JP4815821B2 - Continuous casting method of aluminum killed steel - Google Patents

Continuous casting method of aluminum killed steel Download PDF

Info

Publication number
JP4815821B2
JP4815821B2 JP2005053285A JP2005053285A JP4815821B2 JP 4815821 B2 JP4815821 B2 JP 4815821B2 JP 2005053285 A JP2005053285 A JP 2005053285A JP 2005053285 A JP2005053285 A JP 2005053285A JP 4815821 B2 JP4815821 B2 JP 4815821B2
Authority
JP
Japan
Prior art keywords
blowing
molten steel
gas
nozzle
blower unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005053285A
Other languages
Japanese (ja)
Other versions
JP2006231397A (en
Inventor
百紀 加茂
健 松崎
朝行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005053285A priority Critical patent/JP4815821B2/en
Publication of JP2006231397A publication Critical patent/JP2006231397A/en
Application granted granted Critical
Publication of JP4815821B2 publication Critical patent/JP4815821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アルミキルド鋼の連続鋳造方法に関し、詳しくは、溶鋼中のAl23 による浸漬ノズルの閉塞を防止することのできる連続鋳造方法に関するものである。 The present invention relates to a continuous casting method of aluminum killed steel, and more particularly to a continuous casting method capable of preventing the immersion nozzle from being blocked by Al 2 O 3 in molten steel.

アルミキルド鋼は、酸化脱炭精錬された溶鋼がAlによって脱酸され、酸化脱炭精錬により増加した溶鋼中の酸素が除去されて製造される。この脱酸工程で生成したAl23 粒子(アルミナ粒子)は、溶鋼とAl23 との密度差を利用して溶鋼から除去されているが、数10μm以下の微小なAl23 粒子の浮上速度は極めて遅く、浮上分離に長時間を要するため、実際のプロセスでは、このような微小のAl23 粒子を完全に浮上・分離させることは極めて困難であり、そのため、アルミキルド溶鋼中には微細なAl23粒子が懸濁した状態で残留する。 Aluminum killed steel is manufactured by deoxidizing molten steel that has been oxidatively decarburized and refined with Al, and removing oxygen in the molten steel that has been increased by oxidative decarburization and refining. Al 2 O 3 particles (alumina particles) generated in this deoxidation process are removed from the molten steel by utilizing the density difference between the molten steel and Al 2 O 3 , but a minute Al 2 O 3 of several tens μm or less. Since the floating speed of the particles is extremely slow and it takes a long time for the floating separation, it is extremely difficult to completely float and separate such fine Al 2 O 3 particles in the actual process. Inside, fine Al 2 O 3 particles remain in a suspended state.

鋼の連続鋳造では、タンディッシュから鋳型へと溶鋼を注湯する際に、耐火物製の浸漬ノズルを用いて注湯している。この浸漬ノズルに求められる特性としては、耐熱衝撃性及びモールドパウダーや溶鋼に対する耐溶損性に優れることであり、そのため、これらの特性に優れるAl23 −黒鉛質或いはAl23質の浸漬ノズルが広く用いられている。しかしながら、Al23 −黒鉛質或いはAl23質の浸漬ノズルを用いてアルミキルド鋼を鋳造すると、溶鋼中に懸濁しているAl23 粒子が浸漬ノズル内壁表面に付着・堆積して、浸漬ノズルの閉塞が発生するという問題が発生する。 In continuous casting of steel, molten steel is poured from a tundish into a mold using a refractory immersion nozzle. The properties required for the immersion nozzle is that excellent melting loss resistance to thermal shock resistance and mold powder and the molten steel, therefore, is excellent in these properties Al 2 O 3 - immersion of graphite or Al 2 O 3 Quality Nozzles are widely used. However, Al 2 O 3 - when casting the aluminum-killed steel using immersion nozzle of graphite or Al 2 O 3 quality, Al 2 O 3 particles suspended in molten steel adheres and accumulates on the immersion nozzle inner wall surface The problem that the submerged nozzle is blocked occurs.

浸漬ノズルが閉塞すると、鋳造作業上及び鋳片品質上で様々な問題が発生する。例えば、鋳片引き抜き速度を低下せざるを得ず、生産性が落ちるのみならず、甚だしい場合には、鋳込み作業そのものの中止を余儀なくされる。また、浸漬ノズル内壁表面に堆積し、粗大化したAl23 粒子が突然剥離し、鋳型内に排出され、これが鋳型内の凝固シェルに捕捉された場合には製品欠陥となり、製品歩留まりの低下につながる。 When the immersion nozzle is blocked, various problems occur in the casting operation and the slab quality. For example, the slab drawing speed has to be reduced, and not only the productivity is lowered, but in a severe case, the casting operation itself must be stopped. In addition, when the Al 2 O 3 particles that have accumulated on the inner wall surface of the immersion nozzle suddenly peel off and are discharged into the mold and trapped by the solidified shell in the mold, they become product defects, resulting in a decrease in product yield. Leads to.

このような理由から、従来、アルミキルド鋼の連続鋳造においては、浸漬ノズル内壁表面へのAl23 の付着を防止する手段が検討され、多数の提案がなされている。そのなかの1つの手段として、浸漬ノズルの内壁にArガスなどの不活性ガスを吹き込んで、不活性ガスによって浸漬ノズル内壁に付着したAl23 を強制的に洗浄する、或いは、浸漬ノズル内壁と溶鋼との間にガス膜をつくり、Al23 が壁に接触しないようにする技術が提案されている。 For these reasons, conventionally, in continuous casting of aluminum killed steel, means for preventing adhesion of Al 2 O 3 to the surface of the inner wall of the immersion nozzle have been studied and many proposals have been made. As one of the means, an inert gas such as Ar gas is blown into the inner wall of the immersion nozzle to forcibly clean Al 2 O 3 adhering to the inner wall of the immersion nozzle by the inert gas, or the inner wall of the immersion nozzle A technique has been proposed in which a gas film is formed between steel and molten steel so that Al 2 O 3 does not contact the wall.

例えば、特許文献1には、タンディッシュ底部に設置した、Arガス吹込部を有する上ノズルと、上ノズルに接続するスライディングノズルと、スライディングノズルに接続する浸漬ノズルと、から構成される溶鋼注入手段を用いてアルミキルド鋼を鋳型内に注湯する際に、前記ガス吹込部の煉瓦気孔径を30μm〜50μmとしてArガスを吹き込みならが、1分間当たり1.0トン〜2.0トンの溶鋼を鋳造する連続鋳造方法が開示されている。
特開平3−297545号公報
For example, Patent Document 1 discloses a molten steel injection means that includes an upper nozzle having an Ar gas blowing portion, a sliding nozzle connected to the upper nozzle, and an immersion nozzle connected to the sliding nozzle, installed at the bottom of the tundish. When pouring the aluminum killed steel into the mold using Ar, and blowing the Ar gas with the brick pore diameter of the gas blowing part being 30 μm to 50 μm, the molten steel is 1.0 to 2.0 tons per minute. A continuous casting method for casting is disclosed.
JP-A-3-297545

しかしながら、特許文献1には以下の問題点がある。即ち、Arガスの洗浄効果を利用してAl23 の付着を防止する場合には、鋳造する溶鋼量に対するArガスの吹き込み量を設定する必要があるが、特許文献1では明確に示していない。また、特許文献1における1分間当たりの鋳造量、即ち鋳型への溶鋼注入量は1.0トン〜2.0トンであるが、連続鋳造機の生産性向上技術に伴って鋳片引き抜き速度は増加し、近年の1分間当たりの溶鋼注入量は4トン以上に達しており、このような高速鋳造条件における吹込み方法をどのようにするかは明確でない。 However, Patent Document 1 has the following problems. That is, in order to prevent the adhesion of Al 2 O 3 by utilizing the cleaning effect of Ar gas, it is necessary to set the amount of Ar gas blown with respect to the amount of molten steel to be cast. Absent. Moreover, although the casting amount per minute in Patent Document 1, that is, the molten steel injection amount into the mold is 1.0 to 2.0 tons, the slab drawing speed is increased with the productivity improvement technology of the continuous casting machine. In recent years, the amount of molten steel injected per minute has reached 4 tons or more, and it is not clear how to blow in such high-speed casting conditions.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、1分間当たりの溶鋼注入量が4トン以上の高速鋳造条件下でアルミキルド鋼を連続鋳造するに当たり、溶鋼中のAl23 による浸漬ノズルの閉塞を防止することのできる、アルミキルド鋼の連続鋳造方法を提供することである。 The present invention has been made in view of such circumstances, and the object of the present invention is to continuously cast aluminum killed steel under high-speed casting conditions in which the molten steel injection amount per minute is 4 tons or more. It is an object of the present invention to provide a continuous casting method of aluminum killed steel that can prevent the immersion nozzle from being blocked by Al 2 O 3 .

上記課題を解決するための本発明に係るアルミキルド鋼の連続鋳造方法は、タンディッシュ底部に設置した、アルミナ質ポーラス煉瓦からなる上部吹込部、アルミナ質ポーラス煉瓦からなる下部吹込部、及び、上部吹込部と下部吹込部との中間に位置するアルミナ質煉瓦からなる本体部の3つの部分で構成され、前記本体部を形成するアルミナ質煉瓦と前記上部吹込部及び前記下部吹込部を形成するアルミナ質ポーラス煉瓦とが徐々にその配合比率を変えるように一体的に形成された、上部吹込部と下部吹込部との上下2段のガス吹込部を有する上ノズルと、該上ノズルに接続するスライディングノズルと、該スライディングノズルに接続する浸漬ノズルと、から構成される溶鋼注入手段を用いてタンディッシュ内のアルミキルド溶鋼を鋳型内に注入する際に、前記上部吹込部及び前記下部吹込部を構成するポーラス煉瓦の平均気孔径を30μm〜50μmとするとともに、前記上部吹込部の吹き込み面積を前記下部吹込部の吹き込み面積よりも大きくし、前記上部吹込部及び前記下部吹込部から吹き込む合計のArガス吹き込み量が溶鋼注入量1トン当たり2.0NL以上3.6NL以下であり、且つ、前記上部吹込部と前記下部吹込部とのガス吹き込み量の比率が10:4〜10:7となるように前記上部吹込部及び前記下部吹込部からArガスを吹き込みながら、1分間当たり4.0トン以上のアルミキルド溶鋼を鋳型内に注入することを特徴とするものである。 An aluminum killed steel continuous casting method according to the present invention for solving the above-mentioned problems is an upper blow part made of alumina porous brick, a lower blow part made of alumina porous brick, and an upper blow installed at the bottom of a tundish. It is composed of three parts of a main body part made of an alumina brick located between the upper part and the lower blow part, and the alumina brick that forms the main part, the upper blow part, and the lower blow part An upper nozzle having two upper and lower gas blowing portions, an upper blowing portion and a lower blowing portion , which are integrally formed so that the mixing ratio of porous brick gradually changes, and a sliding nozzle connected to the upper nozzle And an immersion nozzle connected to the sliding nozzle, and mold the aluminum killed molten steel in the tundish using molten steel injection means To the time of injection, with a 30μm~50μm an average pore diameter of the porous brick which constitutes the upper blower unit and the lower blower unit, larger than the blowing area of the upper blower unit of blowing the area lower blower unit The total Ar gas blowing amount blown from the upper blowing portion and the lower blowing portion is 2.0 NL or more and 3.6 NL or less per ton of molten steel, and the upper blowing portion and the lower blowing portion While blowing Ar gas from the upper blowing portion and the lower blowing portion so that the ratio of the gas blowing amount becomes 10: 4 to 10: 7, 4.0 tons or more of molten aluminum killed steel is injected into the mold per minute. It is characterized by this.

本発明によれば、ガス吹込部を構成するポーラス煉瓦の平均気孔径を30μm〜50μmとするので、溶鋼トン当たり2.0NL以上のArガスを上ノズルから安定して吹き込むことができ、1分間当たりの溶鋼注入量が4.0トン以上のアルミキルド溶鋼の連続鋳造であっても、浸漬ノズル内壁表面へのAl23 付着を抑制することが可能となり、Al23 による浸漬ノズルの閉塞を防止することが達成される。その結果、鋳造可能時間を飛躍的に延長させることができると同時に、浸漬ノズル内壁から剥離する粗大化したAl23 に起因する鋳片の大型介在物性の欠陥、並びに、浸漬ノズルの閉塞による鋳型内溶鋼の偏流に起因するモールドパウダー性の欠陥を大幅に削減することができ、工業上有益な効果がもたらされる。 According to the present invention, since the average pore diameter of the porous brick constituting the gas blowing section is 30 μm to 50 μm, 2.0 NL or more of Ar gas per ton of molten steel can be stably blown from the upper nozzle for 1 minute. Even with continuous casting of aluminum killed molten steel with a molten steel injection amount of 4.0 tons or more, Al 2 O 3 adhesion to the inner wall surface of the immersion nozzle can be suppressed, and the immersion nozzle is blocked by Al 2 O 3. Is achieved. As a result, the casting time can be dramatically extended, and at the same time, due to defects in large inclusion physical properties of the slab caused by coarse Al 2 O 3 peeling from the inner wall of the immersion nozzle, and due to the closure of the immersion nozzle Mold powder defects caused by the drift of molten steel in the mold can be greatly reduced, and an industrially beneficial effect is brought about.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明による連続鋳造方法を実施する際に用いたスラブ連続鋳造機の鋳型部の概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view of a mold part of a slab continuous casting machine used in carrying out a continuous casting method according to the present invention.

図1において、相対する鋳型長辺13と、鋳型長辺13の内側に内装された、相対する鋳型短辺14と、により構成される鋳型2の上方所定位置に、外郭を鉄皮15で覆われ、内部を耐火物16で施行されたタンディッシュ1が配置されている。このタンディッシュ1の底部には、耐火物16に嵌合する上ノズル3が設置され、そして、上ノズル3の下面に接して、上部固定板5、摺動板6、下部固定板7及び整流ノズル8からなるスライディングノズル4が配置され、更に、スライディングノズル4の下面に接して、その下部に一対の吐出孔10を有する浸漬ノズル9が配置され、タンディッシュ1から鋳型2への溶鋼流出孔11が形成されている。即ち、タンディッシュ1から鋳型2への溶鋼注入手段として、上ノズル3、スライディングノズル4及び浸漬ノズル9が設置されている。   In FIG. 1, the outer shell is covered with an iron shell 15 at a predetermined position above the mold 2 constituted by the opposed mold long side 13 and the opposed mold short side 14 provided inside the mold long side 13. The tundish 1 with the refractory 16 applied inside is arranged. At the bottom of the tundish 1, an upper nozzle 3 that fits the refractory 16 is installed, and in contact with the lower surface of the upper nozzle 3, the upper fixing plate 5, the sliding plate 6, the lower fixing plate 7, and the rectification A sliding nozzle 4 comprising a nozzle 8 is disposed, and further, an immersion nozzle 9 having a pair of discharge holes 10 in contact with the lower surface of the sliding nozzle 4 is disposed below the sliding nozzle 4, and the molten steel outflow hole from the tundish 1 to the mold 2 11 is formed. That is, an upper nozzle 3, a sliding nozzle 4 and an immersion nozzle 9 are installed as means for pouring molten steel from the tundish 1 into the mold 2.

浸漬ノズル9は、下部に設置される吐出孔10が鋳型内の溶鋼17に埋没するようにその先端が浸漬されて使用される。摺動板6は、往復型アクチュエーター12と接続されており、往復型アクチュエーター12の作動により、上部固定板5と下部固定板7との間をこれらの固定板と接触したまま移動し、摺動板6と上部固定板5及び下部固定板7とで形成する開口部面積を調整することにより溶鋼流出孔11を通過する溶鋼量が制御される。   The immersion nozzle 9 is used with its tip immersed so that the discharge hole 10 installed in the lower part is buried in the molten steel 17 in the mold. The sliding plate 6 is connected to the reciprocating actuator 12, and the reciprocating actuator 12 is operated to move between the upper fixing plate 5 and the lower fixing plate 7 while being in contact with these fixing plates. The amount of molten steel passing through the molten steel outflow hole 11 is controlled by adjusting the opening area formed by the plate 6, the upper fixing plate 5 and the lower fixing plate 7.

上部ノズル3の拡大図を図2に示す。図2に示すように、上ノズル3は、上部吹込部3a、下部吹込部3b、及び、上部吹込部3aと下部吹込部3bとの中間に位置する本体部3eの3つの部分で構成され、その外周には鉄皮3fが配置されている。上部吹込部3a及び下部吹込部3bは、ガス吹込部であり、アルミナ質のポーラス煉瓦で形成されている。本体部3eは、比較的緻密なアルミナ質で形成されている。図2では、上部吹込部3a及び下部吹込部3bが本体部3eと明確に区別できるように表示しているが、実際には明確な境界はなく、本体部3eを形成するアルミナ質煉瓦と、上部吹込部3a及び下部吹込部3bを形成するアルミナ質ポーラス煉瓦とが、徐々にその配合比率を変えるようにして形成されている。つまり、一体的に形成されている。   An enlarged view of the upper nozzle 3 is shown in FIG. As shown in FIG. 2, the upper nozzle 3 is composed of three parts: an upper blowing part 3a, a lower blowing part 3b, and a main body part 3e located between the upper blowing part 3a and the lower blowing part 3b. An iron skin 3f is arranged on the outer periphery. The upper blowing portion 3a and the lower blowing portion 3b are gas blowing portions, and are formed of alumina porous brick. The main body 3e is made of a relatively dense alumina material. In FIG. 2, the upper blowing portion 3a and the lower blowing portion 3b are displayed so as to be clearly distinguishable from the main body portion 3e, but there is actually no clear boundary, and the alumina brick forming the main body portion 3e, The alumina porous brick forming the upper blowing part 3a and the lower blowing part 3b is formed so as to gradually change the blending ratio. That is, they are integrally formed.

鉄皮3fを貫通して2本のガス導入管3c,3dが配置されていて、ガス導入管3cは上部吹込部3aに開口し、ガス導入管3dは下部吹込部3bに開口している。即ち、ガス導入管3cから供給されるArガスは上部吹込部3aを介して溶鋼流出孔11の内部に吹き込まれ、一方、ガス導入管3dから供給されるArガスは下部吹込部3bを介して溶鋼流出孔11の内部に吹き込まれるように構成されている。上ノズル3の外周に配置される鉄皮3fは、上ノズル3の強度を確保する目的もあるが、Arガスが上ノズル3の外周面から流出することを防止している。従って、ガス導入管3c,3dから供給されたArガスは、確実に溶鋼流出孔11の内部に吹き込まれるようになっている。ガス導入管3c,3dはそれぞれ独立したArガス供給装置に接続しており、それぞれ独立してArガス供給量が制御されるようになっている。   Two gas introduction pipes 3c and 3d are disposed through the iron skin 3f, the gas introduction pipe 3c opens to the upper blowing part 3a, and the gas introduction pipe 3d opens to the lower blowing part 3b. That is, Ar gas supplied from the gas introduction pipe 3c is blown into the molten steel outflow hole 11 through the upper blowing part 3a, while Ar gas supplied from the gas introduction pipe 3d is passed through the lower blowing part 3b. It is configured to be blown into the molten steel outflow hole 11. The iron skin 3 f disposed on the outer periphery of the upper nozzle 3 also has the purpose of ensuring the strength of the upper nozzle 3, but prevents Ar gas from flowing out from the outer peripheral surface of the upper nozzle 3. Therefore, the Ar gas supplied from the gas introduction pipes 3 c and 3 d is surely blown into the molten steel outflow hole 11. The gas introduction pipes 3c and 3d are connected to independent Ar gas supply devices, respectively, and the Ar gas supply amount is controlled independently.

本発明においては、ガス吹込部である上部吹込部3a及び下部吹込部3bのポーラスレンガの平均気孔径を30μm〜50μmとする。換言すれば、上部吹込部3a及び下部吹込部3bが、30μm〜50μmの平均気孔径を有するポーラス煉瓦で構成されている上ノズルを、上ノズル3として使用する。後述するように、本発明では1分間当たり4.0トン以上の溶鋼17を鋳型2に注入する際に、溶鋼注入量1トン当たり2.0NL以上のArガスを上ノズル3から吹き込む。ポーラス煉瓦の平均気孔率が30μm未満であると、溶鋼注入量1トン当たり2.0NL以上のArガスを安定して吹き込むことができない。一方、ポーラス煉瓦の平均気孔径が50μmを超えると、Arガス気泡が大きくなり過ぎ、洗浄効果が低下する、溶鋼湯面9における湯面変動が大きくなる、などするので好ましくない。   In this invention, the average pore diameter of the porous brick of the upper blowing part 3a which is a gas blowing part, and the lower blowing part 3b shall be 30 micrometers-50 micrometers. In other words, an upper nozzle in which the upper blowing portion 3 a and the lower blowing portion 3 b are made of porous bricks having an average pore diameter of 30 μm to 50 μm is used as the upper nozzle 3. As will be described later, in the present invention, when molten steel 17 of 4.0 tons or more per minute is injected into the mold 2, Ar gas of 2.0 NL or more is injected from the upper nozzle 3 per ton of molten steel injection. When the average porosity of the porous brick is less than 30 μm, Ar gas of 2.0 NL or more per 1 ton of molten steel injection cannot be stably blown. On the other hand, if the average pore diameter of the porous brick exceeds 50 μm, the Ar gas bubbles become too large, the cleaning effect is lowered, and the fluctuation of the molten metal surface on the molten steel surface 9 is increased.

図3は、平均気孔径が40μmのポーラス煉瓦と平均気孔径が20μmのポーラス煉瓦を用い、水中においてArガスの気泡径を調査した結果である。ポーラス煉瓦の平均気孔径が大きくなると、Arガス流量が同一の条件下においてArガスの平均気泡径は大きくなる。従って、水中におけるArガス気泡を測定することでポーラス煉瓦の平均気孔径を把握することができる。ポーラス煉瓦の平均気孔径を30μm〜50μmの範囲に維持して製造するには、耐火物粉末原料の粒度を調整する、粉体原料からポーラス煉瓦を圧縮成形加工する際の圧縮成形力を調整するなど、原料条件及び製造条件を特定することで得ることができる。   FIG. 3 is a result of investigating the bubble diameter of Ar gas in water using a porous brick having an average pore diameter of 40 μm and a porous brick having an average pore diameter of 20 μm. As the average pore diameter of the porous brick increases, the average bubble diameter of Ar gas increases under the same Ar gas flow rate. Therefore, the average pore diameter of the porous brick can be grasped by measuring the Ar gas bubbles in the water. In order to maintain and produce an average pore diameter of porous brick in the range of 30 μm to 50 μm, the particle size of the refractory powder raw material is adjusted, and the compression molding force when compressing the porous brick from the powder raw material is adjusted. It can obtain by specifying raw material conditions and manufacturing conditions.

尚、ポーラス煉瓦の平均気孔径を直接測定する方法としては、以下のような方法がある。即ち、ポーラス煉瓦を水銀中に埋没させ、特定の気孔径に相当する圧力をかけた際にポーラス煉瓦内に吸い込まれる水銀量を求め、この水銀量から該当する気孔径の比率を求める。この測定を、様々な圧力下で行うことにより全体の気孔径の分布を求め、その後に平均径を定める方法である。このようにして平均気孔径を測定したポーラス煉瓦を用いて図3に示すようなArガスの平均気泡径の分布図を定めておけば、それ以降は、気孔径を直接測定する必要はなく、水中におけるArガス気泡径を測定することで、平均気孔径を把握することができる。   In addition, as a method for directly measuring the average pore diameter of the porous brick, there are the following methods. That is, when the porous brick is buried in mercury and a pressure corresponding to a specific pore diameter is applied, the amount of mercury sucked into the porous brick is obtained, and the ratio of the corresponding pore diameter is obtained from this mercury amount. This measurement is performed under various pressures to obtain the distribution of the entire pore diameter and then determine the average diameter. If the distribution map of the average bubble diameter of Ar gas as shown in FIG. 3 is determined using the porous brick whose average pore diameter is measured in this way, then it is not necessary to directly measure the pore diameter, The average pore diameter can be grasped by measuring the Ar gas bubble diameter in water.

このように構成されるスラブ連続鋳造機を用い、以下のようにして本発明の連続鋳造方法を実施する。   The continuous casting method of this invention is implemented as follows using the slab continuous casting machine comprised in this way.

転炉または電気炉などの一次精錬炉若しくはRH真空脱ガス装置などの二次精錬炉で溶製されたアルミキルド鋼の溶鋼17を、取鍋(図示せず)からタンディッシュ1に注入し、タンディッシュ内の溶鋼量が所定量になったなら、摺動板6を開き、溶鋼流出孔11を介して溶鋼17を鋳型2に注入する。溶鋼17は、吐出孔10から、鋳型短辺14に向かう吐出流18となって鋳型内に注入される。鋳型内に注入された溶鋼17は鋳型2により冷却され、凝固シェル21を形成する。そして、鋳型内に所定量の溶鋼17が注入されたなら、吐出孔10を鋳型内の溶鋼17に浸漬した状態で、鋳型2の下方に設置したピンチロール(図示せず)を駆動して、外殻を凝固シェル21とし、内部に未凝固の溶鋼17を有する鋳片の引き抜きを開始する。引き抜き開始後は溶鋼湯面19の位置を鋳型内の略一定位置に制御しながら、1分間当たり4.0トン以上の溶鋼17が鋳型内に注入されるように、鋳片引き抜き速度を増速してその速度を維持する。鋳型内の溶鋼湯面19の上にはモールドパウダー20を添加する。モールドパウダー20は溶融して、溶鋼17の酸化防止や凝固シェル21と鋳型2との間に流れ込み潤滑剤としての効果を発揮する。   A molten steel 17 of aluminum killed steel melted in a primary refining furnace such as a converter or electric furnace or a secondary refining furnace such as an RH vacuum degassing apparatus is poured into a tundish 1 from a ladle (not shown). When the amount of molten steel in the dish reaches a predetermined amount, the sliding plate 6 is opened, and the molten steel 17 is injected into the mold 2 through the molten steel outflow hole 11. The molten steel 17 is injected into the mold as a discharge flow 18 from the discharge hole 10 toward the mold short side 14. The molten steel 17 injected into the mold is cooled by the mold 2 to form a solidified shell 21. When a predetermined amount of molten steel 17 is injected into the mold, a pinch roll (not shown) installed below the mold 2 is driven in a state where the discharge hole 10 is immersed in the molten steel 17 in the mold, The outer shell is the solidified shell 21 and the drawing of the slab having the unsolidified molten steel 17 inside is started. After the start of drawing, the slab drawing speed is increased so that molten steel 17 of 4.0 tons or more per minute is injected into the mold while controlling the position of the molten steel surface 19 to a substantially constant position in the mold. And maintain that speed. Mold powder 20 is added on the molten steel surface 19 in the mold. The mold powder 20 melts to prevent oxidation of the molten steel 17 and flows between the solidified shell 21 and the mold 2 to exert an effect as a lubricant.

この鋳造中、上ノズル3の上部吹込部3a及び下部吹込部3bから、溶鋼流出孔11を流下する溶鋼17の通過質量に応じて吹き込むガス流量を調整しながらArガスを溶鋼流出孔11の内部に吹き込む。   During the casting, Ar gas is introduced into the molten steel outflow hole 11 while adjusting the flow rate of gas blown in accordance with the passing mass of the molten steel 17 flowing down the molten steel outflow hole 11 from the upper blowing portion 3a and the lower blowing portion 3b of the upper nozzle 3. Infuse.

具体的には、1分間当たり4.0トン以上のアルミキルド溶鋼を鋳型内に注入する際に、上部吹込部3a及び下部吹込部3bから吹き込むArガス吹き込み量の合計値が溶鋼注入量1トン当たりに対して2.0NL(標準状態換算)以上となるようにArガスを吹き込む。この場合、上部吹込部3aからの吹き込み量と、下部吹込部3bからの吹き込み量との比率は特に規定するものではなく、1:1程度で構わないが、上部吹込部3aの方が、吹き込み面積が大きいことから、均一に吹き込むためには10:4〜10:7程度とすることが好ましい。   Specifically, the total amount of Ar gas blown from the upper blower 3a and the lower blower 3b when pouring 4.0 tons or more of aluminum killed molten steel per minute into the mold is per ton of molten steel. In contrast, Ar gas is blown so as to be 2.0 NL (standard state conversion) or more. In this case, the ratio of the blowing amount from the upper blowing portion 3a and the blowing amount from the lower blowing portion 3b is not particularly specified and may be about 1: 1, but the upper blowing portion 3a is blown. Since the area is large, in order to blow in uniformly, it is preferable to be about 10: 4 to 10: 7.

Arガス吹き込み量が溶鋼注入量1トン当たり2.0NL未満になると、浸漬ノズル9のAl23 付着が激しくなるので、Arガス吹き込み量は溶鋼注入量1トン当たり2.0NL以上とする必要がある。但し、Arガス吹き込み量が多くなりすぎると、鋳型内の溶鋼17を浮上するArガス気泡によって溶鋼湯面19の変動が大きくなり、モールドパウダー20の巻き込みが発生する恐れがあるので、溶鋼注入量1トン当たり3.6NL以下とすることが好ましい。また、溶鋼17の1分間当たりの注入量が4.0トン未満の場合には、吐出流18の流速が遅くなり、溶鋼湯面19の流速も遅くなるので、それに応じてArガス吹き込み量を変更させる必要があるが、本発明は高速鋳造を意図したものであるので、ここでは特に言及しないこととする。 If the Ar gas blowing amount is less than 2.0 NL per ton of molten steel, the adhesion of Al 2 O 3 to the immersion nozzle 9 becomes intense, so the Ar gas blowing amount must be 2.0 NL or more per ton of molten steel. There is. However, if the amount of Ar gas blown is too large, fluctuations in the molten steel surface 19 will increase due to Ar gas bubbles floating on the molten steel 17 in the mold, and the mold powder 20 may be entrained. It is preferably 3.6 NL or less per ton. In addition, when the injected amount of molten steel 17 per minute is less than 4.0 tons, the flow rate of the discharge flow 18 is slow and the flow rate of the molten steel surface 19 is also slowed. Although it is necessary to change, since this invention intends high-speed casting, it shall not mention especially here.

このように、ガス吹込部を構成するポーラス煉瓦の平均気孔径を30μm〜50μmとし、且つ、溶鋼トン当たり2.0NL以上のArガスを上ノズル3から吹き込むので、1分間当たり4.0トン以上のアルミキルド溶鋼の連続鋳造であっても、浸漬ノズル内壁表面へのAl23 付着を抑制することができ、Al23 による浸漬ノズルの閉塞を防止することが可能となる。 Thus, since the average pore diameter of the porous brick constituting the gas blowing section is set to 30 μm to 50 μm, and Ar gas of 2.0 NL or more per ton of molten steel is blown from the upper nozzle 3, 4.0 tons or more per minute Even in the continuous casting of aluminum killed molten steel, adhesion of Al 2 O 3 to the inner wall surface of the immersion nozzle can be suppressed, and the immersion nozzle can be prevented from being blocked by Al 2 O 3 .

尚、上記説明ではガス吹込部位が2箇所の例で説明したが、1箇所としても、また3箇所以上としても、上記に沿って本発明を適用することができる。また、上記説明では3枚板構成のスライディングノズル4の例を挙げたが、2枚板構成のスライディングノズルについても上記に沿って本発明を適用することができる。   In the above description, the example of two gas blowing portions has been described. However, the present invention can be applied to the above-described case even when the number of gas blowing portions is one or three or more. In the above description, the example of the sliding nozzle 4 having the three-plate configuration is given, but the present invention can also be applied to the sliding nozzle having the two-plate configuration.

平均気孔径が40μmのポーラス煉瓦を上部吹込部及び下部吹込部とする上ノズルが配置された、図1に示すスラブ連続鋳造機を用いて、Arガス吹き込み量を変化させた試験を実施した。   Using a slab continuous casting machine shown in FIG. 1 in which an upper nozzle having a porous brick having an average pore diameter of 40 μm as an upper blowing portion and a lower blowing portion was arranged, a test was performed by changing the Ar gas blowing amount.

タンディッシュの容量は50トンであり、厚みが250mm、幅が950mmのスラブ鋳片を2.5m/分の引き抜き速度で鋳造した。この場合の1分間当たりの溶鋼注入量は、4.66トンであり、この溶鋼注入量に応じてArガス吹き込み量を、Arガス吹き込み量(NL/分)/溶鋼注入量(トン/分)の比が、1.3〜4.2NL/トンの範囲で変更した。上部吹込部からのArガス吹き込み量と、下部吹込部からのArガス吹き込み量との比率は、全ての試験で10:6とした。この条件で6チャージの連続連続鋳造(「連々鋳」)を実施し、鋳造後、浸漬ノズル内壁のAl23 付着量を測定した。また、鋳造した鋳片を熱間圧延し更に冷間圧延して薄鋼板を製造し、この薄鋼板における介在物性表面欠陥を調査した。 The capacity of the tundish was 50 tons, and a slab slab having a thickness of 250 mm and a width of 950 mm was cast at a drawing speed of 2.5 m / min. In this case, the molten steel injection amount per minute is 4.66 tons, and the Ar gas blowing amount according to the molten steel pouring amount is Ar gas blowing amount (NL / min) / molten steel pouring amount (ton / min). The ratio was changed in the range of 1.3 to 4.2 NL / ton. The ratio of the Ar gas blowing amount from the upper blowing portion and the Ar gas blowing amount from the lower blowing portion was 10: 6 in all tests. Under these conditions, 6-charge continuous continuous casting (“continuous casting”) was performed, and after casting, the amount of Al 2 O 3 deposited on the inner wall of the immersion nozzle was measured. Further, the cast slab was hot-rolled and further cold-rolled to produce a thin steel plate, and the surface defects of the inclusion physical properties in this thin steel plate were investigated.

図4に、浸漬ノズル内壁のAl23 付着量を測定した結果を示す。図4に示すように、Arガス吹き込み量/溶鋼注入量の比が2.0NL/トン以上では、Al23 付着量は少なく、6チャージの連々鋳は全く問題なく、更に連々鋳を続けることが可能であることが確認された。一方、Arガス吹き込み量/溶鋼注入量の比が2.0NL/トン未満の場合には、浸漬ノズル内壁のAl23 付着が激しく、6チャージを超えて連々鋳を続けることは無理であることが確認された。 FIG. 4 shows the result of measuring the Al 2 O 3 adhesion amount on the inner wall of the immersion nozzle. As shown in FIG. 4, when the ratio of Ar gas injection amount / molten steel injection amount is 2.0 NL / ton or more, the Al 2 O 3 adhesion amount is small, the 6-charge continuous casting has no problem, and the continuous casting is continued. It was confirmed that it was possible. On the other hand, when the ratio of Ar gas injection amount / molten steel injection amount is less than 2.0 NL / ton, Al 2 O 3 adhesion on the inner wall of the immersion nozzle is severe, and it is impossible to continue casting over 6 charges. It was confirmed.

図5に、薄鋼板において介在物性表面欠陥を調査した結果を示す。この場合には、Arガス吹き込み量/溶鋼注入量の比が1.3〜4.2NL/トンの範囲で表面欠陥の発生率は低く、問題のないことが確認できた。但し、Arガス吹き込み量/溶鋼注入量の比が3.6NL/トンを超えると、若干表面欠陥の発生率が高くなる傾向にあり、従って、薄鋼板における介在物性表面欠陥を抑える観点からは、Arガス吹き込み量/溶鋼注入量の比を3.6NL/トン以下にすることが好ましいことが確認された。   In FIG. 5, the result of having investigated the inclusion physical property surface defect in a thin steel plate is shown. In this case, when the ratio of Ar gas blowing amount / molten steel injection amount was in the range of 1.3 to 4.2 NL / ton, the occurrence rate of surface defects was low, and it was confirmed that there was no problem. However, when the ratio of the Ar gas injection amount / molten steel injection amount exceeds 3.6 NL / ton, the incidence of surface defects tends to be slightly higher. Therefore, from the viewpoint of suppressing the inclusion surface defects in the thin steel sheet, It was confirmed that the ratio of Ar gas blowing amount / molten steel injection amount is preferably 3.6 NL / ton or less.

本発明による連続鋳造方法を実施する際に用いたスラブ連続鋳造機の鋳型部の概略図である。It is the schematic of the casting_mold | template part of the slab continuous casting machine used when implementing the continuous casting method by this invention. 図1に示す上部ノズルの拡大図である。It is an enlarged view of the upper nozzle shown in FIG. ポーラス煉瓦から発生するArガスの気泡径を水中において調査した結果を示す図である。It is a figure which shows the result of having investigated the bubble diameter of Ar gas generated from a porous brick in water. 実施例1において、浸漬ノズル内壁のAl23 付着量を測定した結果を示す図である。In Example 1, a diagram illustrating the results of measurement of the Al 2 O 3 deposition amount of the immersion nozzle inner wall. 実施例1において、薄鋼板における介在物性表面欠陥を調査した結果を示す図である。In Example 1, it is a figure which shows the result of having investigated the inclusion physical property surface defect in a thin steel plate.

符号の説明Explanation of symbols

1 タンディッシュ
2 鋳型
3 上ノズル
3a 上部吹込部
3b 下部吹込部
3c ガス導入管
3d ガス導入管
3e 本体部
3f 鉄皮
4 スライディングノズル
5 上部固定板
6 摺動板
7 下部固定板
8 整流ノズル
9 浸漬ノズル
10 吐出孔
11 溶鋼流出孔
12 往復型アクチュエーター
13 鋳型長辺
14 鋳型短辺
15 鉄皮
16 耐火物
17 溶鋼
18 吐出流
19 溶鋼湯面
20 モールドパウダー
21 凝固シェル
DESCRIPTION OF SYMBOLS 1 Tundish 2 Mold 3 Upper nozzle 3a Upper blowing part 3b Lower blowing part 3c Gas introduction pipe 3d Gas introduction pipe 3e Main part 3f Iron skin 4 Sliding nozzle 5 Upper fixed plate 6 Sliding plate 7 Lower fixed plate 8 Rectification nozzle 9 Immersion Nozzle 10 Discharge hole 11 Molten steel outflow hole 12 Reciprocating actuator 13 Mold long side 14 Mold short side 15 Iron skin 16 Refractory 17 Molten steel 18 Discharge flow 19 Molten steel surface 20 Mold powder 21 Solidified shell

Claims (1)

タンディッシュ底部に設置した、アルミナ質ポーラス煉瓦からなる上部吹込部、アルミナ質ポーラス煉瓦からなる下部吹込部、及び、上部吹込部と下部吹込部との中間に位置するアルミナ質煉瓦からなる本体部の3つの部分で構成され、前記本体部を形成するアルミナ質煉瓦と前記上部吹込部及び前記下部吹込部を形成するアルミナ質ポーラス煉瓦とが徐々にその配合比率を変えるように一体的に形成された、上部吹込部と下部吹込部との上下2段のガス吹込部を有する上ノズルと、該上ノズルに接続するスライディングノズルと、該スライディングノズルに接続する浸漬ノズルと、から構成される溶鋼注入手段を用いてタンディッシュ内のアルミキルド溶鋼を鋳型内に注入する際に、前記上部吹込部及び前記下部吹込部を構成するポーラス煉瓦の平均気孔径を30μm〜50μmとするとともに、前記上部吹込部の吹き込み面積を前記下部吹込部の吹き込み面積よりも大きくし、前記上部吹込部及び前記下部吹込部から吹き込む合計のArガス吹き込み量が溶鋼注入量1トン当たり2.0NL以上3.6NL以下であり、且つ、前記上部吹込部と前記下部吹込部とのガス吹き込み量の比率が10:4〜10:7となるように前記上部吹込部及び前記下部吹込部からArガスを吹き込みながら、1分間当たり4.0トン以上のアルミキルド溶鋼を鋳型内に注入することを特徴とする、アルミキルド鋼の連続鋳造方法。 An upper blowing part made of alumina porous brick, a lower blowing part made of alumina porous brick, and a main body part made of alumina brick located between the upper blowing part and the lower blowing part, installed at the bottom of the tundish It is composed of three parts, and the alumina brick that forms the main body and the alumina porous brick that forms the upper blowing part and the lower blowing part are integrally formed so as to gradually change the blending ratio. A molten steel injection means comprising an upper nozzle having two upper and lower gas blowing parts, an upper blowing part and a lower blowing part, a sliding nozzle connected to the upper nozzle, and an immersion nozzle connected to the sliding nozzle the aluminum-killed molten steel in the tundish when injecting into a mold using a porous constituting the upper blower unit and the lower blower unit The average pore diameter of the tile with a 30-50 microns, the amount of the larger than blowing area of the blowing area of the upper blower unit lower blower unit, blowing total Ar gas blown from the upper blower unit and the lower blower unit There is less of molten steel injected per ton 2.0NL more 3.6NL, and the ratio of the gas blowing amount between the upper blower unit and the lower blower unit 10: 4-10: 7 so as to the upper An aluminum killed steel continuous casting method, wherein 4.0 tons or more of molten aluminum killed steel is injected into a mold per minute while blowing Ar gas from the blowing part and the lower blowing part .
JP2005053285A 2005-02-28 2005-02-28 Continuous casting method of aluminum killed steel Active JP4815821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053285A JP4815821B2 (en) 2005-02-28 2005-02-28 Continuous casting method of aluminum killed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053285A JP4815821B2 (en) 2005-02-28 2005-02-28 Continuous casting method of aluminum killed steel

Publications (2)

Publication Number Publication Date
JP2006231397A JP2006231397A (en) 2006-09-07
JP4815821B2 true JP4815821B2 (en) 2011-11-16

Family

ID=37039615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053285A Active JP4815821B2 (en) 2005-02-28 2005-02-28 Continuous casting method of aluminum killed steel

Country Status (1)

Country Link
JP (1) JP4815821B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045117B2 (en) * 2007-01-25 2012-10-10 Jfeスチール株式会社 Continuous casting method of P-containing steel
CN102069166B (en) * 2011-01-31 2012-10-03 储鸿文 Continuous-casting sealed pouring device and technological method for protecting pouring using same
JP6794268B2 (en) * 2017-01-05 2020-12-02 黒崎播磨株式会社 Sliding nozzle
JP6340126B1 (en) * 2017-10-03 2018-06-06 東京窯業株式会社 Method for producing gas blowing nozzle and gas blowing nozzle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237948A (en) * 1988-07-27 1990-02-07 Nkk Corp Method for continuously casting molten steel
JPH07112613B2 (en) * 1988-10-31 1995-12-06 株式会社神戸製鋼所 Tundish for continuous casting of steel
JPH03297545A (en) * 1990-04-13 1991-12-27 Nkk Corp Method for continuously casting aluminum-killed steel
JPH05104215A (en) * 1991-10-16 1993-04-27 Nkk Corp Upper nozzle for tundish
JP2797068B2 (en) * 1995-05-29 1998-09-17 東京窯業株式会社 Gas injection nozzle
JP4240916B2 (en) * 2002-06-05 2009-03-18 Jfeスチール株式会社 Tundish upper nozzle and continuous casting method

Also Published As

Publication number Publication date
JP2006231397A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4815821B2 (en) Continuous casting method of aluminum killed steel
JP5910578B2 (en) Steel continuous casting method
JP5082700B2 (en) Steel continuous casting method
JP6515388B2 (en) Upper nozzle for continuous casting
JP5151462B2 (en) Continuous casting method of aluminum killed steel
JP4296787B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel
JP4240916B2 (en) Tundish upper nozzle and continuous casting method
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP5510047B2 (en) Continuous casting method and continuous casting apparatus
JP4673719B2 (en) Dipping nozzle for continuous casting and method for continuous casting of steel
JP4474948B2 (en) Steel continuous casting method
JP4264291B2 (en) Steel continuous casting method
JP3365362B2 (en) Continuous casting method
JP2011194420A (en) Method of producing high cleanliness steel
JPH04220148A (en) Molten steel supplying nozzle
JP4490947B2 (en) Metal melt discharge structure.
JP2011110561A (en) Method for continuously casting steel
JP2007237246A (en) Method for continuously casting aluminum-killed steel
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
JP3642015B2 (en) Stainless steel continuous casting method
JP3262936B2 (en) Operating method for high clean steel casting.
JP2002239692A (en) Method for continuously casting small cross section aluminum-killed steel cast slab
JPH09253807A (en) Method for continuously casting aluminum killed steel cast billet having small cross section
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JP2007237244A (en) Tundish upper nozzle

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4815821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250