JP4240916B2 - Tundish upper nozzle and continuous casting method - Google Patents
Tundish upper nozzle and continuous casting method Download PDFInfo
- Publication number
- JP4240916B2 JP4240916B2 JP2002163816A JP2002163816A JP4240916B2 JP 4240916 B2 JP4240916 B2 JP 4240916B2 JP 2002163816 A JP2002163816 A JP 2002163816A JP 2002163816 A JP2002163816 A JP 2002163816A JP 4240916 B2 JP4240916 B2 JP 4240916B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- upper nozzle
- porous brick
- alumina
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Furnace Charging Or Discharging (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、連続鋳造におけるタンディッシュから鋳型への溶鋼供給流路の一部を構成する上ノズル、並びに、この上ノズルを用いた連続鋳造方法に関するものである。
【0002】
【従来の技術】
酸化精錬された溶鋼は通常Alにより脱酸され、酸化精錬により増加した溶鋼中の酸素が除去される。脱酸生成物であるアルミナ(Al2 O3 )粒子は溶鋼との密度差によって溶鋼から分離されるが、密度差のみによる分離には限界があり、微細なアルミナ粒子は懸濁した状態で溶鋼中に残留する。又、溶鋼中酸素を安定して低減させるために、Al脱酸後の溶鋼中にはAlが溶解して存在しており、このAlが取鍋からタンデッシュへの注入過程やタンデッシュ内において大気と接触して酸化した場合には、新たにアルミナが溶鋼中に生成される。溶鋼中に懸濁しているこれらのアルミナ粒子がアルミナ−黒鉛質からなる浸漬ノズルを通過する際にノズル内壁に付着・堆積して、浸漬ノズルの閉塞が発生する。
【0003】
浸漬ノズルが閉塞すると、鋳造作業上及び鋳片品質上で様々な問題が発生する。例えば、鋳片引き抜き速度を低下せざるを得ず、生産性が落ちるのみならず、甚だしい場合には鋳込み作業そのものの中止を余儀なくされる。又、浸漬ノズル内壁に堆積したアルミナが突然剥離し、大きなアルミナ粒子となって鋳型内に排出され、これが凝固シェルに捕捉された場合には製品欠陥となり、更には、この部分の凝固が遅れて溶鋼が流出し、ブレークアウトにつながることさえもある。このような理由から種々のアルミナ付着防止対策が実施されている。
【0004】
このアルミナ付着防止対策の一つとして、タンディッシュから鋳型への溶鋼供給流路の一部を構成する上ノズルからAr等の不活性ガスを当該流路内に吹き込むことが行われている。即ち、上ノズルの全部若しくは一部をポーラス煉瓦で構成し、ポーラス煉瓦からのガス吹き込みにより溶鋼中に懸濁するアルミナ粒子をガス気泡で捕捉して鋳型内へ流出させ、鋳型内湯面へ浮上させると云うものである。この場合、不活性ガス吹き込みによる乱流によりノズル内壁面が洗浄されると云う効果もある。但し、アルミナ付着を効率良く防止するには、ガス気泡の大きさを調整することやポーラス煉瓦全体から均一に吹き込むことが重要である。例えば、ガス気泡が大きすぎる場合にはアルミナ粒子の捕捉量が少なく、付着抑制効果が発揮されない上に、鋳型内湯面での擾乱をもたらしモールドパウダーの巻き込みの原因となる。
【0005】
このような観点から、特開平2−307654号公報(以下「先行技術1」と記す)には、ポーラス煉瓦のガス通過用の気孔が平均径で25μm以下である上ノズルが提案されている。先行技術1によれば、平均気孔径を25μm以下にすることでポーラス煉瓦が緻密化され、上ノズル全体から均一にガスが吹き込まれ、ノズル閉塞が防止されるとしている。又、特開2000−84647号公報(以下「先行技術2」と記す)には、ガス吹き込みの背圧を1.2kg/cm2G以上、ガス吹き込み流量を5〜10Nl/minとして上ノズルから不活性ガスを吹き込む方法が提案されている。先行技術2によれば、背圧を高くすることにより、ポーラス煉瓦の各部位における気孔率に多少のばらつきがあっても均一に吹き込むことができ、ノズル閉塞が防止されるとしている。
【0006】
【発明が解決しようとする課題】
しかしながら、先行技術1のような平均気孔径が25μm以下の均質な耐火物を安定して製造することは困難であり、先行技術1では上ノズルの製作コストが上昇すると云う問題があった。又、平均気孔径が小さくなり過ぎた場合には、ガス気泡も小さくなり過ぎ、ガス気泡の溶鋼からの浮上・分離が妨げられ、ガス気泡に捕捉されたアルミナ粒子が鋳片に残留し、鋳片の清浄性が悪化すると云う問題も生じていた。先行技術2では、ポーラス煉瓦の気孔率のばらつきを改善するには自ずと限度があり、ノズル閉塞を安定して防止することは極めて困難であった。
【0007】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、特殊な耐火物成形方法を必要とせずにガス気泡径を小さくすることができ、長時間の連続鋳造においても鋳片の清浄性を悪化させることなく浸漬ノズルの詰まりを生じさせないタンディッシュ上ノズル及びこれを用いた連続鋳造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意検討を行った。以下に検討結果を説明する。
【0009】
上ノズルから吹き込む不活性ガスのガス気泡径が小さいほど、溶鋼中に懸濁する微細なアルミナ粒子はこのガス気泡に捕捉されて、浸漬ノズル内壁のアルミナ付着が防止される。即ち、アルミナ付着を効率的に防止するには、ガス気泡径が小さいことが必要である。それ故、吹き込まれるガス気泡を小さくする方法を検討した。尚、前述の先行技術1では、主に原料粉末の平均粒径を小さくすることによってポーラス煉瓦の気孔径を25μm以下に調整しているが、平均粒径の小さい原料粉末を使用することに問題があり、コスト増の原因となっていた。
【0010】
本発明者等は、ポーラス煉瓦の気孔率即ち嵩密度と、ポーラス煉瓦の気孔径即ちガス気泡径とには何らかの相関関係があるはずと想定し、ポーラス煉瓦の嵩密度を変更させることを考えた。嵩密度は、粉体原料からポーラス煉瓦を圧縮成形加工する際の圧縮成形力に依存し、圧縮成型力の増加に伴って嵩密度が上昇する。この場合、嵩密度が大きくなれば気孔率が低下し、嵩密度が小さくなれば気孔率が大きくなる。嵩密度は、その外形寸法と質量とを測定すれば求めることができ、気孔率に比べて容易に測定することができるため、ポーラス煉瓦を評価するには極めて好都合である。
【0011】
図1に、アルミナ質系耐火物からなるポーラス煉瓦の嵩密度を変更し、そのポーラス煉瓦における気孔の平均径を調査した結果を示す。ポーラス煉瓦の気孔の平均径は次のようにして求めた。即ち、ポーラス煉瓦を水銀中に埋没させ、特定の気孔径に相当する圧力をかけた際にポーラス煉瓦内に吸い込まれる水銀量を求め、この水銀量から該当気孔径の比率を求めた。この作業を様々な圧力下で行うことにより全体の気孔径分布を求め、その後に平均径を定めた。
【0012】
ポーラス煉瓦は、90mass%をアルミナ(Al2 O3 )とし、残部をシリカ(SiO2 )、マグネシア(MgO)及びクロミア(Cr2 O3 )とする耐火物で作製した。因みに、これら酸化物の真密度は、アルミナが4.0g/cm3 、シリカが2.6g/cm3 、マグネシアが3.5g/cm3 、クロミアが5.0g/cm3 であり、仮にアルミナを90mass%以上含有する上記組成のポーラス煉瓦の真密度を算出すれば、3.9〜4.1g/cm3 程度になる。尚、従来のアルミナ質系耐火物からなるポーラス煉瓦の嵩密度は、先行技術1にも見られるように、2.80g/cm3 程度以下である。
【0013】
その結果、図1に示すように、ポーラス煉瓦の嵩密度の増加に伴って気孔の平均径が小さくなることが分かり、従って、ポーラス煉瓦の嵩密度を制御することにより吹き込まれるガス気泡の平均径を調整可能であることが分かった。又、図1から明らかなように、嵩密度が3.0g/cm3 以上になると気孔の平均径は20μm以下になることも分かった。即ち、平均径が20μm以下のガス気泡を得るためには、ポーラス煉瓦の嵩密度を3.0g/cm3 以上にする必要があることが分かった。尚、この場合、従来の成形方法に比べて圧縮成型力を増大させる必要がある。
【0014】
一方、ガス気泡が小さくなり過ぎると鋳型内におけるガス気泡の浮上・分離が損なわれ、ガス気泡に捕捉されたアルミナ粒子が鋳片に残留し、鋳片の清浄性が悪化する。従って、鋳片の清浄性からは小さすぎるガス気泡は好ましくない。そこで、嵩密度を変化させた場合の気孔径の分布を調査した。この場合、比較のために先行技術1によるポーラス煉瓦における気孔の分布も併せて調査した。先行技術1によるポーラス煉瓦の嵩密度は2.80g/cm3 であった。気孔の分布は前述の水銀を用いる方法により測定した。
【0015】
図2、図3及び図4に、それぞれ嵩密度が2.96g/cm3 、3.01g/cm3 及び3.23g/cm3 の場合のポーラス煉瓦における気孔径の分布を示し、又、図5に先行技術1によるポーラス煉瓦における気孔径の分布を示す。
【0016】
図2〜図4に示すように、嵩密度の増加に伴って気孔の平均径が小さくなると10μm未満の微細な気孔が増加することが分かった。特に、嵩密度が3.23g/cm3 のポーラス煉瓦では10μm未満の気孔の頻度が高いことが分かった。
【0017】
一方、図5に示すように従来例では気孔径の分布範囲が広く、従って、例えば気孔の平均径が20μmであっても直径が10μm未満の微細な気孔の頻度が高いことが分かった。又、従来例においてはこの10μm未満の微細な気孔が多いことが、鋳片の清浄性に悪影響を及ぼしていることも分かった。図5に示す従来例に比較すると、嵩密度を2.96g/cm3 、3.01g/cm3 及び3.23g/cm3 に上昇させたポーラス煉瓦では気孔径の分布範囲が狭くなることが分かった。
【0018】
これらの結果から、圧縮加工成形時に圧縮成型力を増加させ、ポーラス煉瓦の嵩密度を3.0g/cm3 以上に調整することで、気孔径即ちガス気泡の平均径が20μm以下となり、浸漬ノズルにおけるアルミナ付着を抑制することができるとの知見が得られた。又、この場合に、10μm未満の微細なガス気泡の発生頻度が低くなるように嵩密度の上限を3.2g/cm3 以下とすることにより、鋳片の清浄性が悪化されないとの知見も得られた。
【0019】
本発明は上記知見に基づきなされたもので、第1の発明に係るタンディッシュ上ノズルは、連続鋳造におけるタンディッシュから鋳型への溶鋼供給流路の一部を構成し、この溶鋼供給流路内を流下する溶鋼中に不活性ガスを吹き込むタンディッシュ上ノズルであって、吹き込み用の不活性ガスを供給するためのガス供給手段と、このガス供給手段に連通され、溶鋼中に不活性ガスを吹き込むポーラス煉瓦と、を具備し、該ポーラス煉瓦がアルミナを主成分とするアルミナ質系耐火物からなり、且つ、ポーラス煉瓦の嵩密度が3.0g/cm3 以上3.2g/cm3 以下であることを特徴とするものである。
【0020】
又、第2の発明に係る連続鋳造方法は、第1の発明に記載のタンディッシュ上ノズルを用い、タンディッシュから鋳型への溶鋼供給流路内を流下する溶鋼中に前記タンディッシュ上ノズルから不活性ガスを吹き込みながら鋳造することを特徴とするものである。
【0021】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図6は、本発明の実施の形態を示す図であって、本発明に係る上ノズルの拡大図、図7は、本発明に係る上ノズルを備えた連続鋳造用タンディッシュ及び鋳型の概略縦断面図である。
【0022】
本発明に係る上ノズル3は、ポーラス煉瓦22及びノズル母材23とからなる耐火物と、これら耐火物を取り囲む鉄皮24と、ポーラス煉瓦22に連通するガス導入管25とから構成されている。上ノズル3の軸芯部の開孔部がタンディッシュから鋳型への溶鋼供給流路11の一部分となる。ノズル母材23は通常高アルミナ質煉瓦を用いることが多いが、高アルミナ質煉瓦に限るものではなく、他の組成であってもよい。鉄皮24は、ポーラス煉瓦22及びノズル母材23の補強材としての役割と、ポーラス煉瓦22に吹き込まれる不活性ガスの背面への漏洩を防止する役割とをなしている。
【0023】
ポーラス煉瓦22は、アルミナを80mass%以上含有する高アルミナ質系の耐火物とする。この高アルミナ質耐火物は、高温強度が高く溶鋼に対する耐摩耗性に優れており、ポーラス煉瓦22の材料として好適である。ポーラス煉瓦22は、アルミナの他にシリカ、マグネシア、クロミア等から構成する。これらの耐火物原料としては、酸化アルミナ、ボーキサイト、珪石、石英、マグネシアクリンカー、酸化クロム等を用いることができる。
【0024】
これらの耐火物原料を所定の配合比で配合して混合し、上ノズル3用のポーラス煉瓦22の形状に圧縮成型する。ポーラス煉瓦22に用いる耐火物原料は特に微粉にまで粉砕する必要はなく、通常の粒度で十分である。圧縮成型されたポーラス煉瓦22の嵩密度が3.0g/cm3 以上となるように圧縮力を調整する。但し、嵩密度が3.2g/cm3 を超えると10μm未満の微細なガス気泡が増加し、鋳片の清浄性が悪化するので、嵩密度は3.2g/cm3 以下とすることが好ましい。
【0025】
成形したポーラス煉瓦22にガス導入管25を取り付け、ガス導入管25が取り付けられたポーラス煉瓦22とノズル母材23を構成する耐火物原料とを上ノズル3を成形する金型内の所定の位置に配置し、これらを圧縮成型して上ノズル3を成型する。そして、成形した上ノズル3を焼成し、連続鋳造用タンディッシュ上ノズル3として仕上げる。
【0026】
上ノズル3の他の製造方法は、ポーラス煉瓦22を構成するための、酸化アルミナ、ボーキサイト、珪石、石英、マグネシアクリンカー、酸化クロム等が所定の配合比で混合された耐火物原料と、ノズル母材23を構成する耐火物原料と、ガス導入管25とを準備し、これらを上ノズル3を成形する金型内の所定の位置に配置し、圧縮成型して上ノズル3を成形し、そして、成形した上ノズル3を焼成し、連続鋳造用タンディッシュ上ノズル3として仕上げる方法である。
【0027】
この場合も、圧縮成形後のポーラス煉瓦22の嵩密度が3.0g/cm3 以上であり且つ好ましくは3.2g/cm3 以下となるように、圧縮力を調整する。この場合には上ノズル3中のポーラス煉瓦22のみの嵩密度を測定することができないので、予め圧縮力を種々変更して上ノズル3を成形し、成形した上ノズル3からポーラス煉瓦22を切り出し、このポーラス煉瓦22の嵩密度を測定して、ポーラス煉瓦22の嵩密度が3.0g/cm3 以上であり且つ好ましくは3.2g/cm3 以下となるように、圧縮力と嵩密度との関係を定めておき、それに基づき圧縮成型加工すれば所定の嵩密度を有する上ノズル3を得ることができる。
【0028】
このような構成の上ノズル3を用いて溶鋼の連続鋳造を行うが、本発明に係る上ノズル3を使用する連続鋳造設備としては、例えば図7に示すような連続鋳造設備を用いることができる。
【0029】
図7において、相対する鋳型長辺13と、鋳型長辺13内に内装された相対する鋳型短辺14とにより構成される鋳型2の上方所定位置に、外郭を鉄皮15で覆われ、内部を耐火物16で施行されたタンディッシュ1が配置され、このタンディッシュ1の底部には耐火物16に嵌合して本発明に係る上ノズル3が設けられている。図7では示していないが、上ノズル3に取りつけられたガス導入管25は流量計が設置されたガス供給本管に接続されており、ガス供給本管から供給されるAr等の不活性ガスが上ノズル3から溶鋼供給流路11内に吹き込まれるようになっている。そして、この上ノズル3の下面に接続して、上部固定板5、摺動板6、下部固定板7、及び整流ノズル8からなるスライディングノズル4が配置され、更に、スライディングノズル4の下面に接して、下部に一対の吐出孔10を有する浸漬ノズル9が配置され、タンディッシュ1から鋳型2への溶鋼供給流路11が形成されている。摺動板6は、往復型アクチュエーター12と接続されており、往復型アクチュエーター12の作動により、上部固定板5と下部固定板7との間をこれらの固定板と接触したまま移動し、摺動板6と下部固定板7とで形成する開口部面積を調整することにより溶鋼供給流路11を通過する溶鋼量が制御される。浸漬ノズル9は、吐出孔10が鋳型2内の溶鋼17中に埋没するようにその先端が浸漬されて使用される。
【0030】
このように構成される連続鋳造設備を用いて、取鍋(図示せず)からタンディッシュ1内に注入された溶鋼17を、上ノズル3からAr等の不活性ガスを吹き込みながらスライディングノズル4で溶鋼流量を調整しつつ、溶鋼供給流路11を経由させ、吐出孔10から吐出流18を鋳型短辺14に向けて鋳型2内に注入する。注入された溶鋼17は鋳型2内で冷却されて凝固シェル19を形成し、鋳型2の下方に連続的に引き抜かれ鋳片となる。鋳型2内の溶鋼湯面20上にはモールドパウダー21を添加して鋳造する。
【0031】
上ノズル3から吹き込む不活性ガス流量は特に限定するものではなく、例えば5〜15Nl/min程度の通常の吹き込み量で良い。上ノズル3のポーラス煉瓦22の嵩密度を3.0〜3.2g/cm3 の範囲にすることにより、不活性ガス気泡の平均径は12〜20μmとなり、且つ、10μm未満の微細なガス気泡の発生頻度が抑えられる。そのため、溶鋼供給流路11内を流下する溶鋼17の中に懸濁するアルミナ粒子は、ポーラス煉瓦22から吹き込まれる不活性ガス気泡に捕捉されて鋳型2内に流出し、不活性ガス気泡と共にガス気泡の浮力により溶鋼湯面20に浮上し、モールドパウダー21に吸収される。
【0032】
その結果、浸漬ノズル9の内壁面を初めとして溶鋼供給流路11の内壁面でのアルミナ付着が抑制され、アルミナによるノズル閉塞が防止され、鋳造可能時間を飛躍的に延長させることが可能となる。又、鋳型2内に流入したアルミナ粒子は浮上してモールドパウダー21に吸収されるため、鋳造される鋳片の清浄性を悪化させることがない。更に、浸漬ノズル9の内壁でのアルミナ粒子の付着・堆積による粗大化を防止することができるので、粗大化したアルミナの剥離に起因する鋳片の大型介在物を大幅に削減することができる。
【0033】
尚、上記説明では上ノズル3の二箇所をポーラス煉瓦22とした例で説明したが、上ノズル3の全体をポーラス煉瓦22としても、又、一箇所若しくは二箇所以上をポーラス煉瓦22としても良い。更に、連続鋳造機の個々の装置は上記に限るものではなく、例えば三枚板構造のスライディングノズル4の替わりに二枚板構造のスライディングノズルを用いても良いように、その機能が同一であればどのような装置としても良い。
【0034】
【実施例】
図7に示す連続鋳造設備を用い、図6に示す上ノズルの嵩密度を2.83〜3.23g/cm3 の範囲で変化させて鋳造した試験鋳造の結果を説明する。上ノズルのポーラス煉瓦の組成は、アルミナを90mass%、シリカを6mass%、マグネシアを2mass%、及びクロミアを2mass%を含有するアルミナ質系耐火物とした。
【0035】
この上ノズルから10Nl/minのArを吹き込み、4時間以上の連続鋳造を実施した。鋳造後、使用した浸漬ノズルを回収し、浸漬ノズル下端から200mmの位置における浸漬ノズル内壁のアルミナ付着量を測定した。測定結果を図8に示す。
【0036】
図8からも明らかなように、ポーラス煉瓦の嵩密度が3.0g/cm3 以上の範囲では、ノズル内壁の部分的には極少量のアルミナ付着が存在するもののアルミナ付着量は実質的に測定されず、極めて少ない結果であった。一方、嵩密度が3.0g/cm3 よりも小さい範囲では嵩密度の低下に伴いアルミナ付着量が増加することが分かった。
【0037】
又、鋳造した鋳片を薄鋼板に圧延し、薄鋼板において介在物性欠陥を調査した結果、ポーラス煉瓦の嵩密度が3.00〜3.23g/cm3 の範囲で鋳造した鋳片では、鋳片のアルミナに起因する表面欠陥は全く発生しないことが分かった。即ち、鋳片の清浄性は極めて高いことが分かった。
【0038】
【発明の効果】
本発明によれば、アルミナ質系耐火物からなるポーラス煉瓦の嵩密度を3.0g/cm3 以上とすることによって吹き込むガス気泡を小さくするので、特殊な耐火物成形方法を用いることなく安定して吹き込みガス気泡を20μm以下にすることができる。その結果、浸漬ノズルの内壁面でのアルミナ付着が抑制され、アルミナによるノズル閉塞が防止され、鋳造可能時間を飛躍的に延長させることが可能となり、又、鋳型内に流入したアルミナ粒子は浮上してモールドパウダーに吸収されるため、鋳造される鋳片の清浄性を悪化させることがない。更に、浸漬ノズルの内壁でのアルミナ粒子の付着・堆積による粗大化を防止することができるので、粗大化したアルミナの剥離に起因する鋳片の大型介在物を大幅に削減することができる。
【図面の簡単な説明】
【図1】ポーラス煉瓦の嵩密度と気孔平均径との関係を示す図である。
【図2】嵩密度が2.96g/cm3のポーラス煉瓦における気孔径の分布を示す図である。
【図3】嵩密度が3.01g/cm3 のポーラス煉瓦における気孔径の分布を示す図である。
【図4】嵩密度が3.23g/cm3 のポーラス煉瓦における気孔径の分布を示す図である。
【図5】従来例のポーラス煉瓦における気孔径の分布を示す図である。
【図6】本発明の実施の形態の例を示す図であって、本発明に係る上ノズルの拡大図である。
【図7】本発明に係る上ノズルを備えた連続鋳造用タンディッシュ及び鋳型の概略縦断面図である。
【図8】実施例における浸漬ノズル内壁のアルミナ付着量の測定結果を示す図である。
【符号の説明】
1 タンディッシュ
2 鋳型
3 上ノズル
4 スライディングノズル
9 浸漬ノズル
11 溶鋼供給流路
16 耐火物
17 溶鋼
22 ポーラス煉瓦
23 ノズル母材
24 鉄皮
25 ガス導入管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an upper nozzle constituting a part of a molten steel supply flow path from a tundish to a mold in continuous casting, and a continuous casting method using the upper nozzle.
[0002]
[Prior art]
The oxidatively refined molten steel is usually deoxidized with Al, and oxygen in the molten steel increased by oxidative refining is removed. Alumina (Al 2 O 3 ) particles, which are deoxidation products, are separated from the molten steel due to the density difference from the molten steel, but there is a limit to the separation due to the density difference alone, and the fine alumina particles are suspended in the molten steel. It remains in. In addition, in order to stably reduce oxygen in the molten steel, Al is dissolved in the molten steel after Al deoxidation, and this Al is injected into the tundish from the ladle and in the tundish with the atmosphere. When oxidized by contact, new alumina is produced in the molten steel. When these alumina particles suspended in the molten steel pass through the immersion nozzle made of alumina-graphite, they adhere to and accumulate on the inner wall of the nozzle, and the immersion nozzle is blocked.
[0003]
When the immersion nozzle is blocked, various problems occur in the casting operation and the slab quality. For example, the slab drawing speed has to be reduced, and not only the productivity is lowered, but in severe cases, the casting operation itself must be stopped. Also, the alumina deposited on the inner wall of the immersion nozzle suddenly peels off, becomes large alumina particles and is discharged into the mold, and if this is trapped by the solidified shell, it becomes a product defect, and further, the solidification of this part is delayed. Molten steel can escape and even lead to breakouts. For these reasons, various measures for preventing alumina adhesion have been implemented.
[0004]
As one of the measures for preventing the adhesion of alumina, an inert gas such as Ar is blown into the flow path from an upper nozzle that constitutes a part of the molten steel supply flow path from the tundish to the mold. That is, all or a part of the upper nozzle is composed of porous brick, and alumina particles suspended in the molten steel are trapped by gas bubbles by blowing gas from the porous brick, flow out into the mold, and float on the molten metal surface in the mold. It is said. In this case, there is an effect that the inner wall surface of the nozzle is cleaned by the turbulent flow caused by blowing the inert gas. However, it is important to adjust the size of the gas bubbles and to blow uniformly from the entire porous brick in order to prevent the alumina adhesion efficiently. For example, when the gas bubbles are too large, the trapped amount of alumina particles is small, the adhesion suppressing effect is not exhibited, and disturbance on the hot water surface in the mold is caused, causing mold powder to be involved.
[0005]
From such a point of view, Japanese Patent Laid-Open No. 2-307654 (hereinafter referred to as “
[0006]
[Problems to be solved by the invention]
However, it is difficult to stably produce a homogeneous refractory having an average pore diameter of 25 μm or less as in the
[0007]
The present invention has been made in view of the above circumstances. The object of the present invention is to reduce the gas bubble diameter without requiring a special refractory molding method. It is an object of the present invention to provide a tundish upper nozzle that does not cause clogging of the immersion nozzle without deteriorating the cleanliness of the nozzle and a continuous casting method using the same.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies to solve the above problems. The examination results are described below.
[0009]
As the gas bubble diameter of the inert gas blown from the upper nozzle is smaller, the fine alumina particles suspended in the molten steel are trapped in the gas bubbles and the alumina adhesion on the inner wall of the immersion nozzle is prevented. That is, in order to prevent the alumina from being attached efficiently, the gas bubble diameter needs to be small. Therefore, a method of reducing the gas bubbles to be blown was examined. In the
[0010]
The present inventors assumed that there should be some correlation between the porosity of the porous brick, that is, the bulk density, and the pore diameter of the porous brick, that is, the gas bubble diameter, and considered changing the bulk density of the porous brick. . The bulk density depends on the compression molding force when the porous brick is compression molded from the powder raw material, and the bulk density increases as the compression molding force increases. In this case, the porosity decreases as the bulk density increases, and the porosity increases as the bulk density decreases. The bulk density can be obtained by measuring its external dimensions and mass, and can be easily measured as compared with the porosity. Therefore, it is very convenient for evaluating porous bricks.
[0011]
FIG. 1 shows the result of examining the average diameter of pores in the porous brick after changing the bulk density of the porous brick made of an alumina-based refractory. The average pore diameter of the porous brick was determined as follows. That is, when the porous brick was buried in mercury and a pressure corresponding to a specific pore diameter was applied, the amount of mercury sucked into the porous brick was determined, and the ratio of the corresponding pore diameter was determined from this mercury amount. By carrying out this operation under various pressures, the overall pore size distribution was determined, and then the average diameter was determined.
[0012]
The porous brick was made of a refractory having 90 mass% alumina (Al 2 O 3 ) and the balance silica (SiO 2 ), magnesia (MgO), and chromia (Cr 2 O 3 ). Incidentally, the true density of these oxides, alumina 4.0 g / cm 3, silica is 2.6 g / cm 3, magnesia 3.5 g / cm 3, chromia is 5.0 g / cm 3, if alumina When the true density of the porous brick having the above composition containing 90 mass% or more is calculated, it is about 3.9 to 4.1 g / cm 3 . In addition, the bulk density of the porous brick which consists of a conventional alumina type | system | group refractory is about 2.80 g / cm < 3 > or less so that the
[0013]
As a result, as shown in FIG. 1, it can be seen that the average diameter of the pores decreases as the bulk density of the porous brick increases, and accordingly, the average diameter of the gas bubbles blown by controlling the bulk density of the porous brick. Was found to be adjustable. Further, as apparent from FIG. 1, it was also found that when the bulk density is 3.0 g / cm 3 or more, the average pore diameter is 20 μm or less. That is, it was found that the bulk density of the porous brick must be 3.0 g / cm 3 or more in order to obtain gas bubbles having an average diameter of 20 μm or less. In this case, it is necessary to increase the compression molding force as compared with the conventional molding method.
[0014]
On the other hand, if the gas bubbles become too small, the floating / separation of the gas bubbles in the mold is impaired, and the alumina particles trapped in the gas bubbles remain in the slab and the cleanliness of the slab deteriorates. Therefore, too small gas bubbles are not preferable in terms of cleanliness of the slab. Therefore, the distribution of pore diameters when the bulk density was changed was investigated. In this case, the pore distribution in the porous brick according to the
[0015]
2, 3 and 4 show the pore size distribution in porous bricks when the bulk densities are 2.96 g / cm 3 , 3.01 g / cm 3 and 3.23 g / cm 3 , respectively. 5 shows the pore size distribution in the porous brick according to
[0016]
As shown in FIG. 2 to FIG. 4, it was found that fine pores of less than 10 μm increase when the average diameter of the pores decreases as the bulk density increases. In particular, it was found that the porous brick having a bulk density of 3.23 g / cm 3 has a high frequency of pores of less than 10 μm.
[0017]
On the other hand, as shown in FIG. 5, in the conventional example, it was found that the pore diameter distribution range is wide, and therefore, for example, even if the average pore diameter is 20 μm, the frequency of fine pores having a diameter of less than 10 μm is high. It was also found that in the conventional example, a large number of fine pores of less than 10 μm adversely affects the cleanability of the slab. Compared with the conventional example shown in FIG. 5, the pore size distribution range is narrower in porous bricks whose bulk density is increased to 2.96 g / cm 3 , 3.01 g / cm 3 and 3.23 g / cm 3. I understood.
[0018]
From these results, by increasing the compression molding force during compression molding and adjusting the bulk density of the porous brick to 3.0 g / cm 3 or more, the pore diameter, that is, the average diameter of gas bubbles becomes 20 μm or less, and the immersion nozzle The knowledge that the alumina adhesion in can be suppressed was obtained. In this case, there is also a finding that the cleanness of the slab is not deteriorated by setting the upper limit of the bulk density to 3.2 g / cm 3 or less so that the frequency of generation of fine gas bubbles of less than 10 μm is reduced. Obtained.
[0019]
The present invention has been made on the basis of the above knowledge, and the tundish upper nozzle according to the first invention constitutes a part of the molten steel supply flow path from the tundish to the mold in continuous casting, and the inside of the molten steel supply flow path A tundish upper nozzle that blows an inert gas into the molten steel flowing down, and is connected to the gas supply means for supplying the inert gas for blowing, and the inert gas is introduced into the molten steel. blown comprising a porous brick, and the porous bricks made alumina-based refractories containing alumina as a main component, and a bulk density of 3.0 g / cm 3 or more on the third porous bricks. It is characterized by being 2 g / cm 3 or less.
[0020]
Moreover, the continuous casting method according to the second invention uses the tundish upper nozzle according to the first invention, and from the tundish upper nozzle into the molten steel flowing down in the molten steel supply channel from the tundish to the mold. It is characterized by casting while blowing an inert gas.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 6 is a view showing an embodiment of the present invention, and is an enlarged view of an upper nozzle according to the present invention. FIG. 7 is a schematic longitudinal section of a continuous casting tundish and mold having the upper nozzle according to the present invention. FIG.
[0022]
The
[0023]
The
[0024]
These refractory raw materials are mixed and mixed at a predetermined mixing ratio, and compression molded into the shape of the
[0025]
A
[0026]
Another manufacturing method of the
[0027]
Also in this case, the compression force is adjusted so that the bulk density of the
[0028]
Although continuous casting of molten steel is performed using the
[0029]
In FIG. 7, the outer shell is covered with an
[0030]
Using the continuous casting equipment configured as described above, the sliding steel 4 is injected into the
[0031]
The flow rate of the inert gas blown from the
[0032]
As a result, the alumina adhesion on the inner wall surface of the molten steel
[0033]
In the above description, the example in which the two locations of the
[0034]
【Example】
The results of test casting in which the continuous casting equipment shown in FIG. 7 is used and the bulk density of the upper nozzle shown in FIG. 6 is changed in the range of 2.83 to 3.23 g / cm 3 will be described. The composition of the porous brick of the upper nozzle was an alumina-based refractory containing 90 mass% alumina, 6 mass% silica, 2 mass% magnesia, and 2 mass% chromia.
[0035]
10 Nl / min Ar was blown from the upper nozzle, and continuous casting was performed for 4 hours or more. The used immersion nozzle was collect | recovered after casting, and the alumina adhesion amount of the immersion nozzle inner wall in the position of 200 mm from the immersion nozzle lower end was measured. The measurement results are shown in FIG.
[0036]
As is apparent from FIG. 8, when the bulk density of the porous brick is 3.0 g / cm 3 or more, the amount of alumina deposited is substantially measured although a very small amount of alumina is partially deposited on the inner wall of the nozzle. There were very few results. On the other hand, in the range where the bulk density is smaller than 3.0 g / cm 3, it was found that the amount of adhered alumina increases as the bulk density decreases.
[0037]
Moreover, as a result of rolling the cast slab into a thin steel plate and investigating inclusion physical property defects in the thin steel plate, the cast slab cast with the bulk density of the porous brick in the range of 3.00 to 3.23 g / cm 3 It was found that no surface defects due to the piece of alumina occurred. That is, it was found that the cleanability of the slab was extremely high.
[0038]
【The invention's effect】
According to the present invention, since the gas bubbles to be blown are reduced by setting the bulk density of the porous brick made of the alumina-based refractory to 3.0 g / cm 3 or more, it is stable without using a special refractory molding method. The blown gas bubbles can be reduced to 20 μm or less. As a result, alumina adhesion on the inner wall surface of the submerged nozzle is suppressed, nozzle clogging with alumina is prevented, the casting time can be greatly extended, and the alumina particles flowing into the mold float. Therefore, the cleanliness of the cast slab is not deteriorated. Furthermore, since the coarsening due to the adhesion / deposition of alumina particles on the inner wall of the immersion nozzle can be prevented, the large inclusions in the slab caused by the exfoliation of the coarsened alumina can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the bulk density of a porous brick and the average pore diameter.
FIG. 2 is a diagram showing a pore size distribution in a porous brick having a bulk density of 2.96 g / cm 3 .
FIG. 3 is a diagram showing a pore size distribution in a porous brick having a bulk density of 3.01 g / cm 3 .
FIG. 4 is a diagram showing a pore size distribution in a porous brick having a bulk density of 3.23 g / cm 3 .
FIG. 5 is a diagram showing a distribution of pore diameters in a conventional porous brick.
FIG. 6 is a diagram showing an example of an embodiment of the present invention, and is an enlarged view of an upper nozzle according to the present invention.
FIG. 7 is a schematic longitudinal sectional view of a continuous casting tundish and mold having an upper nozzle according to the present invention.
FIG. 8 is a diagram showing measurement results of the amount of alumina adhered to the inner wall of the immersion nozzle in the example.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002163816A JP4240916B2 (en) | 2002-06-05 | 2002-06-05 | Tundish upper nozzle and continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002163816A JP4240916B2 (en) | 2002-06-05 | 2002-06-05 | Tundish upper nozzle and continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004009079A JP2004009079A (en) | 2004-01-15 |
JP4240916B2 true JP4240916B2 (en) | 2009-03-18 |
Family
ID=30432141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002163816A Expired - Fee Related JP4240916B2 (en) | 2002-06-05 | 2002-06-05 | Tundish upper nozzle and continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4240916B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4815821B2 (en) * | 2005-02-28 | 2011-11-16 | Jfeスチール株式会社 | Continuous casting method of aluminum killed steel |
JP4818675B2 (en) * | 2005-09-30 | 2011-11-16 | Jfeスチール株式会社 | Upper nozzle of continuous casting equipment |
JP5630459B2 (en) * | 2012-05-02 | 2014-11-26 | 品川リフラクトリーズ株式会社 | Porous refractory for gas blowing and gas blowing tundish upper nozzle using the same |
JP6024920B2 (en) * | 2013-09-04 | 2016-11-16 | Jfeスチール株式会社 | Shaped refractory and method for manufacturing the same |
JP7157387B2 (en) * | 2019-01-07 | 2022-10-20 | 日本製鉄株式会社 | Nozzle on tundish |
CN113927026A (en) * | 2021-09-07 | 2022-01-14 | 山东钢铁集团日照有限公司 | Method for mounting anti-seepage steel split type nozzle pocket brick of double-flow slab continuous casting machine |
-
2002
- 2002-06-05 JP JP2002163816A patent/JP4240916B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004009079A (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4240916B2 (en) | Tundish upper nozzle and continuous casting method | |
JP4343907B2 (en) | Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same | |
JP4815821B2 (en) | Continuous casting method of aluminum killed steel | |
JPH11123509A (en) | Immersion nozzle for continuous casting | |
JP2781734B2 (en) | Nozzle for continuous casting of wide thin slab | |
JP4249940B2 (en) | Aluminum killed steel casting method | |
JP7157387B2 (en) | Nozzle on tundish | |
GB2081702A (en) | Immersion Nozzle for Continuous Casting of Molten Steel | |
JP4284206B2 (en) | Immersion nozzle for continuous casting of steel | |
US6637629B2 (en) | Immersion nozzle | |
JP2006312188A (en) | Continuous casting nozzle | |
JP4135386B2 (en) | Steel continuous casting method | |
JPS63112057A (en) | Submerged nozzle for continuous casting | |
JP6451466B2 (en) | Capturing device and removal method for non-metallic inclusions in molten metal | |
WO2024053291A1 (en) | Tundish for continuous casting, steel continuous casting method, and gas supply device | |
KR101062953B1 (en) | Immersion nozzle | |
JP2007237244A (en) | Tundish upper nozzle | |
JPH05104215A (en) | Upper nozzle for tundish | |
GB2056430A (en) | Immersion Nozzle for Continuous Casting of Molten Steel | |
JP4490947B2 (en) | Metal melt discharge structure. | |
JP3610871B2 (en) | Continuous casting method of steel | |
JP4474948B2 (en) | Steel continuous casting method | |
KR100436212B1 (en) | long nozzle for casting molten steel | |
JPS63303665A (en) | Submerged nozzle for continuous casting | |
RU71575U1 (en) | GLASS-DOSER WITH ARGON |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051205 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |