JP4960574B2 - Refractory used for continuous casting nozzles to prevent alumina adhesion - Google Patents

Refractory used for continuous casting nozzles to prevent alumina adhesion Download PDF

Info

Publication number
JP4960574B2
JP4960574B2 JP2003117580A JP2003117580A JP4960574B2 JP 4960574 B2 JP4960574 B2 JP 4960574B2 JP 2003117580 A JP2003117580 A JP 2003117580A JP 2003117580 A JP2003117580 A JP 2003117580A JP 4960574 B2 JP4960574 B2 JP 4960574B2
Authority
JP
Japan
Prior art keywords
clinker
graphite
cao
alumina
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003117580A
Other languages
Japanese (ja)
Other versions
JP2004323265A (en
Inventor
浩二 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2003117580A priority Critical patent/JP4960574B2/en
Publication of JP2004323265A publication Critical patent/JP2004323265A/en
Application granted granted Critical
Publication of JP4960574B2 publication Critical patent/JP4960574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶鋼の鋳造に際して使用するストッパー、ロングストッパーを含むスライディングノズル、上ノズル、下ノズル、中間ノズル、浸漬ノズル等の連続鋳造用ノズルに用いられるアルミナ付着を防止する耐火物に関する。
【0002】
【従来の技術】
近年、とくに薄板等の高級鋼として鋳造されるアルミニウムで脱酸された鋼、いわゆるアルミキルド鋼の鋼材品質の厳格化に伴い、連続鋳造においてタンディッシュからモールドに注入するために使用されるノズルへのアルミナ付着の防止に多くの努力が払われている。
【0003】
ノズルに付着したアルミナは合体して、それが溶鋼流に大型の介在物として取り込まれて鋳片の欠陥となり品質を低下させることになる。
【0004】
その対策の一例として、ノズルの内面からアルゴンガスを溶鋼中に吹き込んで物理的にアルミナの付着を防止する手法がある。しかしながら、この手法はアルゴンガスの吹き込み量が多すぎると気泡が鋳片内に取り込まれて鋳片中のピンホールとなる。従って、鋳片中の欠陥の発生を防止するために、ガスの吹き込み量を制限しなければならず、この手法はアルミナの付着を防止ための十分な対策とはなり得ない。
【0005】
また、その他の対策の例として、連続鋳造において使用されるノズル等を構成する耐火材にCaOを含有させてアルミナ付着防止機能を持たせ、耐火材中のCaOとノズルに付着したアルミナとを反応させて低融物を生成してアルミナの付着を低減させる手法も知られている。例えば、特許文献1には、この手法を発展させた形態として、アルミナ付着防止機能と耐熱衝撃性を高めたドロマイトクリンカーと黒鉛とを炭化されたマトリックス組織で結合した耐火材を適用したノズルが開示されている。
【0006】
しかしながら、このノズルはそれ自体は、優れたアルミナ付着防止機能を有する反面、予熱条件によっては表面が酸化して炭素が消失し、そこに発生した窪みにメタルが沈積し、その上にアルミナが付着してしまい、折角のドロマイトクリンカーによるアルミナ付着防止能が失われてしまう。
【0007】
この予熱時の酸化による表面炭素の消失は、酸化防止材として、溶融してガラス被膜を形成するガラスフリットを含有する粉末を、ノズル表面に塗布することが効果的であるといえる。
【0008】
ところが、ノズルにCaOを多量に含有する耐火材を使用する場合、耐火材中のCaOが、溶融した酸化防止材中に拡散してガラス被膜の粘性を低下させ、このため、被膜が破れたり、ノズルに吸収されたりして酸化防止機能が十分発揮されない場合がある。この様な現象は、予熱温度が高い場合や予熱時間が長い場合にとくに生じ易い。とくに、連続鋳造ノズルに適用されているCaO−MgO系クリンカー、すなわち、ドロマー黒鉛系耐火物は、前記特許文献1に記載のように、黒鉛の含有量が38重量%以上と多い割には、使用しているドロマの粒度は比較的大きいものが使用されている。そのため、黒鉛間に存在するドロマ粒子の数が少なくなり、黒鉛同志が重なり合って大きな固まりとして存在する割合が多くなる。この黒鉛同志が重なり合った大きな固まりは、予熱時に酸化されると黒鉛の消失によって大きな窪みが多数発生し、そこにメタルが侵入して固着し易くなる。メタルが固着すると、付着したアルミナへの耐火材からのCaOの拡散が妨げられるのでアルミナが堆積することになる。
【0009】
【特許文献1】
特表平11−506393号公報
【0010】
【発明が解決しようとする課題】
本発明の課題は、黒鉛およびCaO−MgO系クリンカーを主成分とする連続鋳造用耐火物において、予熱時に黒鉛が酸化消失した場合のアルミナ付着防止効果の低減を防止することにある。
【0011】
【課題を解決するための手段】
本発明は、CaO含有系耐火物を使用したノズルの場合、このように、酸化防止材によって予熱時の酸化を完全に防止することは困難であり、耐火物自身にも黒鉛の消失を前提とした対策を取っておくことが、長期間の安定鋳造に寄与するという認識の下で完成した。
【0012】
すなわち、本発明は、CaO−MgO系クリンカーおよび黒鉛を主成分とする耐火物において、クリンカーの平均粒度を黒鉛の含有量に合わせて制御するもので、耐火物中の黒鉛の含有量をa(質量%)、CaO−MgO系クリンカーの平均粒度をb(mm)とした場合に、前記aとbとの関係が下記(1)式を満足することを特徴とする。
【0013】
b≦−0.02×a+0.8 (1)
本発明は、黒鉛およびCaO−MgO系クリンカーを主成分とする耐火物において、予熱によって黒鉛が消失した際に生成する窪みを小さくするには、黒鉛の分散を良くして重なりを防正することが重要であり、そのためには黒鉛と黒鉛の間にクリンカーを配置させなければならない。 従って、黒鉛の含有量が増えるに従って、クリンカーの個数を増加させる必要があり、(1)式のように黒鉛の含有量の増加に対してクリンカーの平均粒度を制御することで、必要なクリンカーの粒子個数を確保したものである。 これによって、黒鉛間にクリンカーを配置して黒鉛の重なりを抑制し、黒鉛の酸化消失により発生する窪みを小さくすることができる。
【0014】
本発明において、CaO−MgO系クリンカーとしては、天然ドロマイトを出発原料とした焼結ドロマイトクリンカー、電融ドロマイトクリンカーの他に、人工原料によってCaOとMgOの比率を任意に変更したCaO−MgOクリンカーなどが使用可能である。また、CaO−MgO系クリンカーの一部をMgO系クリンカーやCaO系クリンカー、Al系やSiO系のクリンカーに置き換えることも可能である。しかしながら、Al系やSiO系のクリンカーはCaOと反応して低融物を生成するため、20質量%以上の置換は好ましくない。
【0015】
CaO−MgO系クリンカーの一部を、各種クリンカーと置換した場合は、(1)式のクリンカーの粒度は全クリンカーの平均粒度となる。
【0016】
黒鉛としては、鱗片状の天然黒鉛の他に、人造黒鉛、膨張黒鉛等各種黒鉛を使用することが可能である。ただし、予熱時の酸化による窪みを小さくするため、粒度は0.5mm以下である。粒度0.5mmを越える黒鉛の使用は少ない方が好ましい。もし、多量に使用する場合は混合中にミキサーによって粉砕する必要がある。
【0017】
本発明に係る連続鋳造用耐火物は、一般的な黒鉛含有の連続鋳造用耐火物の製法に準じて製造されるが、Ca〇−MgO系クリンカーの平均粒度が小さくなるにつれてクリンカーの消化(水和)が発生しやすくなるため、低湿度下で製造するか、クリンカーの表面に消化防止処理を施すことが好ましい。処理の例としては、クリンカー表面のCaOをCaCO3とする方法、シリコーン樹脂、ピッチ、硫酸マグネシウムなどで粒子全体を被覆する方法などがある。出発原料の混練に際しては、本発明の場合黒鉛の分散性が非常に重要なので、その点を考慮したミキサーの選定、混練条件の設定が必要である。
【0018】
本発明の耐火物はノズル全体に適用しても良いが、アルミナ付着が問題となるのは溶鋼と接触する面であり、溶鋼と接触する面にのみ適用することも可能である。とくに、カーボン量が少ない場合は耐スポール性が低下するためノズル全体ではなく、内孔面に数mmから10数mm内張りするか、厚さ数mmから10数mmのスリーブ状の耐火物を内挿する方法がより好ましい。
【0019】
【発明の実施の形態】
本発明の実施の形態を実施例によって説明する。
【0020】
実施例1
表1は、CaO57質量%、MgO42質量%の化学成分を有するCaO−MgO系クリンカーと純度95%の黒鉛の粒度構成の配合割合の例を示す。 同表においては、本発明の規定範囲のものを実施例1〜11として挙げ、規定範囲外の例として比較例1〜10として挙げている。同表に示す配合割合で秤量し、これに適量のフェノールレジンを添加してミキサーによって均一に混練して配土を得た。得られた配土をゴム型に充填し、成形圧1000kg/cmでCIPにて成形し、最高1000℃で還元焼成してサンプルを作製した。
【0021】
このサンプルから、20mm×20mm×170mmの試験片を切り出し、予熱時の酸化を想定して、大気中にて1200℃で30分熱処理を行い、試験片の表面に酸化層を形成させた。
【0022】
高周波炉にアルミキルド鋼を1570℃で溶解し、溶解後アルミニウムを0.2質量%添加した溶鋼に試験片を浸漬させ120分後に引き上げて試験片の外観を観察し、表面へのアルミナ付着の有無を調査した結果を表1に示す。
【0023】
【表1】

Figure 0004960574
図1は、表1に示した配合の黒鉛の含有量とクリンカーの平均粒度の関係をアルミナ付着の有無によって区別した結果である。この図中に示す線は、このアルミナ付着の有無の境界を示す。この線により、アルミナの付着を防止するには、黒鉛の含有量が多くなるにつれて、CaO−MgO系クリンカーの平均粒度を小さくする必要があることが分かる。そして、黒鉛の含有量とCaO−MgO系クリンカーの平均粒度の相関関係は、黒鉛の含有量をa(質量%)、クリンカーの平均粒度をb(mm)としたとき、b=−0.02×a+0.8の式が成立することが分かる。そして、アルミナ付着を防止するには、黒鉛の含有量a(質量%)に対する平均粒度b(mm)がこの式によって表される線より下方に位置する必要がある。
【0024】
すなわち、黒鉛およびCaO−MgO系クリンカーを主成分とする耐火物において、耐火物中の黒鉛の含有量をa(質量%)、CaO−MgO系クリンカーの平均粒度をb(mm)としたとき、アルミナ付着を防止する連続鋳造用耐火物としては、下記(1)式を満足することが必要であることが分かる。
【0025】
b≦−0.02×a+0.8 (1)
実施例2
表1に示す実施例7と比較例7の耐火物をそれぞれ内孔に厚さ7mmで配置した浸漬ノズルを作製した。これらのノズルを、最高温度1300℃で5時間予熱したのち、鍋容量250ton、TD容量45tonのスラブ鋳造機による鋳造に使用した。鋳造した結果、実施例7を内張りしたノズルは10チャージ鋳造後もアルミナの付着は皆無であった。また、鋳片の品質も良好であった。これに対して比較例7を内張りしたノズルは6チャージ目鋳造中にアルミナ付着によるノズル内孔の閉塞によりノズル交換が必要となった。回収したノズルの稼働面を調査した結果、消失した黒鉛によって生成した窪みにメタルが固着し、その上にアルミナが堆積していた。また、得られた鋳片の品質も不良であつた。
【0026】
【発明の効果】
本発明の耐火物を使用した連続鋳造用ノズルを使用することによって、予熱時の酸化の有無に関わらず優れたアルミナ付着防止効果を発揮することができる。したがって、鋳造の安定化による鋳造コスト低減、鋳片品質の改善による品質不良率低減につながる。
【図面の簡単な説明】
【図1】 アルミナ付着の有無への黒鉛の含有量とクリンカーの平均粒度の影響を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refractory material for preventing adhesion of alumina used in a continuous casting nozzle such as a stopper used in casting molten steel, a sliding nozzle including a long stopper, an upper nozzle, a lower nozzle, an intermediate nozzle, and an immersion nozzle.
[0002]
[Prior art]
In recent years, with the stricter steel quality of aluminum deoxidized steel, so-called aluminum killed steel, which is cast as high-grade steel such as thin plates, the nozzles used to inject from tundish into molds in continuous casting Much effort has been made to prevent the adhesion of alumina.
[0003]
Alumina adhering to the nozzles coalesce, and it is taken into the molten steel flow as large inclusions, resulting in defects in the slab and reducing the quality.
[0004]
As an example of the countermeasure, there is a method of physically preventing the adhesion of alumina by blowing argon gas into the molten steel from the inner surface of the nozzle. However, in this method, if the amount of argon gas blown is too large, bubbles are taken into the slab and become pinholes in the slab. Therefore, in order to prevent the occurrence of defects in the slab, the amount of gas blowing must be limited, and this method cannot be a sufficient measure for preventing the adhesion of alumina.
[0005]
As another example of countermeasures, CaO is contained in a refractory material that constitutes a nozzle or the like used in continuous casting to have an alumina adhesion prevention function, and CaO in the refractory material reacts with alumina adhering to the nozzle. There is also known a technique for reducing adhesion of alumina by generating a low-melt material. For example, Patent Document 1 discloses a nozzle that uses a refractory material in which dolomite clinker with improved alumina adhesion prevention function and thermal shock resistance and graphite are bonded together with a carbonized matrix structure as an advanced form of this technique. Has been.
[0006]
However, this nozzle itself has an excellent alumina adhesion prevention function, but depending on the preheating conditions, the surface oxidizes and carbon disappears, and metal deposits in the dent generated there, and alumina adheres to it. As a result, the ability to prevent adhesion of alumina by the broken dolomite clinker is lost.
[0007]
The disappearance of surface carbon due to oxidation during preheating can be said to be effective by applying, as an antioxidant, a powder containing glass frit that melts to form a glass coating on the nozzle surface.
[0008]
However, when a refractory material containing a large amount of CaO is used in the nozzle, CaO in the refractory material diffuses into the melted antioxidant and lowers the viscosity of the glass coating. The anti-oxidation function may not be sufficiently exhibited due to absorption by the nozzle. Such a phenomenon is particularly likely to occur when the preheating temperature is high or the preheating time is long. In particular, the CaO—MgO-based clinker applied to the continuous casting nozzle, that is, the dromer graphite-based refractory, as described in Patent Document 1, although the graphite content is as large as 38% by weight or more, The doloma used has a relatively large particle size. For this reason, the number of doloma particles existing between graphites decreases, and the proportion of graphites overlapping each other and increasing as a large mass increases. A large lump in which graphites overlap with each other, when oxidized during preheating, a large number of large depressions are generated due to the disappearance of graphite, and the metal easily enters and adheres thereto. When the metal is fixed, the diffusion of CaO from the refractory material to the adhered alumina is hindered, so that alumina is deposited.
[0009]
[Patent Document 1]
Japanese National Patent Publication No. 11-506393 [0010]
[Problems to be solved by the invention]
An object of the present invention is to prevent a reduction in the effect of preventing alumina adhesion when graphite is oxidized and lost during preheating in a continuous casting refractory mainly composed of graphite and a CaO-MgO clinker.
[0011]
[Means for Solving the Problems]
In the present invention, in the case of a nozzle using a CaO-containing refractory, it is difficult to completely prevent oxidation at the time of preheating by the antioxidant as described above, and it is assumed that the refractory itself also loses graphite. It was completed with the recognition that taking such measures would contribute to long-term stable casting.
[0012]
That is, the present invention controls the average particle size of clinker in a refractory mainly composed of CaO-MgO clinker and graphite in accordance with the graphite content. The content of graphite in the refractory is a ( Mass%), when the average particle size of the CaO—MgO clinker is b (mm), the relationship between a and b satisfies the following formula (1).
[0013]
b ≦ −0.02 × a + 0.8 (1)
In the refractory material mainly composed of graphite and CaO-MgO-based clinker, the present invention is to improve the dispersion of graphite and prevent overlapping in order to reduce the dent generated when graphite disappears by preheating. Is important, and for that purpose a clinker must be placed between the graphites. Therefore, it is necessary to increase the number of clinker as the graphite content increases, and by controlling the average particle size of the clinker with respect to the increase in the graphite content as shown in the formula (1), The number of particles is ensured. Thereby, a clinker can be arranged between the graphites to suppress the overlap of the graphites, and the depressions generated by the oxidation disappearance of the graphites can be reduced.
[0014]
In the present invention, examples of the CaO-MgO clinker include a sintered dolomite clinker using natural dolomite as a starting material, an electrofused dolomite clinker, and a CaO-MgO clinker in which the ratio of CaO and MgO is arbitrarily changed by an artificial material. Can be used. It is also possible to replace a part of the CaO-MgO clinker with an MgO clinker, a CaO clinker, an Al 2 O 3 or SiO 2 clinker. However, Al 2 O 3 -based and SiO 2 -based clinker reacts with CaO to produce a low melt, so that substitution of 20% by mass or more is not preferable.
[0015]
When a part of the CaO-MgO clinker is replaced with various clinker, the particle size of the clinker of the formula (1) becomes the average particle size of all clinker.
[0016]
As graphite, various graphite such as artificial graphite and expanded graphite can be used in addition to scaly natural graphite. However, the particle size is 0.5 mm or less in order to reduce the depression due to oxidation during preheating. The use of graphite having a particle size exceeding 0.5 mm is preferably less. If it is used in a large amount, it must be pulverized by a mixer during mixing.
[0017]
The continuous casting refractory according to the present invention is manufactured in accordance with a general graphite-containing continuous casting refractory manufacturing method. As the average particle size of the CaO-MgO clinker decreases, the clinker digestion (water Therefore, it is preferable to manufacture under low humidity or to apply digestion prevention treatment to the surface of the clinker. Examples of the treatment include a method in which CaO on the clinker surface is CaCO3, and a method in which the entire particle is coated with silicone resin, pitch, magnesium sulfate, and the like. In kneading the starting material, the dispersibility of graphite is very important in the present invention, and therefore, it is necessary to select a mixer and set kneading conditions in consideration of this point.
[0018]
Although the refractory material of the present invention may be applied to the entire nozzle, it is possible to apply it only to the surface in contact with the molten steel, where alumina adhesion becomes a problem. In particular, when the amount of carbon is small, the spall resistance is reduced, so the inner surface of the nozzle is lined with several mm to several tens of mm, or a sleeve-like refractory with a thickness of several mm to several tens of mm is placed inside. The method of inserting is more preferable.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described by way of examples.
[0020]
Example 1
Table 1 shows an example of the blending ratio of the particle size constitution of CaO-MgO clinker having a chemical component of CaO 57 mass% and MgO 42 mass% and graphite of purity 95%. In the table, those within the specified range of the present invention are listed as Examples 1 to 11, and examples outside the specified range are listed as Comparative Examples 1 to 10. The mixture was weighed at the blending ratio shown in the table, and an appropriate amount of phenol resin was added thereto, and the mixture was uniformly kneaded with a mixer to obtain a soil distribution. The obtained soil distribution was filled in a rubber mold, molded with CIP at a molding pressure of 1000 kg / cm 2 , and reduced and fired at a maximum of 1000 ° C. to prepare a sample.
[0021]
From this sample, a test piece of 20 mm × 20 mm × 170 mm was cut out and subjected to heat treatment at 1200 ° C. for 30 minutes in the atmosphere assuming oxidation during preheating to form an oxide layer on the surface of the test piece.
[0022]
The aluminum killed steel is melted at 1570 ° C. in a high-frequency furnace, and after melting, the test piece is immersed in molten steel to which 0.2% by mass of aluminum is added, pulled up after 120 minutes, and the appearance of the test piece is observed. The results of the investigation are shown in Table 1.
[0023]
[Table 1]
Figure 0004960574
FIG. 1 shows the result of discriminating the relationship between the graphite content and the average particle size of clinker shown in Table 1 depending on the presence or absence of alumina adhesion. The line shown in this figure shows the boundary of the presence or absence of this alumina adhesion. It can be seen from this line that the average particle size of the CaO-MgO clinker needs to be reduced as the graphite content increases in order to prevent the adhesion of alumina. The correlation between the graphite content and the average particle size of the CaO—MgO-based clinker is as follows. When the graphite content is a (mass%) and the average particle size of the clinker is b (mm), b = −0.02. It can be seen that the formula xa + 0.8 holds. And in order to prevent alumina adhesion, it is necessary that the average particle size b (mm) with respect to the graphite content a (mass%) is located below the line represented by this formula.
[0024]
That is, in a refractory mainly composed of graphite and CaO—MgO clinker, when the content of graphite in the refractory is a (mass%) and the average particle size of the CaO—MgO clinker is b (mm), It can be seen that the continuous casting refractory for preventing alumina adhesion needs to satisfy the following formula (1).
[0025]
b ≦ −0.02 × a + 0.8 (1)
Example 2
An immersion nozzle was prepared in which the refractories of Example 7 and Comparative Example 7 shown in Table 1 were respectively disposed in the inner holes with a thickness of 7 mm. These nozzles were preheated at a maximum temperature of 1300 ° C. for 5 hours, and then used for casting by a slab casting machine having a pan capacity of 250 tons and a TD capacity of 45 tons. As a result of casting, the nozzle lined with Example 7 showed no alumina adhesion even after 10 charge casting. The quality of the slab was also good. On the other hand, the nozzle lined with Comparative Example 7 needed to be replaced due to the blockage of the nozzle bore due to the adhesion of alumina during casting of the sixth charge. As a result of investigating the operating surface of the recovered nozzle, metal was fixed to the depression generated by the disappeared graphite, and alumina was deposited thereon. Moreover, the quality of the obtained slab was also inferior.
[0026]
【Effect of the invention】
By using the continuous casting nozzle using the refractory of the present invention, an excellent alumina adhesion preventing effect can be exhibited regardless of the presence or absence of oxidation during preheating. Therefore, the casting cost is reduced by stabilizing the casting, and the quality defect rate is reduced by improving the slab quality.
[Brief description of the drawings]
FIG. 1 shows the influence of graphite content and clinker average particle size on the presence or absence of alumina adhesion.

Claims (1)

黒鉛とCaO−MgO系クリンカーとを炭化されたマトリックス組織で結合した黒鉛およびCaOとMgOの化学成分を有するCaO−MgO系クリンカーとからなる連続鋳造用ノズルに用いられるアルミナ付着を防止する耐火物において、
耐火物中の粒度が0.5mm以下の黒鉛の含有量をa(質量%)、CaO−MgO系クリンカーの平均粒度をb(mm)とした場合、下記(1)式を満すように、前記クリンカーの平均粒度を黒鉛の含有量に合わせて制御した連続鋳造用ノズルに用いられるアルミナ付着を防止する耐火物。
b≦−0.02×a+0.8 (1)
In a refractory material for preventing adhesion of alumina used in a continuous casting nozzle composed of graphite in which graphite and CaO-MgO clinker are combined with a carbonized matrix structure and CaO-MgO clinker having chemical components of CaO and MgO ,
When the content of graphite having a particle size of 0.5 mm or less in the refractory is a (mass%) and the average particle size of the CaO-MgO clinker is b (mm), the following equation (1) is satisfied. A refractory for preventing alumina adhesion used in a continuous casting nozzle in which the average particle size of the clinker is controlled in accordance with the graphite content.
b ≦ −0.02 × a + 0.8 (1)
JP2003117580A 2003-04-22 2003-04-22 Refractory used for continuous casting nozzles to prevent alumina adhesion Expired - Fee Related JP4960574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117580A JP4960574B2 (en) 2003-04-22 2003-04-22 Refractory used for continuous casting nozzles to prevent alumina adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117580A JP4960574B2 (en) 2003-04-22 2003-04-22 Refractory used for continuous casting nozzles to prevent alumina adhesion

Publications (2)

Publication Number Publication Date
JP2004323265A JP2004323265A (en) 2004-11-18
JP4960574B2 true JP4960574B2 (en) 2012-06-27

Family

ID=33497422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117580A Expired - Fee Related JP4960574B2 (en) 2003-04-22 2003-04-22 Refractory used for continuous casting nozzles to prevent alumina adhesion

Country Status (1)

Country Link
JP (1) JP4960574B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580155B2 (en) * 2003-08-19 2010-11-10 新日本製鐵株式会社 Continuous casting nozzle
JP4519109B2 (en) * 2006-06-26 2010-08-04 日新製鋼株式会社 Stopper control type immersion nozzle
JP5166302B2 (en) * 2009-01-26 2013-03-21 黒崎播磨株式会社 Continuous casting nozzle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579681B2 (en) * 1988-12-28 1997-02-05 ハリマセラミック株式会社 Manufacturing method of immersion nozzle for continuous casting
JP3265239B2 (en) * 1997-09-05 2002-03-11 品川白煉瓦株式会社 Immersion nozzle for continuous casting

Also Published As

Publication number Publication date
JP2004323265A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4410796B2 (en) Continuous casting nozzle
JP4960574B2 (en) Refractory used for continuous casting nozzles to prevent alumina adhesion
JP4431111B2 (en) Continuous casting nozzle
JP2022161032A (en) Castable refractory and molten steel ladle
JP5920412B2 (en) Continuous casting nozzle
JP2018075601A (en) Semi-immersion nozzle
JP4331924B2 (en) Continuous casting method for molten steel for sheet metal
JP4456443B2 (en) Pitch-containing difficult adhesion continuous casting nozzle
JP4284206B2 (en) Immersion nozzle for continuous casting of steel
JP2004074242A (en) Refractory for continuous casting and continuous casting method using this refractory
JP4315847B2 (en) Dipping nozzle for continuous casting with good adhesion
JP4629461B2 (en) Continuous casting nozzle
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
JP2004268143A (en) Immersion nozzle for continuous casting of steel
JP2005238241A (en) Immersion nozzle and using method therefor
JPH11114659A (en) Nozzle for continuous casting
MXPA05001986A (en) Nozzle refractory for casting being reduced in deposition of alumina.
JPH0556306B2 (en)
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JP6464831B2 (en) Immersion nozzle for continuous casting and method for continuous casting of steel
JPH10338569A (en) Stopper head for tundish
JP2003183083A (en) Unfired brick and its production method
JP4437101B2 (en) Immersion nozzle for continuous casting
JP2019104030A (en) Refractory material for immersion nozzle for steel continuous casting, and immersion nozzle
JPH06135763A (en) Refractory for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4960574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees