JP2003320444A - Casting method for aluminum killed steel - Google Patents

Casting method for aluminum killed steel

Info

Publication number
JP2003320444A
JP2003320444A JP2002128337A JP2002128337A JP2003320444A JP 2003320444 A JP2003320444 A JP 2003320444A JP 2002128337 A JP2002128337 A JP 2002128337A JP 2002128337 A JP2002128337 A JP 2002128337A JP 2003320444 A JP2003320444 A JP 2003320444A
Authority
JP
Japan
Prior art keywords
nozzle
alumina
cao
slab
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002128337A
Other languages
Japanese (ja)
Other versions
JP4249940B2 (en
Inventor
Koji Ogata
浩二 緒方
Koichi Shimizu
公一 清水
Keisuke Asano
敬輔 浅野
Toshiyuki Hokii
利之 保木井
Takenori Yoshitomi
丈記 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002128337A priority Critical patent/JP4249940B2/en
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to AU2003235985A priority patent/AU2003235985A1/en
Priority to EP03721000A priority patent/EP1504831B1/en
Priority to CNB038096293A priority patent/CN1305602C/en
Priority to KR1020047017476A priority patent/KR100835398B1/en
Priority to BRPI0309646-7A priority patent/BR0309646B1/en
Priority to PCT/JP2003/005558 priority patent/WO2003092929A1/en
Priority to MXPA04010796A priority patent/MXPA04010796A/en
Priority to DE60326948T priority patent/DE60326948D1/en
Priority to US10/513,186 priority patent/US20050200057A1/en
Publication of JP2003320444A publication Critical patent/JP2003320444A/en
Application granted granted Critical
Publication of JP4249940B2 publication Critical patent/JP4249940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the quality of a slab by reducing the amount of large alumina inclusions in an aluminum killed steel slab. <P>SOLUTION: A refractory containing CaO content of 20 mass % or more is applied for 50% or more of the inner hole total area of the divided nozzles comprising an upper nozzle, a sliding nozzle, a lower nozzle, and an immersion nozzle or the like, which allows the alumina in molten steel to be absorbed. Suppressing the alumina from sticking on the inner hole prevents coalescence of alumina to suppress the large alumina inclusions from intruding in the slab. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、アルミキルド鋼の
鋳造方法、とくに、アルミキルド鋼の鋳造方法に使用す
るノズルに関する。 【0002】 【従来の技術】アルミキルド鋼の鋳造に際して、鋳造用
ノズル(以下ノズルと言う)内孔面に付着したアルミナ
は合体して大型の介在物になり、それが溶鋼流と共に鋳
片内に取り込まれて鋳片の欠陥となり品質を低下させ
る。 【0003】そのため、近年、とくに薄板等の高級鋼と
して鋳造されるアルミキルド鋼は、鋼材品質の厳格化に
伴い、連続鋳造においてタンディッシュ(以下TDと言
う)からモールドに溶鋼を注入する際に使用するノズル
の内孔へのアルミナ付着を防止することに多くの努力が
払われている。 【0004】その対策の一例として、ノズルの内面から
アルゴンガスを溶鋼中に吹き込んで物理的にアルミナの
付着を防止する手法がある。しかし、この方法は、アル
ゴンガスの吹き込み量が多すぎると気泡が鋳片内に取り
込まれてピンホールとなり欠陥となる。従って、このア
ルゴンガスの吹き込みは、ガスの吹き込み量に制約があ
るため必ずしも十分な対策とはなり得ない。 【0005】また、ノズルを構成する耐火材自身にアル
ミナ付着防止機能を持たせる手法もある。これは、れん
が中にCaOを含有させて付着したアルミナと反応させ
て低融物を生成させるもので、例えば、特公昭61−4
4836号公報には、黒鉛と焼結カルシア、電融カルシ
ア、またはCaO成分を含む他の窯業用原料を組み合わ
せた原料を主成分とした耐火物を使用した鋳造用ノズル
が開示されている。 【0006】 【発明が解決しようとする課題】通常、鋼を鋳造する際
には、TDからモールドヘ溶鋼を注入するノズルとして
は図1に示される分割された複数のノズルを組み合わせ
た分割型のものと、図2に示される単一のノズルからな
る単一型のものがある。 【0007】分割型のノズルは、タンディッシュ1の底
部開口に取り付けられた上部ノズル2と、スライディン
グノズル3と、下部ノズル4と、モールド6内に浸漬し
た浸漬ノズル5を連続して組み合わせたもので、スライ
ディングノズル3の開口部の開口度合いを調整すること
によってモールド6内への流量を制御するもので、優れ
た流量制御によって湯面が安定するため安定した鋳造が
可能なほか、安全性の点でも優れており広く普及してい
る。 【0008】また、単一型のノズルは、タンディッシュ
1の底部開口からモールド6内への流路を一本の長い浸
漬ノズル8によって形成したもので、タンディッシュ1
内に配置されたロングストッパー7によって、タンディ
ッシュ1の底部開口部の開口度合いを調整し、モールド
6内への流量を制御するものである。 【0009】前記のCaOを含有させた材質を、図2に
示すような単一型のノズルの内孔に適用した場合には内
孔面へのアルミナ付着は確かに減少する。ところが、図
1に示す分割型のノズルに適用した場合においては、単
一型のノズルに適用した場合と比較して、鋳片内の大型
のアルミナ系介在物が多くなり、鋳片の品質向上にはさ
ほど寄与しないことが分かった。 【0010】本発明は、CaOを含有させた材質を単一
型のみならず分割型のノズルに適用しても鋳片内の大型
アルミナ系介在物の含有量を大幅に減少させるアルミキ
ルド鋼を鋳造する方法を提供する。 【0011】 【課題を解決するための手段】本発明のアルミキルド鋼
の鋳造方法は、タンディッシュからモールドに溶鋼を注
入するために使用される全てのノズルの内孔の総面積の
50%以上を、CaOを20質量%以上含有する耐火物
によって形成したノズルを使用することを特徴とする。 【0012】単一型のノズルを用いた鋳造方法では、ノ
ズル内を通過する溶鋼と空気はほとんど接触しないが、
分割型では、ノズルのつなぎ目から空気が流入し、とく
に、SNは使用中に摺動させる必要があるので面間のシ
ールが難しく面間から空気の侵入が起こり、ノズル内を
通過する溶鋼と空気が接触することによって,CaO含
有耐火物を適用してもその効果は挙がらない。 【0013】本発明は、TDからモールドヘ溶鋼を注入
するノズルのそれぞれの内孔にCaO含有耐火物を適用
し、それらを組み合わせて使用して鋳片内の大型のアル
ミナ系介在物の含有量を調査した結果、鋳片内の大型ア
ルミナ系介在物の含有量は、ノズルの内孔の総面積と適
用した耐火物中のCaO量とに非常に強い相関性がある
ことを見い出したことに基づく。 【0014】アルミキルド鋼は溶鋼中にアルミニウムが
溶解しており、空気と接触すると酸化されてアルミナを
生成する。このようにして生成したアルミナは鋳片内に
取り込まれてアルミナ系介在物となる。複数のノズルで
分割されている分割型のノズルの場合、特定のノズルに
CaO含有系耐火物を適用しても、アルミナがCaO含
有系耐火物を適用していないノズルに付着して、そこで
合体して大型化したアルミナが鋳片内に取り込まれる。 【0015】CaOを含有する耐火物は、付着したアル
ミナを低融点化させる作用と共に、アルミナを吸着する
作用がある。このため、CaOを含有する耐火物をTD
からモールドヘ溶鋼を注入するノズルに適用することで
モールドヘ流れ込むアルミナの量を減少させることがで
きる。 【0016】ノズルの内孔総面積の50%以上の内孔に
CaOを20質量%以上含有する耐火物を適用すると、
CaOを含有する耐火物が有するアルミナを吸着する作
用と、CaOとアルミナが反応して生成される低融物が
液相を呈するために内孔壁面が平滑になり、アルミナの
付着を防止してアルミナの合体を防止する作用との相乗
効果により、鋳片内のアルミナ系大型介在物の含有量が
飛躍的に減少する。 【0017】その相乗効果を発揮させるには、CaOを
含有する耐火物はノズルの内孔総面積の50%以上の内
孔に適用することが必要である。50%未満ではモール
ド内へ流れ込むアルミナの量を減少させる作用が小さく
鋳片内のアルミナ系大型介在物の含有量の改善は小さ
い。好ましくは60%以上であり、最も好ましいのは全
てのノズルの内孔面全体をCaO含有耐火物で構成する
ことである。ただし、CaOを含有する耐火物を使用す
ることによって溶損、摩耗等が発生して使用上問題が生
じる場合はその部分については従来の耐火物にするなど
使用条件に合わせて選択することが重要である。 【0018】本発明は、ノズル全体が、上部ノズルと浸
漬ノズル、または、SNと浸漬ノズル、または、上部ノ
ズルとSNと浸漬ノズル、さらには、図1に示すように
上部ノズルとSNと下部ノズルと浸漬ノズルが組み合わ
されているいわゆる分割型の場合でも、また、図2に示
す浸漬ノズル単体からなる場合でも、CaO含有耐火物
がノズル全体の内孔総面積の50%以上を占めるのであ
れば、何れの場合でも適用可能である。 【0019】また、ノズル内孔の一部にCaO含有耐火
物を適用しても、ノズル全体の内孔総面積の50%以上
になるように適用すれば鋳片品質の大幅な改善効果が得
られる。上部ノズルとSN、あるいはSNと下部ノズル
が一体となったノズルを含む場合も本発明は同様に適用
することができる。 【0020】ノズルの内孔に適用する耐火物のCaO含
有量は、20質量%未満ではアルミナの吸着能力とアル
ミナ付着防止能力が小さく鋳片内のアルミナ系大型介在
物の含有量の改善の程度は小さいので、20質量%以上
であることが必要である。 【0021】鋳造片中の大きいアルミナ介在物の存在を
低減する効果からいうと耐火物に含有されるCaO量の
上限はないが、CaOが多くなると溶損が大きくなった
り、消化しやすくなる場合があるので、使用条件に応じ
て適宜調整することが重要である。一般的な鋳造条件に
おいてはCaO量は60質量%程度あれば十分である。 【0022】好ましい耐火物の例を示すと、MgO−C
aO系耐火物、MgO−CaO−C系耐火物、ZrO2
−CaO系耐火物、ZrO2−CaO−C系耐火物など
が挙げられる。特にMgO−CaO系耐火物、MgO−
CaO−C系耐火物はアルミナの吸着能力に優れており
より好ましい。 【0023】CaO含有耐火物は各ノズルの少なくとも
溶鋼が接触する内孔面に適用されていることが重要であ
り、内孔面以外の部位については同一材質でも良いし、
一般に使用されている耐火物をそのまま適用しても良
い。 【0024】 【発明の実施の形態】本発明を図1に示す分割ノズルに
適用した実施例によって本発明を実施の形態を説明す
る。 【0025】 【表1】 表1は、図1に示す分割ノズルのそれぞれのノズルに適
用する材質の組成をA〜Dによって示す。同表に示す材
質AとBは、本発明に係るCaO含有材質であり、材質
CとDは比較のために使用したCaOを含まない従来の
一般的な材質である。 【0026】A〜Dの材質を、厚さ10mmのスリーブ
状に成形・焼成・加工した耐火物成形体を作製し、ノズ
ルに内挿してモルタルで接着して試験用のノズルとし
た。材質AとCを浸漬ノズルに、BとDを上部ノズルと
スライディングノズル(SN)と下部ノズルに適用し
た。 【0027】表2は、CaO含有耐火物を適用した各ノ
ズルの内孔の表面積を示す。 【0028】 【表2】 これらの試験用のノズルを上部ノズル、SN、下部ノズ
ル、それに浸漬ノズルに組み合わせて、連続鋳造用の一
連のノズル構造とし、これらの組合せにおけるノズル材
質が鋳片の品質に及ぼす影響を調査し、CaO含有耐火
物の適用の効果を調べた。調査はノズルの組み合わせを
変えて、鍋容量250ton、TD容量45ton、鋳
片の引き抜き速度1.0〜1.3m/分の鋳造条件下で
アルミキルド鋼の鋳造を行い、得られた鋳片に含まれる
50μm以上の大型のアルミナ系介在物の面積当たりの
個数によってその効果を調べた。 【0029】 【表3】 表3にその調査結果を示す。同表において、比較例1の
組合せノズルで得られた鋳片内の大型のアルミナ系介在
物の個数を100として、各例の個数を指数によって示
した。したがって、指数が小さいほど大型のアルミナ系
介在物の少ない品質良好な鋳片であることを示す。 【0030】図3は、表3の結果をまとめて図表化した
もので、ノズルの内孔全体に占めるCaO含有耐火物の
面積割合と大型アルミナ系介在物の個数の関係を示す。
同図から、ノズルの内孔全体に占めるCaO含有耐火物
の面積割合が50%以上になると大幅に介在物の個数が
減少し鋳片の品質が良好になっていることがわかる。そ
して、鋳片の品質はCaO含有耐火物の面積割合が、さ
らに、増加するに従って良好となり、全てのノズル内孔
にCaO含有耐火物を適用することが最も好ましいこと
が分かる。 【0031】次ぎに、図1に示すノズル構成において、
CaO含有耐火物中のCaO含有量が鋳片の品質に及ぼ
す影響を調査した。 【0032】 【表4】表4は、表1に示すA、Bに加えて、E〜LのCaO含
有耐火物の組成を示す。これらのCaO含有耐火物か
ら、先の表1に示す材質の場合と同様に、厚さ10mm
のスリーブ状に成形・焼成・加工した耐火物成形体を作
製し、ノズルに内挿してモルタルで接着して試験用のノ
ズルとした。A、E、F、G、Hを浸漬ノズルに、B、
I、J、K、Lを上部ノズル、SN、下部ノズルに適用
した。各ノズルの内孔の表面積は表2と同様である。 【0033】表5にこれらのノズルを組み合わせて鋳造
を行い鋳片の品質を調査した結果を示す。品質の評価方
法は表3の場合と同様である。 【0034】 【表5】 表5の結果を図4にまとめ、ノズルの内孔耐火物の平均
CaO含有量と大型アルミナ系介在物の個数の関係を示
した。この図に示すように、内孔耐火物中のCaOの平
均含有量が20質量%以上であれば鋳片の品質が大幅に
改善されることが明らかである。 【0035】 【発明の効果】本発明によって、アルミキルド鋼の鋳造
に際して、溶鋼中のアルミナをノズル内孔の壁面への吸
着と、アルミナと耐火物中のCaOとの反応による低融
物生成により、アルミナの合体を抑制することで鋳片中
の大型アルミナの含有量を大幅に低減でき、品質不良率
の低減による製造コストの低下が可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting aluminum-killed steel, and more particularly to a nozzle used for casting aluminum-killed steel. 2. Description of the Related Art In the casting of aluminum-killed steel, alumina adhered to the inner surface of a casting nozzle (hereinafter referred to as "nozzle") is united into large inclusions, which are formed in a slab together with the molten steel flow. It is taken in and becomes a defect of the cast slab, deteriorating quality. Therefore, in recent years, aluminum-killed steel, which is cast as a high-grade steel such as a thin plate, has recently been used for pouring molten steel from a tundish (hereinafter referred to as TD) into a mold in continuous casting in accordance with stricter steel quality. Many efforts have been made to prevent alumina deposition on the inner bore of the nozzle. As an example of the countermeasure, there is a method of blowing argon gas into molten steel from the inner surface of a nozzle to physically prevent the adhesion of alumina. However, in this method, if the amount of argon gas blown is too large, bubbles are taken into the slab and become pinholes, resulting in defects. Therefore, the blowing of the argon gas cannot always be a sufficient countermeasure because the blowing amount of the gas is restricted. There is also a method in which the refractory material constituting the nozzle itself has a function of preventing adhesion of alumina. This is a method in which CaO is contained in a brick to react with alumina adhered thereto to generate a low melt. For example, Japanese Patent Publication No. 61-4 / 1986
No. 4836 discloses a casting nozzle using a refractory mainly composed of a raw material obtained by combining graphite and sintered calcia, electrofused calcia, or another ceramic raw material containing a CaO component. [0006] Usually, when casting steel, as a nozzle for injecting molten steel from a TD into a mold, a split type nozzle in which a plurality of split nozzles shown in FIG. 1 are combined is used. And a single type consisting of a single nozzle shown in FIG. The split type nozzle is a combination of an upper nozzle 2, a sliding nozzle 3, a lower nozzle 4, and an immersion nozzle 5 immersed in a mold 6, which are attached to the bottom opening of the tundish 1. The flow rate into the mold 6 is controlled by adjusting the degree of opening of the opening of the sliding nozzle 3. The excellent flow rate control stabilizes the molten metal surface, thus enabling stable casting and safety. It is also excellent in terms of point and is widely used. [0008] The single-type nozzle has a flow path from the bottom opening of the tundish 1 into the mold 6 formed by a single long immersion nozzle 8.
The degree of opening of the bottom opening of the tundish 1 is adjusted by the long stopper 7 disposed in the inside, and the flow rate into the mold 6 is controlled. When the material containing CaO is applied to the inner hole of a single type nozzle as shown in FIG. 2, the adhesion of alumina to the inner hole surface is certainly reduced. However, when applied to the split-type nozzle shown in FIG. 1, large alumina-based inclusions in the slab increase compared to when applied to the single-type nozzle, and the quality of the slab is improved. Did not contribute much. [0010] The present invention is to cast aluminum-killed steel which greatly reduces the content of large alumina-based inclusions in the slab even if the material containing CaO is applied not only to a single type but also to a split type nozzle. Provide a way to The method for casting aluminum-killed steel according to the present invention is characterized in that at least 50% of the total area of the inner holes of all nozzles used for injecting molten steel from a tundish into a mold is improved. And a nozzle formed of a refractory containing 20% by mass or more of CaO. In a casting method using a single type nozzle, molten steel passing through the nozzle and air hardly come into contact with each other.
In the split type, air flows in from the joints of the nozzles, and in particular, the SN needs to be slid during use, so it is difficult to seal between the surfaces, and air enters from between the surfaces. However, even if CaO-containing refractories are applied, the effect cannot be obtained. According to the present invention, a CaO-containing refractory is applied to each inner hole of a nozzle for injecting molten steel from a TD into a mold, and the refractories are used in combination to reduce the content of large alumina-based inclusions in a slab. As a result of the investigation, the content of large alumina-based inclusions in the slab was based on the finding that there was a very strong correlation between the total area of the inner hole of the nozzle and the amount of CaO in the refractory applied. . [0014] Aluminum-killed steel has aluminum dissolved in molten steel and is oxidized when contacted with air to produce alumina. The alumina thus produced is taken into the cast slab to become alumina-based inclusions. In the case of a split type nozzle divided by a plurality of nozzles, even if a CaO-containing refractory is applied to a specific nozzle, alumina adheres to a nozzle to which the CaO-containing refractory is not applied, and coalesces there. The enlarged alumina is taken into the slab. The refractory containing CaO has a function of lowering the melting point of the attached alumina and a function of adsorbing the alumina. For this reason, the refractories containing CaO are TD
By applying the method to a nozzle for injecting molten steel from a mold into the mold, the amount of alumina flowing into the mold can be reduced. When a refractory containing 20% by mass or more of CaO is applied to 50% or more of the inner holes of the nozzle,
The function of adsorbing the alumina of the refractory containing CaO and the low melt generated by the reaction of CaO and alumina exhibit a liquid phase, so that the inner wall surface becomes smooth, and the adhesion of alumina is prevented. Due to the synergistic effect with the action of preventing coalescence of alumina, the content of large alumina-based inclusions in the slab is dramatically reduced. In order to exert the synergistic effect, it is necessary to apply the refractory containing CaO to the inner hole of 50% or more of the total inner hole area of the nozzle. If it is less than 50%, the effect of reducing the amount of alumina flowing into the mold is small, and the improvement of the content of large alumina-based inclusions in the slab is small. It is preferably at least 60%, and most preferably, the entire inner surface of all nozzles is made of a CaO-containing refractory. However, if the use of a refractory containing CaO causes erosion, abrasion, etc. and causes a problem in use, it is important to select that part according to the use conditions, such as using a conventional refractory. It is. According to the present invention, the entire nozzle is composed of an upper nozzle and an immersion nozzle, or an SN and an immersion nozzle, or an upper nozzle and an SN and an immersion nozzle, and further, as shown in FIG. In the case of the so-called split type in which the CaO-containing refractory occupies 50% or more of the total inner hole area of the entire nozzle, even in the case of the so-called split type in which the In any case, it is applicable. Further, even if the refractory containing CaO is applied to a part of the inner hole of the nozzle, if it is applied so as to be 50% or more of the total area of the inner hole of the entire nozzle, a great improvement effect of the slab quality can be obtained. Can be The present invention can be similarly applied to a case including a nozzle in which the upper nozzle and the SN or the SN and the lower nozzle are integrated. When the CaO content of the refractory applied to the inner hole of the nozzle is less than 20% by mass, the alumina adsorption ability and the alumina adhesion preventing ability are small and the degree of improvement in the content of large alumina-based inclusions in the slab is reduced. Is small, so it is necessary to be 20% by mass or more. In terms of the effect of reducing the presence of large alumina inclusions in the cast piece, there is no upper limit for the amount of CaO contained in the refractory. However, when CaO increases, erosion increases or digestion becomes easier. Therefore, it is important to appropriately adjust according to use conditions. Under general casting conditions, a CaO content of about 60% by mass is sufficient. Examples of preferred refractories include MgO-C
aO-based refractory, MgO-CaO-C-based refractory, ZrO2
-CaO-based refractories, ZrO2-CaO-C-based refractories, and the like. In particular, MgO-CaO-based refractories, MgO-
CaO-C refractories are more preferable because of their excellent ability to adsorb alumina. It is important that the CaO-containing refractory is applied to at least the inner surface of each nozzle in contact with molten steel, and the same material may be used for portions other than the inner surface.
A commonly used refractory may be applied as it is. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to an embodiment in which the present invention is applied to a divided nozzle shown in FIG. [Table 1] Table 1 shows the composition of the material applied to each of the divided nozzles shown in FIG. The materials A and B shown in the table are CaO-containing materials according to the present invention, and the materials C and D are conventional general materials not containing CaO used for comparison. A refractory molded body was formed by molding, sintering, and processing the materials A to D into a sleeve having a thickness of 10 mm, and was inserted into the nozzle and bonded with mortar to obtain a test nozzle. Materials A and C were applied to the immersion nozzle, and B and D were applied to the upper nozzle, the sliding nozzle (SN), and the lower nozzle. Table 2 shows the surface area of the inner hole of each nozzle to which the CaO-containing refractory was applied. [Table 2] Combining these test nozzles with the upper nozzle, SN, lower nozzle, and immersion nozzle to form a series of nozzle structures for continuous casting, investigating the effect of the nozzle material in these combinations on the quality of slabs, The effect of applying CaO-containing refractories was investigated. Investigation was conducted by changing the combination of nozzles, casting aluminum killed steel under the casting conditions of 250 ton pot capacity, 45 ton TD capacity, and 1.0 to 1.3 m / min casting speed, and included in the obtained castings. The effect was examined by the number of large alumina-based inclusions having a size of 50 μm or more per area. [Table 3] Table 3 shows the results of the survey. In the same table, the number of each example was indicated by an index, with the number of large alumina-based inclusions in the slab obtained by the combination nozzle of Comparative Example 1 being 100. Therefore, the smaller the index, the smaller the size of large alumina-based inclusions and the better the quality of the slab. FIG. 3 is a table summarizing the results of Table 3, and shows the relationship between the area ratio of the CaO-containing refractory in the entire inner hole of the nozzle and the number of large alumina-based inclusions.
From the figure, it can be seen that when the area ratio of the CaO-containing refractory to the entire inner hole of the nozzle is 50% or more, the number of inclusions is greatly reduced, and the quality of the slab is improved. And, the quality of the slab becomes better as the area ratio of the CaO-containing refractory further increases, and it is understood that it is most preferable to apply the CaO-containing refractory to all the nozzle bores. Next, in the nozzle configuration shown in FIG.
The influence of the CaO content in the CaO-containing refractory on the quality of the slab was investigated. [Table 4] Table 4 shows the compositions of the CaO-containing refractories E to L in addition to A and B shown in Table 1. From these CaO-containing refractories, as in the case of the materials shown in Table 1 above, a thickness of 10 mm
A refractory molded body was formed, fired, and processed into a sleeve shape, and inserted into a nozzle and bonded with mortar to form a test nozzle. A, E, F, G, H to the immersion nozzle, B,
I, J, K, and L were applied to the upper nozzle, SN, and lower nozzle. The surface area of the inner hole of each nozzle is the same as in Table 2. Table 5 shows the results of investigating the quality of the slab by performing casting by combining these nozzles. The quality evaluation method is the same as in Table 3. [Table 5] The results in Table 5 are summarized in FIG. 4, and the relationship between the average CaO content of the refractory in the bore of the nozzle and the number of large alumina-based inclusions is shown. As shown in this figure, it is clear that when the average content of CaO in the bored refractory is 20% by mass or more, the quality of the slab is greatly improved. According to the present invention, during the casting of aluminum-killed steel, the alumina in the molten steel is adsorbed on the wall surface of the nozzle inner hole, and the low melt is formed by the reaction between alumina and CaO in the refractory. By suppressing the coalescence of alumina, the content of large alumina in the slab can be greatly reduced, and the production cost can be reduced by reducing the quality defect rate.

【図面の簡単な説明】 【図1】 SNが装着された複数のノズルからなる分割
型ノズルの構造例を示す。 【図2】 単一型ノズルの構造例を示す。 【図3】 ノズルの内孔全体に占めるCaO含有耐火物
の面積割合と大型アルミナ系介在物の個数の関係を示
す。 【図4】 ノズルの内孔耐火物の平均CaO含有量と大
型アルミナ系介在物の個数の関係を示す。 【符号の説明】 1 タンディッシュ 2 上部ノズル 3 スライディングノズル 4下部ノズル 5 浸漬ノズル 6 モールド 7 ロングストッパー 8 浸漬ノズル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an example of the structure of a split-type nozzle composed of a plurality of nozzles provided with SNs. FIG. 2 shows a structural example of a single type nozzle. FIG. 3 shows the relationship between the area ratio of the CaO-containing refractory in the entire inner hole of the nozzle and the number of large alumina-based inclusions. FIG. 4 shows the relationship between the average CaO content of the inner hole refractory of the nozzle and the number of large alumina-based inclusions. [Description of Signs] 1 Tundish 2 Upper nozzle 3 Sliding nozzle 4 Lower nozzle 5 Immersion nozzle 6 Mold 7 Long stopper 8 Immersion nozzle

─────────────────────────────────────────────────────
【手続補正書】 【提出日】平成14年5月22日(2002.5.2
2) 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】0009 【補正方法】変更 【補正内容】 【0009】前記のCaOを含有させた材質を、図2に
示すような単一型のノズルの内孔に適用した場合には内
孔面へのアルミナ付着は確かに減少する。ところが、図
1に示す分割型の一部の箇所のノズルに適用した場合に
おいては、単一型のノズルに適用した場合と比較して、
鋳片内の大型のアルミナ系介在物が多くなり、鋳片の品
質向上にはさほど寄与しないことが分かった。
────────────────────────────────────────────────── ───
[Procedure amendment] [Date of submission] May 22, 2002 (2002.5.2)
2) [Procedure amendment 1] [Document name to be amended] Description [Item name to be amended] 0009 [Correction method] Change [Contents of amendment] The material containing CaO as shown in FIG. When applied to the bore of a single type nozzle, alumina deposition on the bore is certainly reduced. However, when applied to the nozzle of a part of the split type shown in FIG. 1, compared with the case of applying to the single type nozzle,
It was found that large-sized alumina inclusions in the slab increased and did not contribute much to the improvement of the quality of the slab.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 敬輔 福岡県北九州市八幡西区東浜町1番1号 黒崎播磨株式会社技術研究所内 (72)発明者 保木井 利之 福岡県北九州市八幡西区東浜町1番1号 黒崎播磨株式会社技術研究所内 (72)発明者 吉富 丈記 福岡県北九州市八幡西区東浜町1番1号 黒崎播磨株式会社技術研究所内 Fターム(参考) 4E014 DA03    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Keisuke Asano             1-1 Higashihama-cho, Yawatanishi-ku, Kitakyushu-shi, Fukuoka             Kurosaki Harima Co., Ltd. (72) Inventor Toshiyuki Hokkii             1-1 Higashihama-cho, Yawatanishi-ku, Kitakyushu-shi, Fukuoka             Kurosaki Harima Co., Ltd. (72) Inventor Takeki Yoshitomi             1-1 Higashihama-cho, Yawatanishi-ku, Kitakyushu-shi, Fukuoka             Kurosaki Harima Co., Ltd. F-term (reference) 4E014 DA03

Claims (1)

【特許請求の範囲】 【請求項1】 タンディッシュからモールドに溶鋼を注
入するために使用される全ての鋳造用ノズルの内孔の総
面積の50%以上を、CaOを20質量%以上含有する
耐火物によって形成したノズルを使用するアルミキルド
鋼の鋳造方法。
Claims 1. A casting nozzle used for injecting molten steel from a tundish into a mold contains at least 50% of the total area of the inner hole of the casting nozzle and at least 20% by mass of CaO. A method of casting aluminum killed steel using a nozzle formed of refractory.
JP2002128337A 2002-04-30 2002-04-30 Aluminum killed steel casting method Expired - Fee Related JP4249940B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002128337A JP4249940B2 (en) 2002-04-30 2002-04-30 Aluminum killed steel casting method
DE60326948T DE60326948D1 (en) 2002-04-30 2003-04-30 CONTINUOUS METHOD OF ALUMINUM-TREATED STEEL
CNB038096293A CN1305602C (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
KR1020047017476A KR100835398B1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
BRPI0309646-7A BR0309646B1 (en) 2002-04-30 2003-04-30 aluminum casting continuous casting nozzle unit.
PCT/JP2003/005558 WO2003092929A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
AU2003235985A AU2003235985A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
EP03721000A EP1504831B1 (en) 2002-04-30 2003-04-30 method for continuous casting of aluminum killed steel
US10/513,186 US20050200057A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
MXPA04010796A MXPA04010796A (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128337A JP4249940B2 (en) 2002-04-30 2002-04-30 Aluminum killed steel casting method

Publications (2)

Publication Number Publication Date
JP2003320444A true JP2003320444A (en) 2003-11-11
JP4249940B2 JP4249940B2 (en) 2009-04-08

Family

ID=29397265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128337A Expired - Fee Related JP4249940B2 (en) 2002-04-30 2002-04-30 Aluminum killed steel casting method

Country Status (10)

Country Link
US (1) US20050200057A1 (en)
EP (1) EP1504831B1 (en)
JP (1) JP4249940B2 (en)
KR (1) KR100835398B1 (en)
CN (1) CN1305602C (en)
AU (1) AU2003235985A1 (en)
BR (1) BR0309646B1 (en)
DE (1) DE60326948D1 (en)
MX (1) MXPA04010796A (en)
WO (1) WO2003092929A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000816A (en) * 2006-05-26 2008-01-10 Nippon Steel Corp Method for continuous casting of steel
WO2010013686A1 (en) 2008-07-28 2010-02-04 黒崎播磨株式会社 Refractory for nozzle used in continuous casting and nozzle for continuous casting

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0413794B1 (en) * 2003-08-22 2012-01-24 steel nozzle for continuous casting.
US7591976B2 (en) * 2004-03-15 2009-09-22 Krosakiharima Corporation Nozzle for use in continuous casting
KR101288028B1 (en) * 2010-05-07 2013-07-19 구로사키 하리마 코포레이션 Refractory material, continuous casting nozzle using the refractory material production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
JP6228524B2 (en) * 2013-09-27 2017-11-08 日新製鋼株式会社 Continuous casting method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568007A (en) * 1984-01-23 1986-02-04 Vesuvius Crucible Company Refractory shroud for continuous casting
JP2542585B2 (en) * 1986-08-08 1996-10-09 東芝セラミツクス株式会社 Immersion nozzle for continuous casting
US5151201A (en) * 1988-07-01 1992-09-29 Vesuvius Crucible Company Prevention of erosion and alumina build-up in casting elements
US5100035A (en) * 1989-05-01 1992-03-31 Ferro Corporation Permeable MgO nozzle
JP2897893B2 (en) * 1990-08-09 1999-05-31 明智セラミックス株式会社 Nozzle for continuous casting
JPH04158963A (en) * 1990-10-19 1992-06-02 Nippon Steel Corp Nozzle for continuous casting
JPH0780709B2 (en) * 1991-07-29 1995-08-30 東京窯業株式会社 Refractory material
JPH05154627A (en) * 1991-08-19 1993-06-22 Shinagawa Refract Co Ltd Refractory composition for preventing stickness and deposition of non-metallic inclusions
JP2706201B2 (en) 1992-04-13 1998-01-28 黒崎窯業株式会社 Nozzle bore for continuous casting
JPH07214259A (en) * 1994-01-25 1995-08-15 Akechi Ceramics Kk Nozzle for continuous casting of molten steel
JPH0839214A (en) * 1994-07-30 1996-02-13 Kurosaki Refract Co Ltd Nozzle for continuous casting
JP2003040672A (en) * 2001-05-21 2003-02-13 Shinagawa Refract Co Ltd Refractory used for fireproof member for continuous steel casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000816A (en) * 2006-05-26 2008-01-10 Nippon Steel Corp Method for continuous casting of steel
WO2010013686A1 (en) 2008-07-28 2010-02-04 黒崎播磨株式会社 Refractory for nozzle used in continuous casting and nozzle for continuous casting

Also Published As

Publication number Publication date
JP4249940B2 (en) 2009-04-08
US20050200057A1 (en) 2005-09-15
CN1305602C (en) 2007-03-21
EP1504831A1 (en) 2005-02-09
KR20050006214A (en) 2005-01-15
BR0309646A (en) 2005-03-01
AU2003235985A1 (en) 2003-11-17
MXPA04010796A (en) 2005-07-05
EP1504831B1 (en) 2009-04-01
WO2003092929A1 (en) 2003-11-13
CN1649684A (en) 2005-08-03
BR0309646B1 (en) 2012-11-27
KR100835398B1 (en) 2008-06-04
EP1504831A4 (en) 2005-08-17
DE60326948D1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP2003320444A (en) Casting method for aluminum killed steel
EP1671721B1 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the immersion nozzle
JPH0839214A (en) Nozzle for continuous casting
JP2706201B2 (en) Nozzle bore for continuous casting
CN111940715B (en) Anti-blocking submerged nozzle
JP5166302B2 (en) Continuous casting nozzle
JP4431111B2 (en) Continuous casting nozzle
KR101639754B1 (en) Submerged entry nozzle for continuous casting, Continuous casting method using same and Method for manufacturing submerged entry nozzle
JP4331924B2 (en) Continuous casting method for molten steel for sheet metal
JP2004074242A (en) Refractory for continuous casting and continuous casting method using this refractory
JP4054318B2 (en) Continuous casting method for slabs with excellent quality characteristics
GB2081702A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP4321292B2 (en) Immersion nozzle for continuous casting of steel
JP4284206B2 (en) Immersion nozzle for continuous casting of steel
JPH05154628A (en) Nozzle inner hole body for continuous casting
GB2056430A (en) Immersion Nozzle for Continuous Casting of Molten Steel
KR101062953B1 (en) Immersion nozzle
JP2005305489A (en) Method for continuously casting steel
JP2010069515A (en) Continuous casting method for steel
JP2959632B1 (en) Nozzle for continuous casting
JP3328803B2 (en) Nozzle for continuous casting of steel
KR100515047B1 (en) continuous casting apparatus for Bi ferr cutting steel
JP4437101B2 (en) Immersion nozzle for continuous casting
JP4493612B2 (en) Continuous casting method of aluminum killed steel
JPH11188463A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees