込みや気泡性欠陥や割れの
発生がなく、かつ、Al2 3などの非金属介在物の集
積のない、品質の良好な鋳片を得ることができる。
By applying the method of the present invention, when casting ultra-low carbon steel or the like, a stable casting operation can be performed without clogging of the immersion nozzle. A good quality slab without powder entrainment, bubble defects or cracks, and without accumulation of non-metallic inclusions such as Al 2 O 3 can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施する場合の装置の例を模式
的に示す図である。
FIG. 1 is a diagram schematically showing an example of an apparatus for performing a method of the present invention.

【図2】図1の各位置での水平断面を示す図である。FIG. 2 is a view showing a horizontal section at each position in FIG. 1;

【図3】鋳型内の溶鋼の流動を模式的に示す図である。FIG. 3 is a diagram schematically showing the flow of molten steel in a mold.

【符号の説明】[Explanation of symbols]

1:タンディッシュ 2:上ノズル耐火物 3:スライディングプレート 4:浸漬ノズル 5:吐出孔 6:吐出流 7−1:上昇流 7−2:下降流 7−3:鋳型の短辺から浸漬ノズルに向かう溶鋼の流れ 8:浸漬ノズルから鋳型の短辺に向かう溶鋼の流れ 9:溶鋼流動制動装置 10:不活性ガスの吹
き込み口 11:凝固殻 12:溶鋼
1: Tundish 2: Upper nozzle refractory 3: Sliding plate 4: Immersion nozzle 5: Discharge hole 6: Discharge flow 7-1: Upflow 7-2: Downflow 7-3: From the short side of the mold to the immersion nozzle Flow of molten steel going 8: Flow of molten steel going from the immersion nozzle to the short side of the mold 9: Flow damping device for molten steel 10: Injection port of inert gas 11: Solidified shell 12: Molten steel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】矩形断面鋳片用の鋳型および浸漬ノズルを
用いる溶鋼の連続鋳造方法であって、タンディッシュの
溶鋼出口から浸漬ノズルの吐出孔までの間で、溶鋼中に
不活性ガスを1.0〜2.5Nリットル/溶鋼tonの
流量で吹き込み、かつ、鋳型の2つの長辺の外側に鋳型
を挟んで対向する組を1対とする静磁場の溶鋼流動制動
装置を、浸漬ノズルを挟んでメニスカス近傍、鋳型の両
短辺方向に開口する浸漬ノズルの各吐出孔から流れ出た
直後の吐出流の近傍および浸漬ノズルの延長線を挟んで
鋳型の下端近傍に各1対をそれぞれ設け、メニスカス近
傍、吐出流の近傍および鋳型の下端近傍のそれぞれの溶
鋼流動制動装置の磁場強度を、それぞれB1、B2およ
びB3とし、これらの磁場強度B1、B2およびB3
が、B2を基準として下記(A)式を満足するように電
磁力を作用させることを特徴とする鋼の連続鋳造方法。 B1:B2:B3=0〜1:1:1〜3 ・・・(A) ここで、500(Gauss)≦B2≦1000(Ga
uss) B2の磁場印加方向:B1およびB3と反対方向
1. A method for continuously casting molten steel using a mold for slabs of rectangular cross section and an immersion nozzle, wherein an inert gas is introduced into the molten steel between a molten steel outlet of a tundish and a discharge hole of the immersion nozzle. The molten steel flow braking device having a static magnetic field, which is blown at a flow rate of 0.0 to 2.5 Nl / molten steel ton and has a pair of sets opposed to each other with the mold interposed outside the two long sides of the mold, is provided with an immersion nozzle. Each pair is provided in the vicinity of the meniscus, in the vicinity of the discharge flow immediately after flowing out of each discharge hole of the immersion nozzle that opens in both short side directions of the mold, and near the lower end of the mold with the extension of the immersion nozzle in between, The magnetic field strengths of the molten steel flow braking devices near the meniscus, near the discharge flow, and near the lower end of the mold are B1, B2, and B3, respectively, and these magnetic field strengths B1, B2, and B3
However, a continuous casting method of steel characterized in that an electromagnetic force is applied so as to satisfy the following expression (A) based on B2. B1: B2: B3 = 0 to 1: 1: 1 to 3 (A) Here, 500 (Gauss) ≦ B2 ≦ 1000 (Ga
uss) Magnetic field application direction of B2: opposite direction to B1 and B3
JP22685699A 1999-08-10 1999-08-10 Continuous casting method Expired - Fee Related JP3365362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22685699A JP3365362B2 (en) 1999-08-10 1999-08-10 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22685699A JP3365362B2 (en) 1999-08-10 1999-08-10 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2001047203A true JP2001047203A (en) 2001-02-20
JP3365362B2 JP3365362B2 (en) 2003-01-08

Family

ID=16851651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22685699A Expired - Fee Related JP3365362B2 (en) 1999-08-10 1999-08-10 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3365362B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218512A (en) * 2005-02-10 2006-08-24 Kobe Steel Ltd Continuously cast slab for thin steel sheet having excellent surface property, and its production method
KR100654738B1 (en) 2003-08-29 2006-12-08 제이에프이 스틸 가부시키가이샤 Method for producing ultra low carbon steel slab
JP2008200732A (en) * 2007-02-22 2008-09-04 Jfe Steel Kk Continuous casting method of steel, and manufacturing method of hot-dip galvanized steel sheet
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab
CN111257153A (en) * 2020-02-12 2020-06-09 首钢集团有限公司 Device and method for evaluating degree of blockage of submersed nozzle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654738B1 (en) 2003-08-29 2006-12-08 제이에프이 스틸 가부시키가이샤 Method for producing ultra low carbon steel slab
JP2006218512A (en) * 2005-02-10 2006-08-24 Kobe Steel Ltd Continuously cast slab for thin steel sheet having excellent surface property, and its production method
JP4485969B2 (en) * 2005-02-10 2010-06-23 株式会社神戸製鋼所 Manufacturing method of continuous cast slab slab for thin steel sheet with excellent surface properties
JP2008200732A (en) * 2007-02-22 2008-09-04 Jfe Steel Kk Continuous casting method of steel, and manufacturing method of hot-dip galvanized steel sheet
JP2009226463A (en) * 2008-03-25 2009-10-08 Jfe Steel Corp Method for continuously casting slab
CN111257153A (en) * 2020-02-12 2020-06-09 首钢集团有限公司 Device and method for evaluating degree of blockage of submersed nozzle
CN111257153B (en) * 2020-02-12 2022-05-20 首钢集团有限公司 Device and method for evaluating blockage degree of submerged nozzle

Also Published As

Publication number Publication date
JP3365362B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
KR100654738B1 (en) Method for producing ultra low carbon steel slab
EP1952913B1 (en) Method for manufacture of ultra-low carbon steel slab
JP3365362B2 (en) Continuous casting method
JP4815821B2 (en) Continuous casting method of aluminum killed steel
JP3385982B2 (en) Continuous casting method
JP5044981B2 (en) Steel continuous casting method
JP2006239746A (en) Tundish for continuous casting of steel
JP2013035001A (en) Method for manufacturing high-cleanliness steel cast slab by continuous casting
JP4203167B2 (en) Continuous casting method for molten steel
JP5354179B2 (en) Continuous casting method for steel slabs
JP4264291B2 (en) Steel continuous casting method
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JP4494550B2 (en) Method for controlling flow of molten steel in mold
JP4474948B2 (en) Steel continuous casting method
JP2010099704A (en) Continuous casting method for steel cast slab
JP4492333B2 (en) Steel continuous casting method
JP4409167B2 (en) Continuous casting method
JP2002103009A (en) Continuous casting method
JP2004209512A (en) Continuous casting method and immersion nozzle
JP3460687B2 (en) Steel continuous casting method
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP3395749B2 (en) Steel continuous casting method
JP5458779B2 (en) Continuous casting method for steel slabs

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees