JP2004074242A - Refractory for continuous casting and continuous casting method using this refractory - Google Patents

Refractory for continuous casting and continuous casting method using this refractory Download PDF

Info

Publication number
JP2004074242A
JP2004074242A JP2002239943A JP2002239943A JP2004074242A JP 2004074242 A JP2004074242 A JP 2004074242A JP 2002239943 A JP2002239943 A JP 2002239943A JP 2002239943 A JP2002239943 A JP 2002239943A JP 2004074242 A JP2004074242 A JP 2004074242A
Authority
JP
Japan
Prior art keywords
refractory
alumina
mgo
cao
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002239943A
Other languages
Japanese (ja)
Inventor
Koji Ogata
緒方 浩二
Donald Bruce Hoover
フーバー ドナルド ブルース
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
LWB Refractories Co
Original Assignee
Krosaki Harima Corp
LWB Refractories Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp, LWB Refractories Co filed Critical Krosaki Harima Corp
Priority to JP2002239943A priority Critical patent/JP2004074242A/en
Publication of JP2004074242A publication Critical patent/JP2004074242A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractory for continuous casting with which even in the case of being much suspended amount of alumina during casting for long time or in molten steel when the aluminum-killed steel is cast, a sufficient alumina-deposition preventive effect can be obtained. <P>SOLUTION: In the refractory for continuous casting, in which CaO-MgO base refractory containing CaO as a mineral phase is deposited in at least a part of the surface contacting with molten steel and integrally formed with a main body part, in the main body part, MgO-C base material having 0 to 15 mass% the total content of Al<SB>2</SB>O<SB>3</SB>and SiO<SB>2</SB>is applied. In this way, the alumina-deposition preventive function can be held for long time by restraining the reaction of CaO component and main body part in the inner layer part or the outer layer part material with Al<SB>2</SB>O<SB>3</SB>and SiO<SB>2</SB>used for strength-up and improving spalling-resistance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶鋼の連続鋳造に際してアルミナの付着を防止する耐火物および連続鋳造方法に関する。
【0002】
【従来の技術】
近年、とくに薄板等の高級鋼として鋳造されるアルミニウムで脱酸された鋼、いわゆるアルミキルド鋼は要求品質の厳格化に伴い、連続鋳造においてタンディッシュからモールドに注入する際に使用するノズルのアルミナ付着を防止することに多くの努力が払われている。ノズルに付着したアルミナは合体して大型の介在物になり、それが溶鋼流と共に鋳片内に取り込まれて鋳片の欠陥となり品質を低下させる。
【0003】
その対策の一例として、ノズルの内面からアルゴンガスを溶鋼中に吹き込んで物理的にアルミナの付着を防止する手法がある。しかしながら、この手法は、アルゴンガスの吹き込み量が多すぎると気泡が鋳片内に取り込まれて鋳片中のピンホールとなり欠陥となる。 従って、この手法は、鋳片中の欠陥の発生を防止するために、ガスの吹き込み量を制限しなければならず、十分な対策とはなり得ない。
【0004】
また、その対策の他の例として、連続鋳造において使用されるノズル等を構成する連続鋳造用耐火材にCaOを含有させ、付着したアルミナと耐火材中のCaOを反応させて低融物を生成させることによって、耐火材にアルミナの付着を防止するアルミナ付着防止機能を持たせる手法もある。 例えば、特開昭61−53150号公報には、湯道表層部を20〜97質量%の石灰質および3〜80%の炭素質から形成し、外層を50〜95質量%のアルミナ質と、5〜50%の炭素質からなる溶鋼鋳造用ノズルが開示されている。 しかしながら、このようなノズルは、長時間鋳造とか、溶鋼中に懸濁したアルミナの量が多い場合には、十分なアルミナ付着防止効果が得られないと言う問題がある。
【0005】
【発明が解決しようとする課題】
本発明の課題は、とくに、アルミキルド鋼を鋳造する際に長時間の鋳造や溶鋼中のアルミナの懸濁量が多い場合においても、充分なアルミナ付着防止効果が得られる連続鋳造用耐火物を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、一体成形により製造された溶綱鋳造用ノズルにアルミナが付着する原因について検討を行った結果、使用時での石灰質の内層中に溶鋼からのアルミナの付着だけではなく、外層のアルミナ−炭素質耐火物からもアルミナが拡散していることを究明し、長時間の鋳造や溶鋼中のアルミナの懸濁量が多い場合には内層中のアルミナ吸収能力が限界に達するためアルミナの付着が発生するという知見に基づくものである。
【0007】
さらに、前記の特開昭61−53150号公報に記載の実施例10に示されるように、外層材質にシリカを含有する場合には、シリカが内層に拡散して、CaOと化合物を形成するために、CaOによるアルミナの吸収能力は低下するという知見も得た。
【0008】
本願発明は、このようなCaOによるアルミナの付着防止能力の低下を防ぎ、ノズルの外層側の材質が内層側に拡散する量を少なくするためには、この拡散するアルミナやシリカ成分の含有量を制限する必要があるとの認識の下で完成した。
【0009】
すなわち、本発明は、鉱物相としてのCaOを含むCaO−MgO系耐火物を溶鋼と接触する面の少なくとも一部に配置して、本体部と共に一体成形した連続鋳造用耐火物であって、本体部にA1とSiOの合計の含有量が15質量%以下のMgO−C系の材質を適用したことを特徴とする。
【0010】
CaO−MgO系耐火物を、ノズル本体(但し、浸漬ノズルの場合はパウダーライン部は除く)にまで適用すると、消化した場合の強度の低下が、ノズル全体に悪影響を及ぼす。 そのため、本発明において、CaO−MgO系耐火物が溶鋼と接触する面にのみに適用することは合理的な材質配置である。
【0011】
溶鋼と接触する面に鉱物相としてのCaOを含むCaO−MgO系耐火物を適用した場合には、本体材質としてはMgO−C系の材質を適用することが最も好ましい。 MgOはCaO−MgO系耐火物中に拡散しないので、CaO−MgO系耐火物においては、MgOが存在していてもCaOのアルミナ吸収能力を妨げることがない。
【0012】
また、MgO−C材質中のカーボンは、耐火物に耐スポール性を付与するのに不可欠である。本体のMgO−C材質におけるマグネシア骨材としては、電融マグネシア、焼結マグネシアなどの合成あるいは天然のものを75〜95質量%、また、カーボン材料は、人造・天然黒鉛など5〜25質量%の範囲内で、従来から使用されている公知のものが適用できる。
【0013】
MgO−C材質中で、強度と耐スポール性の改善のためにアルミナや溶融シリカをマグネシアやカーボン骨材の一部と置き換えて使用すると良い。その使用量はA1+SiOの合量として15質量%以下とする必要がある。15質量%を越えると本体材質からCaO−MgO系耐火物中に拡散されたAlやSiOによって溶鋼中のアルミナを吸収する能力が大幅に低下するためである。A1とSiOの構成比率は特に制限はなく、いずれか一方を15質量%とすることも可能である。 MgO−C材質に強度改善のために、金属のAl、Si、Al−Si合金などを前記酸化物に替えて添加する場合も、酸化物に変化した場合を想定してAl+SiOの合量として15質量%以下とする。
【0014】
鉱物相としてのCaOを含むCaO−MgO系耐火物の例としては、ドロマイト質、ドロマイト・カーボン質、CaO・ドロマイト質、CaO・ドロマイト・カーボン質、マグネシア・ドロマイト質、マグネシア・ドロマイト・カーボン質などが挙げられる。
【0015】
この鉱物相としてのCaOを含むCaO−MgO系耐火物は、溶鋼と接触する面の全てに配設することが好ましいが一部の部位のみに配設しても構わない。とくに、アルミナの付着が多い部位に適用することが重要である。厚みについては特に制限はないが、薄すぎると溶鋼中のアルミナを吸収する能力が不足するので好ましくは3mm以上、より好ましくは5mm以上とする。
【0016】
本発明は、浸漬ノズル、上ノズル、下部ノズル、スライディングノズル、ロングノズル、ストツパーヘッド、ロングストッパー等の連続鋳造用耐火物に適用可能であり、とくに、アルミキルド鋼の鋳造に使用すると、アルミナの付着が減少し鋳片の品質が向上する。
【0017】
また、本発明は、アルミキルド鋼のみならず、アルミニウムと他の脱酸剤を併用したアルミ・シリコンキルド鋼やチタン・アルミキルド鋼の鋳造に際しても好適である。
【0018】
【発明の実施の形態】
本発明の実施の形態を実施例によって説明する。
【0019】
実施例 I
この実施例は、本発明を図1に示す本体部1とパウダーライン部2と内孔体3とからなる浸漬ノズル10に適用した例を示す。
【0020】
表1は、浸漬ノズルの内孔体の材質AとしてCaO−MgO系を、本体にMgO−C系材質を適用した場合の本体材質中のA1とSiOの量の影響を実施例1〜5と比較例1〜3に示す配合物Aとして調査結果を示す。
【0021】
【表1】

Figure 2004074242
これらの配合物Aを成形圧1000kg/cmでCIPによって成形し、最高1000℃で還元焼成して、図1に示す浸漬ノズル10を作製した。
【0022】
本体1の配合物の構成割合は、表1に示す通りである。パウダーライン部2は、黒鉛10質量%とジルコニア90質量%とからなるZrO−C質の配合物にフェノールレジンを適量添加して配合物を作製したものである。 内孔体3の配合物Aは、CaO−MgOクリンカーの粒径1〜0.5mmの粒子を40質量%と、粒径0.2〜0.5mm未満の粒子を15質量%と、0.2mm未満の粒子を20質量%と、黒鉛の粒径0.5mm以下の粒子を25質量%とからなる配合物にフェノールレジンを適量添加した作製したものである。 内孔部3を形成するCaO−MgO系材質の厚さは、この実施例では5mmとしたが、3〜15mm程度あればよい。
【0023】
図1に示す浸漬ノズルを、アルミキルド鋼の鋳造に適用して、内孔体3の内面へのアルミナ付着速度を算出し、実施例1の付着速度を100とした指数で表1に示す。数宇が大きいほど付着速度が大きく好ましくない。鋳造条件は、鍋容量が250ton、TD容量が45ton、鋳片の引き抜き速度は1.0〜1.3m/分、鋳造時間は450〜500分であった。
【0024】
この結果から、AlとSiOの合量は少ないほど付着が少なく、本体用MgO−C材質中のA1とSiOの合量は15質量%以下であることが好ましいことが判る。 その合量が15質量%を越えると付着速度が急激に増加し、鋳片の品質上好ましくない。
【0025】
実施例 II
この実施例は、本発明を図2に示す本体1の内孔体3からなる上ノズル20に適用した例を示す。
【0026】
表2は、CaO−MgO系内孔体3の材質に対し、本体1としてMgO−C系材質を適用した場合の本体材質中のAlとSiOの影響をアルミナおよびシリカの量を変化させて調査したものである。
【0027】
表2に示す内孔体の配合Bは、実施例6〜10と、比較例4〜6の何れの例も、CaO−MgOクリンカーの粒径3〜1mmを35質量%、1〜0.2mmを25質量%、0.2mm未満を40質量%、フェノールレジンを適量添加したものである。また、本体の配合物は、同表の本体配合割合に示す組成を有する。
【0028】
【表2】
Figure 2004074242
図2に示す上ノズル20を、表2に示す内孔体の配合Bと本体配合物を成形圧1000kg/cmでCIPにて成形し、最高1000℃で還元焼成して上ノズルを作製した。内孔体3のCaO−MgO系材質は、本例では厚さ5mmとしたが、3〜15mm程度あればよい。
【0029】
この上ノズル20を、アルミキルド鋼の鋳造に適用して、内孔体材質へのアルミナ付着速度を算出し、実施例6の付着速度を100とした指数を表2に示す。数字が大きいほど付着速度が大きく好ましくない。 鋳造条件は、表1に示す実施例Iの場合と同様である。
【0030】
この例の場合も、実施例1の表1に示す結果と同様に、AlとSiOの合量は少ないほど付着が少ない。とくに、その合量が15質量%までは付着速度が極めて少なく、15質量%を超えると急激に増加し、鋳片の品質上好ましくない。従って、本体用MgO−C材質中のAlとSiOの合量は15質量%以下が良いことがわかる。
【0031】
【発明の効果】
本発明によれば、MgO−C系材質の本体部分に含まれるAlやSiO成分量を、強度アップや耐スポール性改善のために必要な最低限に制限することで、CaO−MgO系耐火物によるアルミナ付着防止効果を長時間継続して維持することができ、これによって、長期にわたって高品質の鋼材を得ることが可能となった。
【図面の簡単な説明】
【図1】本発明を適用した浸漬ノズルの構成図を示す。
【図2】本発明を適用した上ノズルの構成図を示す。
【符号の説明】
1   本体部分
2   パウダーライン部分
3   内孔体部分
10  浸漬ノズル
20  上ノズル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refractory and a continuous casting method for preventing adhesion of alumina during continuous casting of molten steel.
[0002]
[Prior art]
In recent years, aluminum deoxidized steel, so-called aluminum-killed steel, which is cast as a high-grade steel such as a thin plate, is required to adhere to stricter quality requirements. Much effort has been put into preventing this. Alumina adhering to the nozzle coalesces to form large inclusions, which are taken into the slab together with the molten steel flow and become defects in the slab, thereby deteriorating the quality.
[0003]
As an example of the countermeasure, there is a method of physically preventing adhesion of alumina by blowing argon gas into molten steel from the inner surface of the nozzle. However, in this method, if the amount of argon gas blown is too large, bubbles are taken into the slab and become pinholes in the slab to cause defects. Therefore, this method must restrict the amount of gas blown in order to prevent the occurrence of defects in the slab, and cannot be a sufficient measure.
[0004]
As another example of the countermeasure, CaO is contained in a refractory material for continuous casting constituting a nozzle or the like used in continuous casting, and a low melt is produced by reacting the adhered alumina with CaO in the refractory material. There is also a method in which the refractory material has an alumina adhesion preventing function for preventing the adhesion of alumina to the refractory material. For example, Japanese Patent Application Laid-Open No. 61-53150 discloses that the surface layer of a runner is formed from 20 to 97% by mass of calcareous material and 3 to 80% of carbonaceous material, and the outer layer is formed of 50 to 95% by mass of alumina material and 5 to 95% by mass. Nozzles for casting molten steel of ~ 50% carbonaceous are disclosed. However, such a nozzle has a problem that a sufficient effect of preventing adhesion of alumina cannot be obtained when casting for a long time or when the amount of alumina suspended in molten steel is large.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a refractory for continuous casting, which can provide a sufficient effect of preventing alumina from being adhered, even when casting aluminum killed steel for a long time or when the amount of suspended alumina in molten steel is large. Is to do.
[0006]
[Means for Solving the Problems]
The present invention, as a result of examining the cause of the adhesion of alumina to the molten steel casting nozzle manufactured by integral molding, not only the adhesion of alumina from the molten steel in the calcareous inner layer during use, but also the alumina of the outer layer -Investigate that alumina is diffused from carbonaceous refractories, and when casting for a long time or when the amount of alumina suspended in molten steel is large, the alumina absorption capacity in the inner layer reaches the limit, and alumina adheres. This is based on the finding that occurs.
[0007]
Further, as shown in Example 10 of JP-A-61-53150, when silica is contained in the outer layer material, the silica diffuses into the inner layer to form a compound with CaO. In addition, it was also found that the ability of CaO to absorb alumina was reduced.
[0008]
In order to prevent such a decrease in the ability of the alumina to prevent adhesion of alumina due to CaO and to reduce the amount of the material on the outer layer side of the nozzle to be diffused to the inner layer side, the content of the diffused alumina and silica components is reduced. It was completed with the recognition that it needed to be restricted.
[0009]
That is, the present invention is a refractory for continuous casting, in which a CaO-MgO-based refractory containing CaO as a mineral phase is disposed on at least a part of a surface in contact with molten steel, and is integrally formed with a main body. the total amount of A1 2 O 3 and SiO 2 is equal to or applying the material of 15 wt% or less of MgO-C system parts.
[0010]
If the CaO-MgO-based refractory is applied to the nozzle body (except for the powder line portion in the case of the immersion nozzle), a decrease in strength when digested adversely affects the entire nozzle. Therefore, in the present invention, it is a reasonable material arrangement to apply only to the surface where the CaO-MgO-based refractory comes into contact with molten steel.
[0011]
When a CaO-MgO-based refractory containing CaO as a mineral phase is applied to the surface in contact with the molten steel, it is most preferable to apply an MgO-C-based material as the main body material. Since MgO does not diffuse into the CaO-MgO-based refractory, the presence of MgO in the CaO-MgO-based refractory does not hinder the ability of CaO to absorb alumina.
[0012]
Further, carbon in the MgO-C material is indispensable for imparting spall resistance to the refractory. As the magnesia aggregate in the MgO-C material of the main body, 75 to 95% by mass of synthetic or natural material such as electrofused magnesia and sintered magnesia, and 5 to 25% by mass of carbon material such as artificial or natural graphite Within the range, known ones conventionally used can be applied.
[0013]
In the MgO-C material, alumina or fused silica is preferably used in place of magnesia or a part of carbon aggregate in order to improve strength and spall resistance. It is necessary that the used amount be 15% by mass or less as a total amount of A1 2 O 3 + SiO 2 . It exceeds 15 wt%, the capacity to absorb alumina in the molten steel by Al 2 O 3 or SiO 2 which is diffused from the body material into CaO-MgO based refractory is to significantly reduced. A1 2 O 3 and SiO 2 in composition ratio is not particularly limited, it is also possible to either a 15 wt%. In order to improve the strength of the MgO-C material, Al 2 O 3 + SiO 2 may be added in the case where Al, Si, an Al-Si alloy, or the like is added instead of the oxide in order to improve the strength. To 15% by mass or less.
[0014]
Examples of CaO-MgO refractories containing CaO as a mineral phase include dolomite, dolomite carbon, CaO dolomite, CaO dolomite carbon, magnesia dolomite, magnesia dolomite carbon, and the like. Is mentioned.
[0015]
The CaO-MgO-based refractory containing CaO as a mineral phase is preferably disposed on all surfaces in contact with the molten steel, but may be disposed only on a part of the surfaces. In particular, it is important to apply it to a portion where alumina adheres frequently. The thickness is not particularly limited, but if it is too thin, the ability to absorb alumina in the molten steel is insufficient, so it is preferably at least 3 mm, more preferably at least 5 mm.
[0016]
The present invention is applicable to refractories for continuous casting such as immersion nozzles, upper nozzles, lower nozzles, sliding nozzles, long nozzles, stopper heads, long stoppers and the like. And the quality of the slab is improved.
[0017]
Further, the present invention is suitable for casting not only aluminum-killed steel but also aluminum-silicon-killed steel and titanium-aluminum-killed steel using aluminum in combination with another deoxidizing agent.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to examples.
[0019]
Example I
This embodiment shows an example in which the present invention is applied to an immersion nozzle 10 including a main body 1, a powder line 2, and an inner hole 3 shown in FIG.
[0020]
Table 1, carried out CaO-MgO-based as the material A of the inner bore of the immersion nozzle, the effect of A1 2 O 3 and SiO 2 in an amount in the body material of the application of the MgO-C based material to the main body case Investigation results are shown as Formulations A shown in Nos. 1 to 5 and Comparative Examples 1 to 3.
[0021]
[Table 1]
Figure 2004074242
These formulations A were molded by CIP at a molding pressure of 1000 kg / cm 2 , and reduced and fired at a maximum of 1000 ° C. to produce the immersion nozzle 10 shown in FIG.
[0022]
The composition ratio of the composition of the main body 1 is as shown in Table 1. The powder line portion 2 was prepared by adding an appropriate amount of phenolic resin to a ZrO 2 -C-based compound composed of 10% by mass of graphite and 90% by mass of zirconia. In the composition A of the inner pore body 3, 40% by mass of particles having a particle size of 1 to 0.5 mm and 15% by mass of particles having a particle size of less than 0.2 to 0.5 mm were obtained. It was prepared by adding an appropriate amount of phenolic resin to a blend of 20% by mass of particles of less than 2 mm and 25% by mass of particles of graphite having a particle size of 0.5 mm or less. The thickness of the CaO-MgO-based material forming the inner hole 3 is 5 mm in this embodiment, but may be about 3 to 15 mm.
[0023]
The immersion nozzle shown in FIG. 1 was applied to the casting of aluminum-killed steel, and the alumina deposition rate on the inner surface of the inner hole body 3 was calculated. The larger the number, the higher the adhesion speed, which is not preferable. The casting conditions were a pot capacity of 250 tons, a TD capacity of 45 tons, a casting speed of 1.0 to 1.3 m / min, and a casting time of 450 to 500 minutes.
[0024]
This result, Al 2 O 3 and the total amount of SiO 2 is less deposited as small, it is preferably A1 2 O 3 and the total amount of SiO 2 in the MgO-C material for the body is less than 15 wt% I understand. If the total amount exceeds 15% by mass, the deposition rate sharply increases, which is not preferable in terms of the quality of the slab.
[0025]
Example II
This embodiment shows an example in which the present invention is applied to an upper nozzle 20 including an inner hole 3 of a main body 1 shown in FIG.
[0026]
Table 2 shows the effect of Al 2 O 3 and SiO 2 in the body material when the MgO—C material is used as the body 1 with respect to the material of the CaO—MgO inner bore 3, and the amounts of alumina and silica. It was changed and investigated.
[0027]
As for the composition B of the inner body shown in Table 2, in Examples 6 to 10 and Comparative Examples 4 to 6, the particle diameter of CaO-MgO clinker was 3 to 1 mm at 35% by mass and 1 to 0.2 mm. , 25% by mass, 40% by mass less than 0.2 mm, and an appropriate amount of phenol resin. The composition of the main body has a composition shown in the main body mixing ratio in the same table.
[0028]
[Table 2]
Figure 2004074242
The upper nozzle 20 shown in FIG. 2 was formed by molding the composition B of the inner body shown in Table 2 and the body composition by CIP at a molding pressure of 1000 kg / cm 2 , and reducing and firing at a maximum of 1000 ° C. to produce an upper nozzle. . The CaO—MgO-based material of the inner hole body 3 is 5 mm in thickness in this example, but may be about 3 to 15 mm.
[0029]
The upper nozzle 20 was applied to the casting of aluminum-killed steel, and the alumina deposition rate on the material of the inner hole body was calculated. The larger the number, the higher the adhesion speed, which is not preferable. The casting conditions were the same as in Example I shown in Table 1.
[0030]
Also in the case of this example, similar to the results shown in Table 1 of Example 1, the smaller the total amount of Al 2 O 3 and SiO 2 , the less the adhesion. In particular, when the total amount is up to 15% by mass, the adhesion speed is extremely low, and when it exceeds 15% by mass, the adhesion speed is sharply increased, which is not preferable in terms of the quality of the slab. Accordingly, it is understood that the total amount of Al 2 O 3 and SiO 2 in the MgO—C material for the main body is preferably 15% by mass or less.
[0031]
【The invention's effect】
According to the present invention, the amount of Al 2 O 3 and SiO 2 components contained in the main body of the MgO—C-based material is restricted to the minimum necessary for increasing the strength and improving the spall resistance. The effect of preventing the adhesion of alumina by the MgO-based refractory can be continuously maintained for a long time, thereby making it possible to obtain a high-quality steel material for a long time.
[Brief description of the drawings]
FIG. 1 shows a configuration diagram of an immersion nozzle to which the present invention is applied.
FIG. 2 shows a configuration diagram of an upper nozzle to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main body part 2 Powder line part 3 Inner body part 10 Immersion nozzle 20 Upper nozzle

Claims (2)

鉱物相としてのCaOを含むCaO−MgO系耐火物を溶鋼と接触する面の少なくとも一部に配置して、本体部と共に一体成形した連続鋳造用耐火物において、
本体部にA1とSiOの合計の含有量が0〜15質量%のMgO−C系材質を適用した連続鋳造用耐火物。
A CaO-MgO-based refractory containing CaO as a mineral phase is disposed on at least a part of a surface in contact with molten steel, and in a refractory for continuous casting integrally formed with a main body,
A1 2 O 3 and continuous casting refractories content was applied MgO-C based material of 0-15 wt% of the total of SiO 2 to the main body portion.
請求項1に記載の連続鋳造用耐火物をアルミキルド鋼の鋳造に使用する連続鋳造方法。A continuous casting method using the refractory for continuous casting according to claim 1 for casting aluminum killed steel.
JP2002239943A 2002-08-20 2002-08-20 Refractory for continuous casting and continuous casting method using this refractory Pending JP2004074242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239943A JP2004074242A (en) 2002-08-20 2002-08-20 Refractory for continuous casting and continuous casting method using this refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239943A JP2004074242A (en) 2002-08-20 2002-08-20 Refractory for continuous casting and continuous casting method using this refractory

Publications (1)

Publication Number Publication Date
JP2004074242A true JP2004074242A (en) 2004-03-11

Family

ID=32022869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239943A Pending JP2004074242A (en) 2002-08-20 2002-08-20 Refractory for continuous casting and continuous casting method using this refractory

Country Status (1)

Country Link
JP (1) JP2004074242A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239756A (en) * 2005-03-04 2006-09-14 Kurosaki Harima Corp Continuous casting nozzle and continuous casting method
JP2006239757A (en) * 2005-03-04 2006-09-14 Kurosaki Harima Corp Continuous casting nozzle
JP2007326111A (en) * 2006-06-06 2007-12-20 Nippon Steel Corp Immersion nozzle and continuous casting method
EP2033966A2 (en) 2007-09-05 2009-03-11 Shin-Etsu Chemical Co., Ltd. Movel photoacid generators, resist compositons, and patterning processes
US7598016B2 (en) 2007-03-29 2009-10-06 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
WO2019102634A1 (en) * 2017-11-24 2019-05-31 明智セラミックス株式会社 Nozzle for continuous casting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239756A (en) * 2005-03-04 2006-09-14 Kurosaki Harima Corp Continuous casting nozzle and continuous casting method
JP2006239757A (en) * 2005-03-04 2006-09-14 Kurosaki Harima Corp Continuous casting nozzle
JP4589151B2 (en) * 2005-03-04 2010-12-01 黒崎播磨株式会社 Nozzle for continuous casting and continuous casting method
JP4629461B2 (en) * 2005-03-04 2011-02-09 黒崎播磨株式会社 Continuous casting nozzle
JP2007326111A (en) * 2006-06-06 2007-12-20 Nippon Steel Corp Immersion nozzle and continuous casting method
JP4734180B2 (en) * 2006-06-06 2011-07-27 新日本製鐵株式会社 Continuous casting method
US7598016B2 (en) 2007-03-29 2009-10-06 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
EP2033966A2 (en) 2007-09-05 2009-03-11 Shin-Etsu Chemical Co., Ltd. Movel photoacid generators, resist compositons, and patterning processes
WO2019102634A1 (en) * 2017-11-24 2019-05-31 明智セラミックス株式会社 Nozzle for continuous casting
JP2019093424A (en) * 2017-11-24 2019-06-20 明智セラミックス株式会社 Nozzle for continuous casting

Similar Documents

Publication Publication Date Title
JPH02207951A (en) Nozzle for continuous casting
EP1736258A1 (en) Nozzle for use in continuous casting
EP1671721B1 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the immersion nozzle
AU2010320042B2 (en) Refractory material, continuous casting nozzle using the refractory material, production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
JPWO2003086684A1 (en) Joining structure of refractory sleeve for nozzle inner hole for continuous casting
JP2004074242A (en) Refractory for continuous casting and continuous casting method using this refractory
JPH05200508A (en) Nozzle for continuous casting of molten steel
JP4431111B2 (en) Continuous casting nozzle
JP4331924B2 (en) Continuous casting method for molten steel for sheet metal
WO2003092929A1 (en) Nozzle for continuous casting of aluminum killed steel and continuous casting method
JP4118058B2 (en) Immersion nozzle for casting
JPH02180753A (en) Production of immersion nozzle for continuous casting
JP4960574B2 (en) Refractory used for continuous casting nozzles to prevent alumina adhesion
JP3328803B2 (en) Nozzle for continuous casting of steel
EP1097763B1 (en) Continuous casting nozzle
JP4437101B2 (en) Immersion nozzle for continuous casting
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JP2000094099A (en) Nozzle for continuous casting
JPH0732103A (en) Nozzle for casting molten metal
JP3563918B2 (en) Nozzle for continuous casting of steel
JP2006068805A (en) Hardly adhesive continuous casting nozzle containing zirconia
JP2002346733A (en) Sliding nozzle plate for continuous casting
JPH02172862A (en) Production of immersion nozzle for continuous casting
JP2002035902A (en) Refractory for aluminum anticlogging continuous casting
JP2006239757A (en) Continuous casting nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071207