JP4249940B2 - Aluminum killed steel casting method - Google Patents

Aluminum killed steel casting method Download PDF

Info

Publication number
JP4249940B2
JP4249940B2 JP2002128337A JP2002128337A JP4249940B2 JP 4249940 B2 JP4249940 B2 JP 4249940B2 JP 2002128337 A JP2002128337 A JP 2002128337A JP 2002128337 A JP2002128337 A JP 2002128337A JP 4249940 B2 JP4249940 B2 JP 4249940B2
Authority
JP
Japan
Prior art keywords
nozzle
cao
alumina
refractory
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002128337A
Other languages
Japanese (ja)
Other versions
JP2003320444A (en
Inventor
浩二 緒方
公一 清水
敬輔 浅野
利之 保木井
丈記 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002128337A priority Critical patent/JP4249940B2/en
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to AU2003235985A priority patent/AU2003235985A1/en
Priority to EP03721000A priority patent/EP1504831B1/en
Priority to CNB038096293A priority patent/CN1305602C/en
Priority to KR1020047017476A priority patent/KR100835398B1/en
Priority to BRPI0309646-7A priority patent/BR0309646B1/en
Priority to PCT/JP2003/005558 priority patent/WO2003092929A1/en
Priority to MXPA04010796A priority patent/MXPA04010796A/en
Priority to DE60326948T priority patent/DE60326948D1/en
Priority to US10/513,186 priority patent/US20050200057A1/en
Publication of JP2003320444A publication Critical patent/JP2003320444A/en
Application granted granted Critical
Publication of JP4249940B2 publication Critical patent/JP4249940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミキルド鋼の鋳造方法に関する。
【0002】
【従来の技術】
アルミキルド鋼の鋳造に際して、鋳造用ノズル(以下ノズルと言う)内孔面に付着したアルミナは合体して大型の介在物になり、それが溶鋼流と共に鋳片内に取り込まれて鋳片の欠陥となり品質を低下させる。
【0003】
そのため、近年、とくに薄板等の高級鋼として鋳造されるアルミキルド鋼は、鋼材品質の厳格化に伴い、連続鋳造においてタンディッシュ(以下TDと言う)からモールドに溶鋼を注入する際に使用するノズルの内孔へのアルミナ付着を防止することに多くの努力が払われている。
【0004】
その対策の一例として、ノズルの内面からアルゴンガスを溶鋼中に吹き込んで物理的にアルミナの付着を防止する手法がある。しかし、この方法は、アルゴンガスの吹き込み量が多すぎると気泡が鋳片内に取り込まれてピンホールとなり欠陥となる。従って、このアルゴンガスの吹き込みは、ガスの吹き込み量に制約があるため必ずしも十分な対策とはなり得ない。
【0005】
また、ノズルを構成する耐火材自身にアルミナ付着防止機能を持たせる手法もある。これは、れんが中にCaOを含有させて付着したアルミナと反応させて低融物を生成させるもので、例えば、特公昭61−44836号公報には、黒鉛と焼結カルシア、電融カルシア、またはCaO成分を含む他の窯業用原料を組み合わせた原料を主成分とした耐火物を使用した鋳造用ノズルが開示されている。
【0006】
【発明が解決しようとする課題】
通常、鋼を鋳造する際には、TDからモールドヘ溶鋼を注入するノズルとしては図1に示される分割された複数のノズルを組み合わせた分割型のものと、図2に示される単一のノズルからなる単一型のものがある。
【0007】
分割型のノズルは、タンディッシュ1の底部開口に取り付けられた上部ノズル2と、スライディングノズル3と、下部ノズル4と、モールド6内に浸漬した浸漬ノズル5を連続して組み合わせたもので、スライディングノズル3の開口部の開口度合いを調整することによってモールド6内への流量を制御するもので、優れた流量制御によって湯面が安定するため安定した鋳造が可能なほか、安全性の点でも優れており広く普及している。
【0008】
また、単一型のノズルは、タンディッシュ1の底部開口からモールド6内への流路を一本の長い浸漬ノズル8によって形成したもので、タンディッシュ1内に配置されたロングストッパー7によって、タンディッシュ1の底部開口部の開口度合いを調整し、モールド6内への流量を制御するものである。
【0009】
前記のCaOを含有させた材質を、図2に示すような単一型のノズルの内孔に適用した場合には内孔面へのアルミナ付着は確かに減少する。ところが、図1に示す分割型の一部の箇所のノズルに適用した場合においては、単一型のノズルに適用した場合と比較して、鋳片内の大型のアルミナ系介在物が多くなり、鋳片の品質向上にはさほど寄与しないことが分かった。
【0010】
本発明は、CaOを含有させた材質を単一型のみならず分割型のノズルに適用しても鋳片内の大型アルミナ系介在物の含有量を大幅に減少させるアルミキルド鋼を鋳造する方法を提供する。
【0011】
【課題を解決するための手段】
本発明は、ノズルの内孔にCaO含有耐火物を適用したノズルを使用することによって、鋳片中の50μm以上のアルミナ系大型介在物を減少させるアルミキルド鋼の連続鋳造方法であって、前記CaO含有耐火物は、MgOとCaOとCとからなり、CaOの含有量は20質量%以上60質量%以下で、かつ、Cの含有量は4質量%以上30質量%以下であり、前記ノズルは、複数のノズルに分割されている分割型ノズルであり、この分割型ノズル全体の内孔総面積に占める前記CaO含有耐火物の割合が50%以上であることを特徴とする。
【0012】
単一型のノズルを用いた鋳造方法では、ノズル内を通過する溶鋼と空気はほとんど接触しないが、分割型では、ノズルのつなぎ目から空気が流入し、とくに、SNは使用中に摺動させる必要があるので面間のシールが難しく面間から空気の侵入が起こり、ノズル内を通過する溶鋼と空気が接触することによって,CaO含有耐火物を適用してもその効果は挙がらない。
【0013】
本発明は、TDからモールドヘ溶鋼を注入するノズルのそれぞれの内孔にCaO含有耐火物を適用し、それらを組み合わせて使用して鋳片内の大型のアルミナ系介在物の含有量を調査した結果、鋳片内の大型アルミナ系介在物の含有量は、ノズルの内孔の総面積と適用した耐火物中のCaO量とに非常に強い相関性があることを見い出したことに基づく。
【0014】
アルミキルド鋼は溶鋼中にアルミニウムが溶解しており、空気と接触すると酸化されてアルミナを生成する。このようにして生成したアルミナは鋳片内に取り込まれてアルミナ系介在物となる。複数のノズルで分割されている分割型のノズルの場合、特定のノズルにCaO含有系耐火物を適用しても、アルミナがCaO含有系耐火物を適用していないノズルに付着して、そこで合体して大型化したアルミナが鋳片内に取り込まれる。
【0015】
CaOを含有する耐火物は、付着したアルミナを低融点化させる作用と共に、アルミナを吸着する作用がある。このため、CaOを含有する耐火物をTDからモールドヘ溶鋼を注入するノズルに適用することでモールドヘ流れ込むアルミナの量を減少させることができる。
【0016】
ノズルの内孔総面積の50%以上の内孔にCaOを20質量%以上含有する耐火物を適用すると、CaOを含有する耐火物が有するアルミナを吸着する作用と、CaOとアルミナが反応して生成される低融物が液相を呈するために内孔壁面が平滑になり、アルミナの付着を防止してアルミナの合体を防止する作用との相乗効果により、鋳片内のアルミナ系大型介在物の含有量が飛躍的に減少する。
【0017】
その相乗効果を発揮させるには、CaOを含有する耐火物はノズルの内孔総面積の50%以上の内孔に適用することが必要である。50%未満ではモールド内へ流れ込むアルミナの量を減少させる作用が小さく鋳片内のアルミナ系大型介在物の含有量の改善は小さい。好ましくは60%以上であり、最も好ましいのは全てのノズルの内孔面全体をCaO含有耐火物で構成することである。ただし、CaOを含有する耐火物を使用することによって溶損、摩耗等が発生して使用上問題が生じる場合はその部分については従来の耐火物にするなど使用条件に合わせて選択することが重要である。
【0018】
本発明は、ノズル全体が、上部ノズルと浸漬ノズル、または、SNと浸漬ノズル、または、上部ノズルとSNと浸漬ノズル、さらには、図1に示すように上部ノズルとSNと下部ノズルと浸漬ノズルが組み合わされているいわゆる分割型の場合でも、また、図2に示す浸漬ノズル単体からなる場合でも、CaO含有耐火物がノズル全体の内孔総面積の50%以上を占めるのであれば、何れの場合でも適用可能である。
【0019】
また、ノズル内孔の一部にCaO含有耐火物を適用しても、ノズル全体の内孔総面積の50%以上になるように適用すれば鋳片品質の大幅な改善効果が得られる。上部ノズルとSN、あるいはSNと下部ノズルが一体となったノズルを含む場合も本発明は同様に適用することができる。
【0020】
ノズルの内孔に適用する耐火物のCaO含有量は、20質量%未満ではアルミナの吸着能力とアルミナ付着防止能力が小さく鋳片内のアルミナ系大型介在物の含有量の改善の程度は小さいので、20質量%以上であることが必要である。
【0021】
鋳造片中の大きいアルミナ介在物の存在を低減する効果からいうと耐火物に含有されるCaO量の上限はないが、CaOが多くなると溶損が大きくなったり、消化しやすくなる場合があるので、使用条件に応じて適宜調整することが重要である。一般的な鋳造条件においてはCaO量は60質量%程度あれば十分である。
【0022】
好ましい耐火物の例を示すと、MgO−CaO系耐火物、MgO−CaO−C系耐火物、ZrO2−CaO系耐火物、ZrO2−CaO−C系耐火物などが挙げられる。特にMgO−CaO系耐火物、MgO−CaO−C系耐火物はアルミナの吸着能力に優れておりより好ましい。
【0023】
CaO含有耐火物は各ノズルの少なくとも溶鋼が接触する内孔面に適用されていることが重要であり、内孔面以外の部位については同一材質でも良いし、一般に使用されている耐火物をそのまま適用しても良い。
【0024】
【発明の実施の形態】
本発明を図1に示す分割ノズルに適用した実施例によって本発明を実施の形態を説明する。
【0025】
【表1】

Figure 0004249940
表1は、図1に示す分割ノズルのそれぞれのノズルに適用する材質の組成をA〜Dによって示す。同表に示す材質AとBは、本発明に係るCaO含有材質であり、材質CとDは比較のために使用したCaOを含まない従来の一般的な材質である。
【0026】
A〜Dの材質を、厚さ10mmのスリーブ状に成形・焼成・加工した耐火物成形体を作製し、ノズルに内挿してモルタルで接着して試験用のノズルとした。材質AとCを浸漬ノズルに、BとDを上部ノズルとスライディングノズル(SN)と下部ノズルに適用した。
【0027】
表2は、CaO含有耐火物を適用した各ノズルの内孔の表面積を示す。
【0028】
【表2】
Figure 0004249940
これらの試験用のノズルを上部ノズル、SN、下部ノズル、それに浸漬ノズルに組み合わせて、連続鋳造用の一連のノズル構造とし、これらの組合せにおけるノズル材質が鋳片の品質に及ぼす影響を調査し、CaO含有耐火物の適用の効果を調べた。調査はノズルの組み合わせを変えて、鍋容量250ton、TD容量45ton、鋳片の引き抜き速度1.0〜1.3m/分の鋳造条件下でアルミキルド鋼の鋳造を行い、得られた鋳片に含まれる50μm以上の大型のアルミナ系介在物の面積当たりの個数によってその効果を調べた。
【0029】
【表3】
Figure 0004249940
表3にその調査結果を示す。同表において、比較例1の組合せノズルで得られた鋳片内の大型のアルミナ系介在物の個数を100として、各例の個数を指数によって示した。したがって、指数が小さいほど大型のアルミナ系介在物の少ない品質良好な鋳片であることを示す。
【0030】
図3は、表3の結果をまとめて図表化したもので、ノズルの内孔全体に占めるCaO含有耐火物の面積割合と大型アルミナ系介在物の個数の関係を示す。同図から、ノズルの内孔全体に占めるCaO含有耐火物の面積割合が50%以上になると大幅に介在物の個数が減少し鋳片の品質が良好になっていることがわかる。そして、鋳片の品質はCaO含有耐火物の面積割合が、さらに、増加するに従って良好となり、全てのノズル内孔にCaO含有耐火物を適用することが最も好ましいことが分かる。
【0031】
次ぎに、図1に示すノズル構成において、CaO含有耐火物中のCaO含有量が鋳片の品質に及ぼす影響を調査した。
【0032】
【表4】
Figure 0004249940
表4は、表1に示すA、Bに加えて、E〜LのCaO含有耐火物の組成を示す。これらのCaO含有耐火物から、先の表1に示す材質の場合と同様に、厚さ10mmのスリーブ状に成形・焼成・加工した耐火物成形体を作製し、ノズルに内挿してモルタルで接着して試験用のノズルとした。A、E、F、G、Hを浸漬ノズルに、B、I、J、K、Lを上部ノズル、SN、下部ノズルに適用した。各ノズルの内孔の表面積は表2と同様である。
【0033】
表5にこれらのノズルを組み合わせて鋳造を行い鋳片の品質を調査した結果を示す。品質の評価方法は表3の場合と同様である。
【0034】
【表5】
Figure 0004249940
表5の結果を図4にまとめ、ノズルの内孔耐火物の平均CaO含有量と大型アルミナ系介在物の個数の関係を示した。この図に示すように、内孔耐火物中のCaOの平均含有量が20質量%以上であれば鋳片の品質が大幅に改善されることが明らかである。
【0035】
【発明の効果】
本発明によって、アルミキルド鋼の鋳造に際して、溶鋼中のアルミナをノズル内孔の壁面への吸着と、アルミナと耐火物中のCaOとの反応による低融物生成により、アルミナの合体を抑制することで鋳片中の大型アルミナの含有量を大幅に低減でき、品質不良率の低減による製造コストの低下が可能となる。
【図面の簡単な説明】
【図1】 SNが装着された複数のノズルからなる分割型ノズルの構造例を示す。
【図2】 単一型ノズルの構造例を示す。
【図3】 ノズルの内孔全体に占めるCaO含有耐火物の面積割合と大型アルミナ系介在物の個数の関係を示す。
【図4】 ノズルの内孔耐火物の平均CaO含有量と大型アルミナ系介在物の個数の関係を示す。
【符号の説明】
1 タンディッシュ
2 上部ノズル
3 スライディングノズル
4下部ノズル
5 浸漬ノズル
6 モールド
7 ロングストッパー
8 浸漬ノズル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for casting aluminum killed steel.
[0002]
[Prior art]
During the casting of aluminum killed steel, the alumina adhering to the inner surface of the casting nozzle (hereinafter referred to as the nozzle) coalesces into large inclusions, which are taken into the slab along with the molten steel flow and become defects in the slab. Reduce quality.
[0003]
Therefore, in recent years, aluminum killed steel cast as a high-grade steel such as a thin plate is a nozzle used for injecting molten steel from a tundish (hereinafter referred to as TD) into a mold in continuous casting due to stricter quality of the steel material. Much effort has been made to prevent alumina adhesion to the inner bore.
[0004]
As an example of the countermeasure, there is a method of physically preventing the adhesion of alumina by blowing argon gas into the molten steel from the inner surface of the nozzle. However, in this method, if the amount of argon gas blown is too large, bubbles are taken into the slab and become pinholes, resulting in defects. Therefore, the argon gas blowing is not necessarily a sufficient measure because the amount of gas blowing is limited.
[0005]
In addition, there is a technique in which the refractory material constituting the nozzle itself has an alumina adhesion preventing function. This is one in which a low-melting material is produced by reacting with an alumina adhering with CaO contained in a brick. For example, in Japanese Examined Patent Publication No. 61-44836, graphite and sintered calcia, electrofused calcia, A casting nozzle using a refractory mainly composed of raw materials in combination with other ceramic raw materials containing a CaO component is disclosed.
[0006]
[Problems to be solved by the invention]
Usually, when casting steel, nozzles for injecting molten steel from TD into molds are divided into a combination of a plurality of divided nozzles shown in FIG. 1 and a single nozzle shown in FIG. There is a single type.
[0007]
The split type nozzle is a continuous combination of an upper nozzle 2, a sliding nozzle 3, a lower nozzle 4 and an immersion nozzle 5 immersed in a mold 6 attached to the bottom opening of the tundish 1. The flow rate into the mold 6 is controlled by adjusting the degree of opening of the opening of the nozzle 3, and stable casting is possible because the molten metal surface is stabilized by excellent flow rate control. It is widely spread.
[0008]
The single-type nozzle is formed by a long immersion nozzle 8 that forms a flow path from the bottom opening of the tundish 1 into the mold 6, and is provided with a long stopper 7 disposed in the tundish 1. The degree of opening of the bottom opening of the tundish 1 is adjusted to control the flow rate into the mold 6.
[0009]
When the material containing CaO is applied to the inner hole of a single type nozzle as shown in FIG. 2, the adhesion of alumina to the inner hole surface is surely reduced. However, in the case of applying to the nozzles of some parts of the split mold shown in FIG. 1, compared to the case of applying to a single type nozzle, there are more large alumina inclusions in the slab, It was found that it does not contribute much to the quality improvement of slabs.
[0010]
The present invention relates to a method for casting aluminum killed steel that greatly reduces the content of large alumina inclusions in a slab even when a material containing CaO is applied not only to a single type but also to a split type nozzle. provide.
[0011]
[Means for Solving the Problems]
The present invention is a continuous casting method of aluminum killed steel in which the use of a nozzle to which a CaO-containing refractory is applied to the inner hole of the nozzle reduces the alumina-based large inclusions of 50 μm or more in the slab, The contained refractory is composed of MgO, CaO, and C. The content of CaO is 20% by mass or more and 60% by mass or less, and the content of C is 4% by mass or more and 30% by mass or less. The split type nozzle is divided into a plurality of nozzles , and the ratio of the CaO-containing refractory to the total inner hole area of the entire split type nozzle is 50% or more.
[0012]
In the casting method using a single type nozzle, the molten steel passing through the nozzle and the air hardly contact each other. However, in the divided type, air flows from the joint of the nozzle, and in particular, the SN needs to slide during use. Therefore, it is difficult to seal between the surfaces, and air enters from between the surfaces. When the molten steel passing through the nozzle comes into contact with the air, the effect is not achieved even if the CaO-containing refractory is applied.
[0013]
The present invention is a result of investigating the content of large-sized alumina inclusions in a slab by applying CaO-containing refractories to each inner hole of a nozzle for injecting molten steel from a TD into a mold and using them in combination. The content of the large alumina inclusions in the slab is based on the finding that there is a very strong correlation between the total area of the inner holes of the nozzle and the amount of CaO in the applied refractory.
[0014]
Aluminum killed steel has aluminum dissolved in molten steel and is oxidized when it comes into contact with air to produce alumina. The alumina thus produced is taken into the slab and becomes alumina inclusions. In the case of a divided type nozzle divided by a plurality of nozzles, even if a CaO-containing refractory is applied to a specific nozzle, alumina adheres to a nozzle not applied with a CaO-containing refractory, and coalesces there. As a result, the enlarged alumina is taken into the slab.
[0015]
The refractory containing CaO has an action of adsorbing alumina together with an action of lowering the melting point of the attached alumina. For this reason, the quantity of the alumina which flows into a mold can be reduced by applying the refractory containing CaO to the nozzle which inject | pours molten steel into a mold from TD.
[0016]
When a refractory containing 20% by mass or more of CaO is applied to an inner hole of 50% or more of the total inner hole area of the nozzle, the action of adsorbing alumina contained in the refractory containing CaO and the reaction of CaO and alumina Due to the synergistic effect of preventing the adhesion of alumina by preventing the adhesion of alumina and preventing the coalescence of alumina because the low melt produced exhibits a liquid phase, the inner pore wall surface becomes smooth. The content of is drastically reduced.
[0017]
In order to exert the synergistic effect, it is necessary to apply the refractory containing CaO to the inner holes of 50% or more of the total inner area of the nozzle. If it is less than 50%, the action of reducing the amount of alumina flowing into the mold is small, and the improvement of the content of alumina-based large inclusions in the slab is small. Preferably, it is 60% or more, and most preferably, the entire inner hole surface of all nozzles is made of CaO-containing refractory. However, if refractories containing CaO cause melting damage, wear, etc., causing problems in use, it is important to select those parts according to the usage conditions such as using conventional refractories. It is.
[0018]
In the present invention, the entire nozzle is composed of an upper nozzle and an immersion nozzle, an SN and an immersion nozzle, an upper nozzle and an SN and an immersion nozzle, or an upper nozzle, an SN, a lower nozzle and an immersion nozzle as shown in FIG. In the case of the so-called split type in which the slag is combined, or in the case of the single immersion nozzle shown in FIG. 2, any refractory containing CaO occupies 50% or more of the total inner hole area of the entire nozzle. Even if applicable.
[0019]
Further, even if the CaO-containing refractory is applied to a part of the nozzle inner hole, if it is applied so as to be 50% or more of the total inner hole area of the entire nozzle, a significant improvement effect of the slab quality can be obtained. The present invention can be similarly applied to a case where an upper nozzle and SN or a nozzle in which SN and a lower nozzle are integrated is included.
[0020]
When the CaO content of the refractory applied to the inner hole of the nozzle is less than 20% by mass, the adsorption capacity of alumina and the ability to prevent alumina adhesion are small, and the improvement of the content of large alumina inclusions in the slab is small. , 20% by mass or more is necessary.
[0021]
There is no upper limit of the amount of CaO contained in the refractory because of the effect of reducing the presence of large alumina inclusions in the cast piece, but as CaO increases, melting loss may increase and it may become easier to digest. It is important to adjust appropriately according to the use conditions. Under general casting conditions, a CaO amount of about 60% by mass is sufficient.
[0022]
Examples of preferable refractories include MgO—CaO refractories, MgO—CaO—C refractories, ZrO 2 —CaO refractories, ZrO 2 —CaO—C refractories, and the like. In particular, MgO—CaO-based refractories and MgO—CaO—C-based refractories are more preferable because of their excellent ability to adsorb alumina.
[0023]
It is important that the CaO-containing refractory is applied to at least the inner hole surface of each nozzle where the molten steel comes into contact. The parts other than the inner hole surface may be made of the same material, or the commonly used refractory is used as it is. It may be applied.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to an example in which the present invention is applied to the divided nozzle shown in FIG.
[0025]
[Table 1]
Figure 0004249940
Table 1 shows the composition of the material applied to each nozzle of the divided nozzle shown in FIG. Materials A and B shown in the table are CaO-containing materials according to the present invention, and materials C and D are conventional general materials not containing CaO used for comparison.
[0026]
A refractory molded body formed by molding, firing, and processing the materials A to D into a sleeve shape having a thickness of 10 mm was manufactured, inserted into a nozzle, and bonded with mortar to obtain a test nozzle. Materials A and C were applied to the immersion nozzle, and B and D were applied to the upper nozzle, sliding nozzle (SN), and lower nozzle.
[0027]
Table 2 shows the surface area of the inner hole of each nozzle to which the CaO-containing refractory is applied.
[0028]
[Table 2]
Figure 0004249940
Combining these test nozzles with the upper nozzle, SN, lower nozzle, and immersion nozzle to form a series of nozzle structures for continuous casting, investigating the effect of nozzle material in these combinations on the quality of the slab, The effect of applying the CaO-containing refractory was examined. The investigation changed the combination of nozzles and cast aluminum killed steel under the casting conditions of 250 ton pan capacity, 45 ton TD capacity, and 1.0 to 1.3 m / min. The effect was examined by the number of large alumina inclusions of 50 μm or more per area.
[0029]
[Table 3]
Figure 0004249940
Table 3 shows the survey results. In the same table, the number of large alumina inclusions in the slab obtained by the combination nozzle of Comparative Example 1 was defined as 100, and the number of each example was indicated by an index. Therefore, it shows that it is a slab with a sufficient quality with few large alumina inclusions, so that an index | exponent is small.
[0030]
FIG. 3 summarizes the results of Table 3 and shows the relationship between the area ratio of the CaO-containing refractory occupying the entire inner hole of the nozzle and the number of large alumina inclusions. From the figure, it can be seen that when the area ratio of the CaO-containing refractory in the entire inner hole of the nozzle is 50% or more, the number of inclusions is greatly reduced and the quality of the slab is improved. The quality of the slab becomes better as the area ratio of the CaO-containing refractory further increases, and it is most preferable to apply the CaO-containing refractory to all the nozzle holes.
[0031]
Next, in the nozzle configuration shown in FIG. 1, the influence of the CaO content in the CaO-containing refractory on the quality of the slab was investigated.
[0032]
[Table 4]
Figure 0004249940
Table 4 shows the composition of E to L CaO-containing refractories in addition to A and B shown in Table 1. From these CaO-containing refractories, as in the case of the materials shown in Table 1 above, a refractory molded body formed, fired and processed into a sleeve shape having a thickness of 10 mm is produced, and is inserted into a nozzle and bonded with mortar. Thus, a test nozzle was obtained. A, E, F, G, and H were applied to the immersion nozzle, and B, I, J, K, and L were applied to the upper nozzle, SN, and the lower nozzle. The surface area of the inner hole of each nozzle is the same as in Table 2.
[0033]
Table 5 shows the result of investigating the quality of the slab by casting these nozzles in combination. The quality evaluation method is the same as in Table 3.
[0034]
[Table 5]
Figure 0004249940
The results in Table 5 are summarized in FIG. 4 and show the relationship between the average CaO content of the inner-hole refractories of the nozzles and the number of large alumina inclusions. As shown in this figure, it is apparent that the quality of the slab is greatly improved if the average content of CaO in the inner-hole refractory is 20% by mass or more.
[0035]
【The invention's effect】
According to the present invention, when aluminum killed steel is cast, alumina coal in molten steel is adsorbed on the wall surface of the nozzle inner hole, and the coalescence of alumina is suppressed by low melting product formation by reaction between alumina and refractory CaO. The content of large alumina in the slab can be greatly reduced, and the production cost can be reduced by reducing the quality defect rate.
[Brief description of the drawings]
FIG. 1 shows an example of the structure of a divided nozzle composed of a plurality of nozzles equipped with SN.
FIG. 2 shows a structural example of a single type nozzle.
FIG. 3 shows the relationship between the area ratio of CaO-containing refractory to the entire inner hole of the nozzle and the number of large alumina inclusions.
FIG. 4 shows the relationship between the average CaO content of the inner hole refractory of the nozzle and the number of large alumina inclusions.
[Explanation of symbols]
1 Tundish 2 Upper nozzle 3 Sliding nozzle 4 Lower nozzle 5 Immersion nozzle 6 Mold 7 Long stopper 8 Immersion nozzle

Claims (2)

ノズルの内孔にCaO含有耐火物を適用したノズルを使用することによって、鋳片中の50μm以上のアルミナ系大型介在物を減少させるアルミキルド鋼の連続鋳造方法であって、
前記CaO含有耐火物は、MgOとCaOとCとからなり、CaOの含有量は20質量%以上60質量%以下で、かつ、Cの含有量は4質量%以上30質量%以下であり、
前記ノズルは、複数のノズルに分割されている分割型ノズルであり、この分割型ノズル全体の内孔総面積に占める前記CaO含有耐火物の割合が50%以上であるアルミキルド鋼の連続鋳造方法。
A method of continuously casting aluminum killed steel that reduces alumina-based large inclusions of 50 μm or more in a slab by using a nozzle in which a CaO-containing refractory is applied to the inner hole of the nozzle,
The CaO-containing refractory consists of MgO, CaO and C, the content of CaO is 20% by mass to 60% by mass, and the content of C is 4% by mass to 30% by mass,
The nozzle is a split type nozzle divided into a plurality of nozzles , and the ratio of the CaO-containing refractory to the total inner hole area of the split type nozzle is 50% or more.
前記CaO含有耐火物は、分割されたそれぞれのノズルの少なくとも溶鋼が接触する内孔面に適用されている請求項1に記載の連続鋳造方法。  2. The continuous casting method according to claim 1, wherein the CaO-containing refractory is applied to an inner surface of the nozzle divided at least in contact with molten steel.
JP2002128337A 2002-04-30 2002-04-30 Aluminum killed steel casting method Expired - Fee Related JP4249940B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002128337A JP4249940B2 (en) 2002-04-30 2002-04-30 Aluminum killed steel casting method
DE60326948T DE60326948D1 (en) 2002-04-30 2003-04-30 CONTINUOUS METHOD OF ALUMINUM-TREATED STEEL
CNB038096293A CN1305602C (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
KR1020047017476A KR100835398B1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
BRPI0309646-7A BR0309646B1 (en) 2002-04-30 2003-04-30 aluminum casting continuous casting nozzle unit.
PCT/JP2003/005558 WO2003092929A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
AU2003235985A AU2003235985A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
EP03721000A EP1504831B1 (en) 2002-04-30 2003-04-30 method for continuous casting of aluminum killed steel
US10/513,186 US20050200057A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
MXPA04010796A MXPA04010796A (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128337A JP4249940B2 (en) 2002-04-30 2002-04-30 Aluminum killed steel casting method

Publications (2)

Publication Number Publication Date
JP2003320444A JP2003320444A (en) 2003-11-11
JP4249940B2 true JP4249940B2 (en) 2009-04-08

Family

ID=29397265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128337A Expired - Fee Related JP4249940B2 (en) 2002-04-30 2002-04-30 Aluminum killed steel casting method

Country Status (10)

Country Link
US (1) US20050200057A1 (en)
EP (1) EP1504831B1 (en)
JP (1) JP4249940B2 (en)
KR (1) KR100835398B1 (en)
CN (1) CN1305602C (en)
AU (1) AU2003235985A1 (en)
BR (1) BR0309646B1 (en)
DE (1) DE60326948D1 (en)
MX (1) MXPA04010796A (en)
WO (1) WO2003092929A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0413794B1 (en) * 2003-08-22 2012-01-24 steel nozzle for continuous casting.
US7591976B2 (en) * 2004-03-15 2009-09-22 Krosakiharima Corporation Nozzle for use in continuous casting
JP4926819B2 (en) * 2006-05-26 2012-05-09 新日本製鐵株式会社 Steel continuous casting method
BRPI0916819B1 (en) 2008-07-28 2018-03-06 Nippon Steel & Sumitomo Metal Corporation REFRACTORY MATERIAL FOR AN INTERMEDIATE LAYER OF A CONTINUOUS LANGUAGE NOZZLE AND A CONTINUOUS LANGUAGE NOZZLE
KR101288028B1 (en) * 2010-05-07 2013-07-19 구로사키 하리마 코포레이션 Refractory material, continuous casting nozzle using the refractory material production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
JP6228524B2 (en) * 2013-09-27 2017-11-08 日新製鋼株式会社 Continuous casting method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568007A (en) * 1984-01-23 1986-02-04 Vesuvius Crucible Company Refractory shroud for continuous casting
JP2542585B2 (en) * 1986-08-08 1996-10-09 東芝セラミツクス株式会社 Immersion nozzle for continuous casting
US5151201A (en) * 1988-07-01 1992-09-29 Vesuvius Crucible Company Prevention of erosion and alumina build-up in casting elements
US5100035A (en) * 1989-05-01 1992-03-31 Ferro Corporation Permeable MgO nozzle
JP2897893B2 (en) * 1990-08-09 1999-05-31 明智セラミックス株式会社 Nozzle for continuous casting
JPH04158963A (en) * 1990-10-19 1992-06-02 Nippon Steel Corp Nozzle for continuous casting
JPH0780709B2 (en) * 1991-07-29 1995-08-30 東京窯業株式会社 Refractory material
JPH05154627A (en) * 1991-08-19 1993-06-22 Shinagawa Refract Co Ltd Refractory composition for preventing stickness and deposition of non-metallic inclusions
JP2706201B2 (en) 1992-04-13 1998-01-28 黒崎窯業株式会社 Nozzle bore for continuous casting
JPH07214259A (en) * 1994-01-25 1995-08-15 Akechi Ceramics Kk Nozzle for continuous casting of molten steel
JPH0839214A (en) * 1994-07-30 1996-02-13 Kurosaki Refract Co Ltd Nozzle for continuous casting
JP2003040672A (en) * 2001-05-21 2003-02-13 Shinagawa Refract Co Ltd Refractory used for fireproof member for continuous steel casting

Also Published As

Publication number Publication date
US20050200057A1 (en) 2005-09-15
CN1305602C (en) 2007-03-21
EP1504831A1 (en) 2005-02-09
KR20050006214A (en) 2005-01-15
BR0309646A (en) 2005-03-01
AU2003235985A1 (en) 2003-11-17
MXPA04010796A (en) 2005-07-05
EP1504831B1 (en) 2009-04-01
WO2003092929A1 (en) 2003-11-13
CN1649684A (en) 2005-08-03
BR0309646B1 (en) 2012-11-27
KR100835398B1 (en) 2008-06-04
EP1504831A4 (en) 2005-08-17
DE60326948D1 (en) 2009-05-14
JP2003320444A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
JP4249940B2 (en) Aluminum killed steel casting method
EP1671721B1 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the immersion nozzle
JP4864423B2 (en) Immersion nozzle for continuous casting
JP4240916B2 (en) Tundish upper nozzle and continuous casting method
GB2081702A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP4331924B2 (en) Continuous casting method for molten steel for sheet metal
JP2004074242A (en) Refractory for continuous casting and continuous casting method using this refractory
JP4321292B2 (en) Immersion nozzle for continuous casting of steel
JP4081453B2 (en) Immersion nozzle for continuous casting
JP4284206B2 (en) Immersion nozzle for continuous casting of steel
GB2056430A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP4315847B2 (en) Dipping nozzle for continuous casting with good adhesion
JP3328803B2 (en) Nozzle for continuous casting of steel
JP4493612B2 (en) Continuous casting method of aluminum killed steel
KR100361807B1 (en) gas input type porosity refractories
KR100436211B1 (en) Nozzle & Sliding Plate for cast of molten steel
KR100307064B1 (en) gas input type porosity refractory composile
JPH11188463A (en) Immersion nozzle for continuous casting
JPH08155601A (en) Nozzle for continuous casting
KR100986054B1 (en) Upper nozzle for tundish
JP2004050288A (en) Nozzle for continuous casting
JPS63303665A (en) Submerged nozzle for continuous casting
KR20060028217A (en) Submerged entry nozzle
JP2004243363A (en) Immersion nozzle for continuous casting and tundish for continuous casting
JP2006068805A (en) Hardly adhesive continuous casting nozzle containing zirconia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees