JP2004098127A - Method for continuously casting high quality stainless steel cast slab - Google Patents

Method for continuously casting high quality stainless steel cast slab Download PDF

Info

Publication number
JP2004098127A
JP2004098127A JP2002263608A JP2002263608A JP2004098127A JP 2004098127 A JP2004098127 A JP 2004098127A JP 2002263608 A JP2002263608 A JP 2002263608A JP 2002263608 A JP2002263608 A JP 2002263608A JP 2004098127 A JP2004098127 A JP 2004098127A
Authority
JP
Japan
Prior art keywords
immersion nozzle
molten steel
stainless steel
discharge port
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263608A
Other languages
Japanese (ja)
Other versions
JP3817209B2 (en
Inventor
Shinichi Fukunaga
福永 新一
Ryoji Nishihara
西原 良治
Hitoshi Furuta
古田 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002263608A priority Critical patent/JP3817209B2/en
Publication of JP2004098127A publication Critical patent/JP2004098127A/en
Application granted granted Critical
Publication of JP3817209B2 publication Critical patent/JP3817209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously casting a high quality stainless steel cast slab by which a descended stream formed at the lower part of a mold is restrained by making slow spouted stream of molten steel from an immersion nozzle, and the heat conduction into a meniscus is made satisfactory, and the cast slab having excellent quality can stably be produced at high speed casting by preventing the defects caused by blow hole and inclusion developed on the surface of the cast slab and inclusion defect in the inner part of the cast slab, when the molten stainless iron is cast. <P>SOLUTION: In the method for continuously casting the molten stainless steel by using a vertical-bending type continuous caster for pouring the molten steel in a tundish into the mold via the immersion nozzle, the immersion nozzle having a spouting hole enlarged from the inside to the outside to the axial center is dipped into the mold to pour the molten steel. This poured molten steel quantity is made to be 0.6-5.0 ton/min to perform the casting. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、垂直曲げ型の連続鋳造機を用いてステンレス溶鋼を鋳造する際、浸漬ノズルの吐出流を緩慢な流れにして気泡や介在物の少ない高品質の鋳片を製造することができる高品質ステンレス鋳片の連続鋳造方法に関する。
【0002】
【従来の技術】
従来、転炉や電気炉などの精錬炉で溶製されたステンレス溶鋼は、タンディッシュから浸漬ノズルを介して鋳型に鋳造され、鋳型による冷却とこの鋳型の下方に配置された冷却帯とにより冷却しながら連続して鋳造するいわゆる連続鋳造装置を用いて鋳片を製造する方法が採用されている。(引用文献1)、(引用文献2)しかし、ステンレス溶鋼(溶鋼)中の酸化物やスラグ等の介在物、あるいはモールドパウダー等は、鋳片の凝固過程で凝固殻(シェル)に補足されて鋳片の表面欠陥になったり、製品での表面疵や加工時の割れ等を発生させる要因になっている。
【0003】
また、溶鋼をタンディッシュからモールド(鋳型)に注入する場合、浸漬ノズルの内部に介在物が付着して注湯量が変動したり、ノズル詰まりによる注湯の中断などが生じる。この浸漬ノズルの内部への介在物の付着を防止するため、浸漬ノズルの内にアルゴンガスなどの不活性ガスを吹き込みながら鋳造を行っている。しかし、吹き込まれたアルゴンガスなどは、浸漬ノズルの吐出口から鋳型内に放出され、大小さまざまな直径の気泡を形成し、大きいものは浮上し、小さい微細な気泡が溶鋼の吐出流に随伴して鋳片の深部に侵入したり、凝固して厚みを増しつつある凝固シェル(凝固殻)に補足されて気泡性の欠陥を生じる。更に、吐出流に随伴する酸化物からなる介在物も同様に鋳片の深部に侵入し、凝固シェルに補足されたり、内部に集積帯を形成して表面あるいは内部欠陥の要因になる。
【0004】
この対策として、引用文献3に記載されているように、ステンレス溶鋼の鋳造に、垂直曲げ型の連鋳機を用いて、その鋳造条件を浸漬ノズルの吐出口の角度を上向き5°〜下向き35°とし、その浸漬深さをメニスカスから下方150〜300mmにして鋳型に注湯し、0.8〜1.8m/分の鋳造速度で鋳造を行うことにより、介在物やアルゴンガス気泡などに起因した欠陥を防止しながら高速鋳造による生産性の向上を図ることが提案されている。
【0005】
【引用文献】
(a)引用文献1(特公昭61−39144号公報)
(b)引用文献2(特開平3−174962号公報)
(c)引用文献3(特開平6−262302号公報
【0006】
【発明が解決しようとする課題】
しかしながら、引用文献3に記載された方法では、鋳造条件である浸漬ノズルの吐出口の形状は、浸漬ノズルの内側から外側に至る直径が同じ直径の円筒状で、且つ、上向き5度〜下向き35度の範囲を満たすようにしているため、吐出口の中央あるいは中央から下方に強い流れを有する溶鋼流(吐出流)が形成される。その結果、強い吐出流は、湯面変動やパウダーの巻き込みを招き、しかも、気泡や介在物がこの吐出流に随伴して鋳片の深部に侵入し、鋳片の品質を阻害する等の問題がある。
【0007】
更に、鋳造作業は、タンディツシュ内にステンレス溶鋼を注湯し、浸漬ノズルから鋳型に注湯を開始する直後以降の低速域と、注湯と引き抜きが安定した安定鋳造領域と、鋳造末期の低速域となる非定常の各領域が必ず生じる。この低速域となる鋳造初期や鋳造末期、あるいは鋳造中におけるブレークアウトや軽微な設備トラブル等の減速鋳造鋳造を行う非定常部では、浸漬ノズルからの溶鋼の吐出流が少なくなるため、溶鋼の吐出流による凝固シェルの内面のシェルウォシング効果が小さく、凝固シェルに気泡や介在物の補足が増加して鋳片の品質を悪化させるという問題がある。
【0008】
一方、鋳造が安定している領域においても、鋳型に浸漬した浸漬ノズルの周辺部では、鋳型と浸漬ノズルとの隙間が狭くなり、溶鋼の流れに淀みを生じ、淀み部では、溶鋼が冷却され易く温度低下やシェルウォシング効果が低下し、凝固シェルの薄い部分(表層部)に介在物やアルゴンガス気泡の補足が増加する欠点がある。
【0009】
また、垂直曲げ型の連続鋳造装置を用いてステンレス溶鋼を鋳造して鋳片を製造する場合、引き抜き速度に相当するm/分を指標にすると、鋳型のサイズによって浸漬ノズルの吐出口からの溶鋼の吐出量が変化し、吐出流が変動する。そして、鋳型サイズの大きい場合では溶鋼の吐出流によるシェルウォシング効果が低下する傾向となる。一方、鋳型サイズの小さい場合では溶鋼の吐出流が強くなり、強い下向きの下降流の形成により、気泡や介在物が鋳片の深部に侵入して鋳片の品質を悪化させる等の問題がある。
【0010】
本発明はかかる事情に鑑みてなされたもので、ステンレス溶鋼を鋳造する際に、浸漬ノズルからの溶鋼の吐出流を緩慢にして形成される下降流や上向き流を抑制し、メニスカスへの熱付与を良好にして、鋳片の表面に生じる気泡や介在物に起因する欠陥と、鋳片の内部の介在物欠陥を防止して品質に優れた鋳片を高速鋳造で安定して製造することができる高品質ステンレス鋳片の連続鋳造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記目的に沿う本発明に係る高品質ステンレス鋳片の連続鋳造方法は、垂直部を有する曲げ型連続鋳造機を用いてタンディッシュ内の溶鋼を浸漬ノズルを介して鋳型に注湯する垂直曲げ連鋳機を用いたステンレス溶鋼の鋳造方法において、吐出口を浸漬ノズルの軸心に対して内側から外側に拡角にした浸漬ノズルを鋳型内に浸漬して溶鋼を注湯し、該注湯量を5.0トン/分以下にして鋳造する。
【0012】
この方法により、浸漬ノズルの吐出口を拡角にし、且つ、注湯する溶鋼量が5.0トン/分以下を満たすようにするので、溶鋼の吐出流が強くなるのを抑えて略均一流れにすることができ、溶鋼の吐出流によるパウダーの巻き込みや下向流に随伴して鋳片の深部に侵入する気泡や介在物を抑制することができる。
なお、注湯量が5トン/分を超えると、吐出口からの溶鋼の吐出流が強くなり、パウダーの巻き込みや下向流に随伴して鋳片の深部に侵入する気泡や介在物が増加して鋳片の品質を阻害する。
【0013】
ここで、前記浸漬ノズルの吐出口が浸漬ノズルの軸心に対して外側方向に上向き15度〜下向き45度の角度の範囲以内となる拡角の吐出口にすると良い。
これにより、浸漬ノズルからの吐出流が凝固シェルに当たり反転した上向き流あるいは下向流が強くなるのを抑えて緩慢な流れにすることができ、パウダーの巻き込みや湯面変動と、溶鋼に随伴した気泡や介在物が鋳片の深部に侵入するのを抑制することができ、鋳片の表層や内部に発生する欠陥を防止することができる。
【0014】
なお、浸漬ノズルの吐出口の角度が上向き15度が超えると、上向流が多くなり、この上向流によってパウダーの巻き込みが発生する。一方、吐出口の角度が下向き45度を超えると、下向流が多くなって溶鋼に随伴した気泡や介在物が鋳片の深部に侵入し、鋳片の表層や内部に気泡や介在物に起因した欠陥が生じ易くなる。この理由から上向き10度〜下向き35度にするとより好ましい。
浸漬ノズルの拡角の吐出口は、浸漬ノズルの軸心を基準にして内側から外側に広がりの角度を有するもので、例えば、ラッパ状の広がりを有するもの等を言う。
【0015】
更に、前記浸漬ノズルの浸漬深さをメニスカスから下方に100〜350mmにして鋳型に注湯することができる。これにより、浸漬ノズルの吐出流による湯面変動やパウダーの巻き込み、あるいは気泡や介在物の鋳片深部への侵入を抑制することができる。なお、浸漬ノズルの浸漬深さが100mm未満になると、溶鋼の吐出流による湯面変動やパウダーの巻き込みが生じて鋳片の品質を阻害する。一方、浸漬深さが350mmを超えると、吐出流が反転して形成される下向き流が強くなり、この下向き流に随伴する気泡や介在物が増加して鋳片の品質を阻害する。
【0016】
また、前記浸漬ノズルの内径Dと吐出口の直径dの比が1.0〜1.5にすることが好ましい。これにより、吐出口からの溶鋼の吐出流速を低減でき、しかも、鋳造中における吐出流の偏流を抑制することができる。更に、吐出口に付着物が生成した場合、吐出流の偏流を小さくすることができる。
なお、浸漬ノズルの内径Dと吐出口の直径dの比(D/d)が1.0未満になると、吐出口が大きくなり過ぎ、吐出口の上方に溶鋼流の淀みが生じ、下向きの吐出流が増加し、この吐出流に随伴して気泡や介在物が鋳片の深部に侵入して鋳片の欠陥の要因になる。一方、鋳型内部での湯面近傍への熱供給が不足し、デッケルの発生が生じ易くなる。
【0017】
また、浸漬ノズルの内径Dと吐出口の直径dの比(D/d)が1.5超になると、吐出口が小さくなり過ぎて浸漬ノズル詰まりによる偏流が生じ易く、左右いずれかの吐出口により片寄る偏流が発生し易くなり、気泡や介在物の深部への侵入や上向き流に起因したパウダーの巻き込みや湯面変動等が生じ易くなる。
更に、吐出口を大きくするため、浸漬ノズルの内径Dが大きくすると、浸漬ノズルの全体が大きくなり、浸漬ノズル交換作業に支障を招き、耐火物のコストも高くなる。
【0018】
更に、前記浸漬ノズルの吐出口の外周の少なくとも50%以上が浸漬ノズルの軸心に対して外側方向に拡角の角度を有することが好ましい。これにより、吐出口の拡角を少なくとも50%以上にしているので、浸漬ノズルの吐出口の加工が容易になると共に、溶鋼の吐出流速を低減でき、しかも、鋳造中における吐出流の偏流を抑制でき、浸漬ノズルの直径が大きくなるのを抑制して使用する耐火物のコストを低減することができる。なお、外側方向に拡角の角度を有する範囲が吐出口の外周線の50%未満になると、吐出流の流れを緩慢にする効果が減少し、且つ、吐出口の詰りが発生した際に溶鋼の偏流が生じ易くなる。
【0019】
また、前記鋳型内に注湯された溶鋼を電磁攪拌することが好ましい。これにより、鋳型の内周に旋回する溶鋼流を形成して浸漬ノズル近傍の淀みを解消し、凝固シェルの内表面のシェルウォシング効果を高めて、凝固シェルの内表層に補足される気泡や介在物を除去し、品質の良好な表層を備えた鋳片を製造することができる。
【0020】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の形態に係る高品質ステンレス鋳片の連続鋳造方法に用いる連続鋳造装置の説明図、図2は同浸漬ノズルの断面図、図3は浸漬ノズルの内径D/吐出口の内径dと成品不合発生指数の関係を表すグラフ、図4は注湯量と成品不合発生指数の関係を表すグラフである。図1に示すように、連続鋳造装置1は、ステンレス溶鋼(溶鋼)2を図しない取鍋から注湯して溜めるタンディッシュ3と、タンディッシュ3の下部に取り付けられた浸漬ノズル4を設けている。
【0021】
更に、浸漬ノズル4から注湯され、吐出口5から流出した溶鋼2を冷却して凝固シェル6を形成する鋳型7と、その鋳型7で冷却された内部が溶融状態の鋳片8を支持しながら鋳片に散水して鋳片を冷却する複数の散水ノズルを配置した支持セグメント9を備えており、鋳片8は冷却により凝固厚みを増しながら図示しないピンチロールにより所定の速度で引き抜きが行われる。鋳型7には、メニスカス(湯面)の上にパウダー10が添加されており、吐出口5から流出した溶鋼2の熱によりその一部が溶融層を形成し、鋳型7と凝固シェルの隙間に流入して潤滑を良好に行うようにしている。
【0022】
また、鋳型7の外部には、鋳型内の溶鋼2を攪拌する電磁攪拌装置11a、11bを備えている。浸漬ノズル4は、図2に示すように、浸漬ノズルの下部に左右対称に二つの吐出口5を有し、この吐出口5の角度Qが浸漬ノズル4の軸心xに対して上15°〜下向き45°の範囲以内の条件を満たすようにし、しかも、軸心xに対して内側から外側に直径を大きくした拡角状、あるいはラッパ状に形成されている。この浸漬ノズルへのアルゴンガスの供給は、図示しない浸漬ノズル4の上方に配置される上ノズルから吹き込まれる。
【0023】
次に、本発明に形態に係る高品質ステンレス鋳片の連続鋳造方法について連続鋳造装置を用いて説明する。
ステンレス溶鋼(溶鋼)2をタンディッシュ3に注湯し、タンディッシュ3内の溶鋼2が20〜25トン程度溜まつた時点で、取鍋から注湯を継続しながらタンディッシュ3の底部に取り付けた浸漬ノズル4から鋳型7への注湯を開始する。そして、鋳型7内に所定の溶鋼が注湯された時点で、一旦1分間程度ホールドし、十分に凝固シェルを形成した後、ダミーバーの引き抜きを開始しながら溶鋼2を鋳型7に注湯を行い、溶鋼2のメニスカスが鋳型7の上端より下100mm程度の位置まで上昇させて鋳造を行う。
【0024】
この鋳型7への注湯は、浸漬ノズルの吐出口を拡角にし、且つ、注湯する溶鋼量が5.0トン/分以下を満たすようにするので、溶鋼の吐出流が強くなるのを抑えて吐出流を緩慢な流れにすることができ、良好な吐出流の形成により、溶鋼の吐出流によるパウダーの巻き込みや下向流に随伴して鋳片の深部に侵入する気泡や介在物を抑制することができる。この注湯量は、5トン/分より多くなるとまた、吐出口からの溶鋼の吐出流が強くなり過ぎ、パウダーの巻き込みや下向流に随伴して鋳片の深部に侵入する気泡や介在物が増加して鋳片の品質を阻害する。
【0025】
更に、浸漬ノズルの吐出口の拡角は、浸漬ノズルの軸心に対して外側方向に上向き15度〜下向き45度の角度の範囲以内で、その吐出口の外周の少なくとも50%の領域が拡角の吐出口となるようにすることができ、その浸漬深さ(L)を100〜350mmにすることにより、浸漬ノズルからの吐出流が均一で緩慢な流れになり、しかも、凝固シェルに当たり反転した上向き流あるいは下向流が強くなるのを抑えることができ、パウダーの巻き込みや湯面変動と、溶鋼に随伴した気泡や介在物が鋳片の深部に侵入するのを抑制することができ、鋳片の表層や内部に発生する欠陥を防止することができる。
【0026】
図2は本実施の形態に用いた浸漬ノズルであり、吐出口は、浸漬ノズル4の軸心xに対し、内側から外側方向に吐出口の全外周を拡角したラッパ状にした場合であり、且つ、その角度Qを上向き15度〜下向き45度の範囲にしたものを用いた。浸漬ノズルの本体の直径(内径)Dと吐出口の直径dの比であるD/dが1.0〜1.5となるようにし、浸漬ノズルの内部を通過した溶鋼が吐出口から鋳型内部に流出する溶鋼流を均一で緩慢な流れにすることができ、鋳型内への溶鋼流の偏流を解消し、溶鋼流がメニスカスへ過剰に作用するのを抑制して、湯面の変動やデッケルの生成を防止する。
【0027】
しかも、過剰な下向き流の形成を抑制することにより、気泡や介在物が鋳片の深部に侵入するのを抑制して鋳片の表面および内部欠陥を防止することができる。ここで、浸漬ノズルの吐出口の角度が上向き15度が超えると、上向流が強くなり、この上向流によってパウダーの巻き込みが発生する。一方、吐出口の角度が下向き45度を超えると、下向流が強くなって溶鋼に随伴した気泡や介在物が鋳片の深部に侵入し、鋳片の表層や内部に気泡や介在物に起因した欠陥が生じ易くなる。
【0028】
更に、その浸漬深さ(L)が100mmよりも浅くなると、吐出流による湯面変動やパウダーの巻き込み増加し、一方、350mmを超えて深くなると、下向流が強くなって溶鋼に随伴した気泡や介在物が鋳片の深部に侵入する。
これ等の理由から、上向き10度〜下向き30度にし、浸漬深さを150〜300mmにするとより好ましい。なお、浸漬ノズルの拡角の吐出口は、浸漬ノズルの軸心を基準にして、内側から外側に拡角状の広がりを形成したものであれば良く、浸漬ノズル本体は、一般に用いられている分割型やタンディッシュに取り付けた一体型のものを用いることができる。
【0029】
また、連続鋳造では、鋳造を開始してから定常速度に到達するまでの間、あるいは、1.2〜5トン/分以下の定常の鋳造速度で鋳造中において、パウダー10の潤滑不良や湯面変動等によってブレークアウトの危険性がある場合では、注湯量を限りなく少なくするか、又は0.6トン/分未満の注湯量であり、一方、連々鋳造(鍋交換を行い連続して鋳造を行う)等の場合には、取鍋の交換時間のとの関係から浸漬ノズル4からの注湯量を極端に低くした鋳造を行う必要がある。
【0030】
一方、定常の鋳造速度で鋳造中であっても、浸漬ノズル4の吐出口5の左右の溶鋼2の流れに偏流を生じることがあり、この吐出流によって鋳型7内の流動が不安定になり、特に、浸漬ノズル4が浸漬された近傍では、浸漬ノズル4と内壁との隙間が狭くなっているため、この部位での溶鋼2の流れが低下し、鋳片8の幅方向での均一な流れが得られず、流動の変動に起因する淀みが発生する等いずれにおいても鋳片8の品質の阻害が懸念される。
【0031】
従って、より品質の優れた鋳片を製造するには、鋳型7内に形成されるメニスカスより下方近傍200〜350mmの範囲のいずれかに、電磁攪拌装置11a、11bに通電して鋳型4の内周壁を旋回する溶鋼2の流れを形成する。この溶鋼2の流れは、凝固シェルの内表面を溶鋼2の流れで洗浄することができ、気泡や介在物が補足されるのを防止して、気泡や介在物の少ない良好な凝固シェルを形成することができる。
【0032】
更に、浸漬ノズル4にアルゴンガスを吹き込むことも可能であり、その場合、浸漬ノズル4の上方に配置した上ノズルから吹き込むアルゴンガスを吹き込むことができ、その量は、4NL/分以下で行われ、浸漬ノズル4の内部に介在物が付着するのを抑制し、鋳型7内の溶鋼2中に混入した介在物の浮上を促進することができる。このアルゴンガスの吹き込み量が4NL/分を超えて多くなると、アルゴンガス気泡が増加し、凝固シェル6に補足される気泡も増加して鋳片8の品質を阻害する。
【0033】
また、本実施の形態では、カーボン、シリカのいずれか、あるいは両方の含有量をゼロ又は5質量%未満にした浸漬ノズル、あるいはドロマイト成分(CaO−MgOが主成分)系等の難付着性浸漬ノズルを用いることができる。この難付着性浸漬ノズルの場合は、浸漬ノズルの内面に介在物の付着が少なく、吐出口5の詰まりが生じないので、アルゴンガスの吹き込みを行わない鋳造が可能になり、アルゴンガスに起因する気泡欠陥を防止することができるため、より好ましい結果が得られる。
【0034】
【実施例】
次に、本発明の一実施の形態に係る高品質ステンレス鋳片の連続鋳造方法の実施例について説明する。
厚み250mm、幅1200mmの鋳型に、吐出口の大きさ60Фを拡角の吐出口にし、浸漬ノズルの内径D/吐出口の直径を所定の範囲にした浸漬ノズルをメニスカスより下方250mmとなるように浸漬し、電磁攪拌装置(MD−EMS)に0.4Mwの出力を付与した場合と電磁攪拌を行わない場合について鋳造を行った。その結果、図3に示すが浸漬ノズルと吐出口の直径D/dを1.0〜1.5とした範囲では、拡角の吐出口にすることによる吐出流の緩慢な形成による効果により成品不合発生指数が良好であり、電磁攪拌装置(MD−EMS)を併用することにより成品不合発生指数がさらに大幅に改善され、良品質の鋳片を製造することができる。更に、浸漬ノズル吐出口の拡角の有無、吐出口の拡角の角度の異なる浸漬ノズルを鋳型内に浸漬し、溶鋼を注湯しながら鋳造した場合と、電磁攪拌(MD−EMS)を併用した場合について実施した。
【0035】
その結果、図4に示すように吐出口の拡角を行わず従来の吐出口にした浸漬ノズルを用いた場合(×)では、注湯量の如何にかかわらず成品不合発生指数が0.4以上となり、バラツキも大きくなり悪い結果となった。しかし、吐出口を拡角にし、浸漬ノズルのD/dを1.0〜1.5の範囲にして鋳造を行った場合(○)では、成品不合発生指数を0.3以下にすることができ、品質の良好な鋳片を製造することができた。
【0036】
更に、吐出口を外周が50%の拡角にし、浸漬ノズルのD/dを1.0〜1.5の範囲にして鋳造を行った場合(▲)でも成品不合発生指数を0.25以下にすることができ、品質の良好な鋳片を製造することができた。また、吐出口を拡角にし、浸漬ノズルのD/dを1.0〜1.5の範囲にし、鋳型内の溶鋼を電磁攪拌(MD−EMS)を行い鋳造した場合(●)では、表面及び内部欠陥の発生が無く、成品不合の発生を安定して防止した鋳片を製造することができ、この鋳片を加工した鋼材の品質も良好であった。
【0037】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の範囲である。
例えば、鋳型に配置する電磁攪拌装置は、鋳型内の溶鋼を攪拌する電磁攪拌装の他に、鋳片の支持セグメントに配置して、未凝固の溶鋼を攪拌することもできる。更に、浸漬ノズルの吐出口は、円形あるいは四角形や長方形などの矩形状のものを用いることができる。
【0038】
【発明の効果】
以上述べたように、請求項1〜6記載の高品質ステンレス鋳片の連続鋳造方法においては、垂直部を有する曲げ型連続鋳造機を用いてタンディッシュ内の溶鋼を浸漬ノズルを介して鋳型に注湯する垂直曲げ連鋳機を用いたステンレス溶鋼の鋳造方法において、吐出口を浸漬ノズルの軸心に対して内側から外側に拡角にした浸漬ノズルを鋳型内に浸漬して注湯し、該注湯量を0.6〜5.0トン/分にして鋳造するので、溶鋼の吐出流が強くなるのを抑えて鋳型の幅方向における溶鋼の流れを均一にして、溶鋼の吐出流によるパウダーの巻き込みや下向流に随伴して鋳片の深部に侵入する気泡や介在物を抑制することができ、鋳片の品質を良好にすることができる。
【0039】
特に、請求項2記載の高品質ステンレス鋳片の連続鋳造方法においては、ノズルの吐出口が浸漬ノズルの軸心に対して外側方向に上向き15度〜下向き45度の角度の範囲以内の拡角にするので、吐出流を緩慢な流れにすることができ、しかも、吐出口の詰まりに起因する溶鋼の吐出流の偏流を抑制して表面及び内部欠陥の発生の無いより良品質の鋳片にすることができる。
【0040】
請求項3記載の高品質ステンレス鋳片の連続鋳造方法においては、浸漬ノズルの浸漬深さをメニスカスから下方に100〜350mmにして鋳型に注湯するので、浸漬ノズルの吐出流による湯面変動やパウダーの巻き込み、あるいは気泡や介在物の鋳片深部への侵入を抑制し、鋳片の品質を向上することができる。
請求項4記載の高品質ステンレス鋳片の連続鋳造方法においては、前記浸漬ノズルの内径Dと吐出口の直径dの比が1.0〜1.5にするので、吐出口からの溶鋼の吐出流速を低減でき、しかも、鋳造中における吐出流の偏流を抑制することができ、吐出流の偏流に起因する鋳片の欠陥を防止することができる。
【0041】
請求項5記載の高品質ステンレス鋳片の連続鋳造方法においては、前記浸漬ノズルの吐出口の少なくとも50%以上が浸漬ノズルの軸心に対して外側方向に拡角の角度を有するので、吐出口の拡角を少なくとも50%以上にしているので、溶鋼の吐出流速を低減して鋳造中における吐出流の偏流を抑制でき、浸漬ノズルの全体の強度が低下するのを防止することができる。
請求項6記載の高品質ステンレス鋳片の連続鋳造方法においては、鋳型内に注湯された溶鋼を電磁攪拌するので、鋳型の内周に旋回する溶鋼流を形成して浸漬ノズル近傍や凝固シェルの内表面のシェルウォシング効果を高め、凝固シェルに補足される気泡や介在物を除去し、品質の良好な表層を備えた鋳片を製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る高品質ステンレス鋳片の連続鋳造方法に用いる連続鋳造装置の説明図である。
【図2】連続鋳造装置に用いる浸漬ノズルの断面図である。
【図3】浸漬ノズルの内径D/吐出口の内径dと成品不合発生指数の関係を表すグラフである。
【図4】注湯量と成品不合発生指数の関係を表すグラフである。
【符号の説明】
1 連続鋳造装置
2 ステンレス溶鋼(溶鋼)
3 タンディッシュ
4 浸漬ノズル
5 吐出口
6 凝固シェル
7 鋳型
8 鋳片
9 支持セグメント
10 パウダー
11a、11b 電磁攪拌装置
D 浸漬ノズルの内直径
d 吐出口の内直径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a high-quality cast slab with a small number of bubbles and inclusions when the molten steel is cast using a vertical bending type continuous casting machine when the discharge flow of the immersion nozzle is set to a slow flow when casting molten stainless steel. The present invention relates to a continuous casting method for quality stainless steel slabs.
[0002]
[Prior art]
Conventionally, molten stainless steel produced in a refining furnace such as a converter or electric furnace is cast from a tundish into a mold through an immersion nozzle, and cooled by the mold and a cooling zone arranged below the mold. A method of manufacturing a slab using a so-called continuous casting apparatus that performs continuous casting while casting is adopted. (Cited Document 1), (Cited Document 2) However, inclusions such as oxides and slag in molten stainless steel (molten steel), mold powder, and the like are captured by a solidified shell during the solidification process of the slab. This is a factor that causes a surface defect of the slab, a surface flaw in a product, a crack during processing, and the like.
[0003]
In addition, when molten steel is poured from a tundish into a mold, inclusions adhere to the interior of the immersion nozzle, causing a change in the pouring amount, interruption of the pouring due to nozzle clogging, and the like. In order to prevent the inclusion of inclusions inside the immersion nozzle, casting is performed while blowing an inert gas such as argon gas into the immersion nozzle. However, the injected argon gas, etc., is discharged from the discharge port of the immersion nozzle into the mold, forming bubbles of various sizes, large ones float, and small fine bubbles accompany the discharge flow of molten steel. To the depth of the slab, or to be trapped by the solidified shell (solidified shell), which is solidifying and increasing its thickness, to generate cellular defects. Further, oxide inclusions accompanying the discharge flow also penetrate deep into the slab, and are caught by the solidified shell or form an accumulation zone inside, which causes surface or internal defects.
[0004]
As a countermeasure, as described in Patent Document 3, the casting condition of a molten stainless steel is adjusted by using a vertical bending type continuous caster and adjusting the casting conditions by changing the angle of the discharge port of the immersion nozzle upward from 5 ° to downward. °, the immersion depth is 150 to 300 mm below the meniscus and poured into the mold, and casting is performed at a casting speed of 0.8 to 1.8 m / min, resulting from inclusions and argon gas bubbles. It has been proposed to improve productivity by high-speed casting while preventing such defects.
[0005]
[References]
(A) Reference 1 (Japanese Patent Publication No. 61-39144)
(B) Reference 2 (Japanese Patent Application Laid-Open No. 3-174962)
(C) Reference 3 (Japanese Unexamined Patent Publication No. 6-262302)
[Problems to be solved by the invention]
However, in the method described in Patent Literature 3, the shape of the discharge port of the immersion nozzle, which is a casting condition, is a cylindrical shape having the same diameter from the inside to the outside of the immersion nozzle, and has an upward direction of 5 degrees to a downward direction of 35 degrees. Since the temperature range is satisfied, a molten steel flow (discharge flow) having a strong flow downward from the center of the discharge port or from the center is formed. As a result, a strong discharge flow causes fluctuations in the molten metal surface and entrainment of powder, and furthermore, bubbles and inclusions enter the deep portion of the slab accompanying this discharge flow, thereby impairing the quality of the slab. There is.
[0007]
In addition, the casting operation is performed by pouring molten stainless steel into the tundish and then pouring the molten metal into the mold from the immersion nozzle, a low-speed range immediately after pouring and pulling out, and a low-speed range at the end of casting. Non-stationary regions always occur. In the low speed region, in the early casting stage or the last casting stage, or in the unsteady part where slow casting is performed such as breakout or minor equipment trouble during casting, the discharge flow of molten steel from the immersion nozzle decreases, There is a problem that the shell washing effect on the inner surface of the solidified shell due to the flow is small, and that the solidified shell is more likely to capture bubbles and inclusions, thereby deteriorating the quality of the slab.
[0008]
On the other hand, even in the area where casting is stable, the gap between the mold and the immersion nozzle becomes narrower around the immersion nozzle immersed in the mold, causing stagnation in the flow of molten steel. There is a disadvantage that the temperature is lowered easily and the shell washing effect is reduced, and the inclusion of inclusions and bubbles of argon gas in the thin portion (surface layer portion) of the solidified shell increases.
[0009]
Further, when casting a stainless steel slab by casting a stainless steel molten steel using a vertical bending type continuous casting apparatus, if m / min corresponding to the drawing speed is used as an index, the molten steel from the discharge port of the immersion nozzle depends on the size of the mold. And the discharge flow fluctuates. When the mold size is large, the shell washing effect due to the molten steel discharge flow tends to decrease. On the other hand, when the mold size is small, the discharge flow of the molten steel becomes strong, and due to the formation of a strong downward flow, there are problems such as bubbles and inclusions penetrating deep into the slab and deteriorating the quality of the slab. .
[0010]
The present invention has been made in view of such circumstances, and when casting stainless steel, suppresses a downward flow and an upward flow formed by slowing the discharge flow of molten steel from an immersion nozzle, and applying heat to the meniscus. It is possible to stably produce high quality slabs by high-speed casting by preventing defects caused by bubbles and inclusions generated on the surface of the slab and inclusion defects inside the slab. It is an object of the present invention to provide a continuous casting method for high quality stainless steel slabs.
[0011]
[Means for Solving the Problems]
A method for continuous casting of a high-quality stainless steel slab according to the present invention, which meets the above-mentioned object, comprises a vertical bending station in which molten steel in a tundish is poured into a mold through an immersion nozzle using a bending-type continuous casting machine having a vertical portion. In the casting method of stainless steel molten steel using a casting machine, a molten steel is poured by immersing a molten steel into a mold by dipping a dip nozzle whose discharge port is widened from inside to outside with respect to the axis of the dip nozzle. Casting is performed at 5.0 ton / min or less.
[0012]
According to this method, the discharge port of the immersion nozzle is widened and the amount of molten steel to be poured satisfies 5.0 ton / min or less. It is possible to suppress bubbles and inclusions that enter the deep portion of the slab accompanying powder entrainment or downward flow due to the molten steel discharge flow.
When the pouring rate exceeds 5 ton / min, the discharge flow of molten steel from the discharge port becomes strong, and bubbles and inclusions that penetrate deep into the slab due to entrainment and downward flow of powder increase. Impairs the quality of the slab.
[0013]
Here, it is preferable that the discharge port of the immersion nozzle is a wide-angle discharge port within an angle range of 15 degrees upward to 45 degrees downward with respect to the axis of the immersion nozzle.
This makes it possible to suppress the upward flow or the downward flow in which the discharge flow from the immersion nozzle hits the solidification shell and inverts the flow, thereby making the flow slower, resulting in powder entrainment and fluctuations in the molten metal surface, and accompanying the molten steel. Bubbles and inclusions can be suppressed from penetrating into the deep part of the slab, and defects occurring on the surface layer and inside of the slab can be prevented.
[0014]
If the angle of the discharge port of the immersion nozzle exceeds 15 degrees upward, the upward flow increases, and this upward flow causes powder entrainment. On the other hand, when the angle of the discharge port exceeds 45 degrees downward, the downward flow increases and bubbles and inclusions accompanying the molten steel penetrate into the deep part of the slab, causing bubbles and inclusions on the surface layer and inside of the slab. The resulting defects are likely to occur. For this reason, it is more preferable that the angle is 10 degrees upward to 35 degrees downward.
The wide-angle discharge port of the immersion nozzle has a divergent angle from the inside to the outside with respect to the axis of the immersion nozzle, and for example, has a trumpet-like spread.
[0015]
Further, the immersion depth of the immersion nozzle can be set to 100 to 350 mm below the meniscus, and the immersion nozzle can be poured into the mold. Thereby, it is possible to suppress the fluctuation of the molten metal surface due to the discharge flow of the immersion nozzle, the entrainment of the powder, or the penetration of bubbles and inclusions into the deep part of the slab. When the immersion depth of the immersion nozzle is less than 100 mm, the molten metal discharge flow causes a change in the molten metal surface and the entrainment of the powder, which impairs the quality of the slab. On the other hand, when the immersion depth exceeds 350 mm, the downward flow formed by reversing the discharge flow becomes strong, and the number of bubbles and inclusions accompanying the downward flow increases, thereby impairing the quality of the slab.
[0016]
Preferably, the ratio of the inner diameter D of the immersion nozzle to the diameter d of the discharge port is 1.0 to 1.5. Thereby, the discharge flow velocity of the molten steel from the discharge port can be reduced, and the drift of the discharge flow during casting can be suppressed. Further, when the deposit is generated at the discharge port, the drift of the discharge flow can be reduced.
If the ratio (D / d) of the inner diameter D of the immersion nozzle to the diameter d of the discharge port is less than 1.0, the discharge port becomes too large, and the molten steel flow stagnates above the discharge port, resulting in downward discharge. The flow increases, and air bubbles and inclusions enter the deep portion of the slab along with the discharge flow, causing a defect of the slab. On the other hand, heat supply to the vicinity of the molten metal surface in the mold is insufficient, and deckle is likely to occur.
[0017]
Further, when the ratio (D / d) of the inner diameter D of the immersion nozzle to the diameter d of the discharge port exceeds 1.5, the discharge port becomes too small, and drift due to clogging of the immersion nozzle easily occurs. As a result, biased drift tends to occur, and bubbles and inclusions are liable to penetrate into a deep portion of the air bubbles and inclusions, and powder level and molten metal level change due to an upward flow are likely to occur.
Furthermore, if the inner diameter D of the immersion nozzle is increased to increase the size of the discharge port, the entire immersion nozzle becomes large, which hinders the replacement of the immersion nozzle and increases the cost of the refractory.
[0018]
Furthermore, it is preferable that at least 50% or more of the outer circumference of the discharge port of the immersion nozzle has an angle of widening outward with respect to the axis of the immersion nozzle. Thereby, since the widening angle of the discharge port is at least 50% or more, the processing of the discharge port of the immersion nozzle is facilitated, the discharge speed of the molten steel can be reduced, and the drift of the discharge flow during casting is suppressed. It is possible to suppress the increase in the diameter of the immersion nozzle and reduce the cost of the refractory used. In addition, when the range having the angle of widening in the outward direction is less than 50% of the outer peripheral line of the discharge port, the effect of slowing the flow of the discharge flow is reduced, and when the discharge port is clogged, the molten steel is melted. Drift easily occurs.
[0019]
Further, it is preferable that the molten steel poured into the mold is electromagnetically stirred. As a result, a swirling molten steel flow is formed around the inner periphery of the mold to eliminate the stagnation near the immersion nozzle, enhance the shell washing effect on the inner surface of the solidified shell, and generate air bubbles and intercalation trapped in the inner surface layer of the solidified shell. An object can be removed and a cast piece having a surface layer of good quality can be manufactured.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
FIG. 1 is an explanatory view of a continuous casting apparatus used for a continuous casting method of a high-quality stainless steel slab according to an embodiment of the present invention, FIG. 2 is a sectional view of the immersion nozzle, and FIG. FIG. 4 is a graph showing the relationship between d and the product inconsistency index, and FIG. 4 is a graph showing the relationship between the pouring amount and the product incompatibility index. As shown in FIG. 1, the continuous casting apparatus 1 is provided with a tundish 3 for pouring and storing a molten steel (molten steel) 2 from a ladle (not shown), and an immersion nozzle 4 attached to a lower portion of the tundish 3. I have.
[0021]
Further, a mold 7 for cooling the molten steel 2 poured from the immersion nozzle 4 and flowing out of the discharge port 5 to form a solidified shell 6 and a slab 8 whose inside cooled by the mold 7 is in a molten state are supported. The support segment 9 is provided with a plurality of watering nozzles for spraying water on the slab to cool the slab. The slab 8 is drawn out at a predetermined speed by a pinch roll (not shown) while increasing the solidification thickness by cooling. Is Powder 10 is added to the mold 7 on the meniscus (fluid surface), a part of which forms a molten layer due to the heat of the molten steel 2 flowing out from the discharge port 5, and a gap is formed between the mold 7 and the solidified shell. It flows in and lubricates well.
[0022]
Outside the mold 7, electromagnetic stirring devices 11a and 11b for stirring the molten steel 2 in the mold are provided. As shown in FIG. 2, the immersion nozzle 4 has two discharge ports 5 symmetrically below the immersion nozzle, and the angle Q of the discharge ports 5 is 15 ° above the axis x of the immersion nozzle 4. It is formed in a wide angle shape or a trumpet shape in which the condition is satisfied within a range of about 45 ° downward and the diameter increases from the inside to the outside with respect to the axis x. The supply of the argon gas to the immersion nozzle is blown from an upper nozzle arranged above the immersion nozzle 4 (not shown).
[0023]
Next, a continuous casting method for a high-quality stainless steel slab according to an embodiment of the present invention will be described using a continuous casting apparatus.
Pour stainless steel molten steel (molten steel) 2 into tundish 3 and when molten steel 2 in tundish 3 has accumulated about 20 to 25 tons, attach it to the bottom of tundish 3 while continuing pouring from a ladle. The pouring from the dipped nozzle 4 to the mold 7 is started. Then, when a predetermined molten steel is poured into the mold 7, the molten steel 2 is poured into the mold 7 while holding for about 1 minute to form a sufficiently solidified shell, and then starting to pull out the dummy bar. Then, the meniscus of the molten steel 2 is raised to a position about 100 mm below the upper end of the mold 7 to perform casting.
[0024]
Since the molten metal is poured into the mold 7, the discharge port of the immersion nozzle is widened and the amount of molten steel to be poured satisfies 5.0 ton / min or less. It can suppress the discharge flow to a slow flow, and by forming a good discharge flow, bubbles and inclusions that enter the deep part of the slab accompanying powder entrainment and downward flow due to molten steel discharge flow Can be suppressed. If the pouring rate is more than 5 tons / min, the discharge flow of molten steel from the discharge port becomes too strong, and bubbles and inclusions that enter the deep part of the slab accompanying powder entrainment and downward flow are generated. Increases and impairs the quality of the slab.
[0025]
Further, the angle of expansion of the discharge port of the immersion nozzle is within an angle range of 15 degrees upward to 45 degrees outward with respect to the axis of the immersion nozzle, and at least 50% of the outer periphery of the discharge port is expanded. By making the immersion depth (L) 100 to 350 mm, the discharge flow from the immersion nozzle becomes a uniform and slow flow, and furthermore, the solidified shell is inverted. It is possible to suppress the strong upward flow or downward flow, and to suppress the entrainment of powder and fluctuation of the molten metal level, and the intrusion of bubbles and inclusions accompanying the molten steel into the deep part of the slab, Defects that occur on the surface layer and inside of the slab can be prevented.
[0026]
FIG. 2 shows the immersion nozzle used in the present embodiment, in which the discharge port has a trumpet shape in which the entire outer periphery of the discharge port is widened from the inside to the outside with respect to the axis x of the immersion nozzle 4. The angle Q was set in a range from 15 degrees upward to 45 degrees downward. The ratio D / d of the diameter (inner diameter) D of the main body of the immersion nozzle to the diameter d of the discharge port is set to be 1.0 to 1.5, and the molten steel passing through the inside of the immersion nozzle is discharged from the discharge port to the inside of the mold. The molten steel flow flowing out into the mold can be made uniform and slow, eliminating the drift of the molten steel flow into the mold, suppressing the excessive flow of the molten steel flow to the meniscus, To prevent the generation of
[0027]
In addition, by suppressing the formation of an excessive downward flow, it is possible to prevent bubbles and inclusions from entering the deep portion of the slab, thereby preventing the surface and internal defects of the slab. Here, if the angle of the discharge port of the immersion nozzle exceeds 15 degrees upward, the upward flow becomes strong, and this upward flow causes the entrainment of powder. On the other hand, if the angle of the discharge port exceeds 45 degrees downward, the downward flow becomes strong and bubbles and inclusions accompanying the molten steel penetrate into the deep part of the slab, causing bubbles and inclusions on the surface layer and inside of the slab. The resulting defects are likely to occur.
[0028]
Further, when the immersion depth (L) is smaller than 100 mm, the fluctuation of the molten metal level and the entrainment of the powder due to the discharge flow increase. On the other hand, when the immersion depth (L) exceeds 350 mm, the downward flow becomes strong and the air bubbles accompanying the molten steel increase. And inclusions penetrate deep into the slab.
For these reasons, it is more preferable to set the immersion depth to 10 degrees upward to 30 degrees downward and the immersion depth to 150 to 300 mm. In addition, the discharge port for widening the immersion nozzle may be any as long as it forms a widening from the inside to the outside with reference to the axis of the immersion nozzle, and the main body of the immersion nozzle is generally used. A split type or an integrated type attached to a tundish can be used.
[0029]
Further, in continuous casting, poor lubrication of the powder 10 and the level of the molten metal surface occur during the period from the start of casting until the steady speed is reached, or during casting at a steady casting speed of 1.2 to 5 ton / min or less. If there is a danger of breakout due to fluctuations, etc., the pouring rate should be reduced as much as possible, or the pouring rate should be less than 0.6 ton / min. In such a case, it is necessary to perform casting with an extremely low pouring amount from the immersion nozzle 4 in relation to the ladle replacement time.
[0030]
On the other hand, even during casting at a steady casting speed, a drift may occur in the flow of the molten steel 2 on the left and right sides of the discharge port 5 of the immersion nozzle 4, and this discharge flow makes the flow in the mold 7 unstable. In particular, in the vicinity where the immersion nozzle 4 is immersed, since the gap between the immersion nozzle 4 and the inner wall is narrow, the flow of the molten steel 2 at this portion is reduced, and the uniformity of the slab 8 in the width direction is reduced. In any case where flow is not obtained and stagnation occurs due to fluctuations in flow, there is a concern that the quality of the slab 8 may be impaired.
[0031]
Therefore, in order to produce a higher quality cast slab, the electromagnetic stirrers 11a and 11b are energized in any of a range of 200 to 350 mm below the meniscus formed in the mold 7 and the The flow of the molten steel 2 that swirls around the peripheral wall is formed. The flow of the molten steel 2 can clean the inner surface of the solidified shell with the flow of the molten steel 2, prevent bubbles and inclusions from being captured, and form a good solidified shell with few bubbles and inclusions. can do.
[0032]
Further, it is also possible to blow argon gas into the immersion nozzle 4, in which case the argon gas blown from the upper nozzle disposed above the immersion nozzle 4 can be blown, and the amount is 4 NL / min or less. In addition, it is possible to suppress the inclusion of inclusions inside the immersion nozzle 4 and to promote the floating of the inclusions mixed in the molten steel 2 in the mold 7. When the blowing amount of the argon gas exceeds 4 NL / min, the number of bubbles of the argon gas increases, and the number of bubbles captured by the solidified shell 6 also increases, thereby impairing the quality of the slab 8.
[0033]
Further, in the present embodiment, an immersion nozzle in which the content of either or both of carbon and silica is reduced to zero or less than 5% by mass, or a dolomite component (a main component of which is CaO-MgO) is used. Nozzles can be used. In the case of this hardly adhering immersion nozzle, since there is little adhesion of inclusions on the inner surface of the immersion nozzle and the clogging of the discharge port 5 does not occur, it is possible to perform casting without blowing argon gas, which is caused by argon gas. Since bubble defects can be prevented, more preferable results can be obtained.
[0034]
【Example】
Next, an example of a continuous casting method for a high-quality stainless steel slab according to an embodiment of the present invention will be described.
In a mold having a thickness of 250 mm and a width of 1200 mm, a discharge port having a size of 60 ° is used as a wide-angle discharge port, and the inner diameter D of the immersion nozzle / the diameter of the discharge port is within a predetermined range. It was immersed, and casting was performed in a case where an output of 0.4 Mw was given to an electromagnetic stirring device (MD-EMS) and in a case where electromagnetic stirring was not performed. As a result, as shown in FIG. 3, when the diameter D / d of the immersion nozzle and the discharge port is in the range of 1.0 to 1.5, the product is formed by the effect of the slow formation of the discharge flow by using the wide-angle discharge port. The inconsistency index is good, and the combined inconsistency index is further greatly improved by using an electromagnetic stirrer (MD-EMS) in combination, and a high quality cast piece can be manufactured. In addition, the use of immersion nozzles with different angles of immersion nozzle discharge ports and the angle of divergence of discharge ports immersed in a mold and casting while pouring molten steel, and using electromagnetic stirring (MD-EMS) together It carried out about the case where it did.
[0035]
As a result, as shown in FIG. 4, when the immersion nozzle having the conventional discharge port without using the widening of the discharge port was used (×), the product mismatch occurrence index was 0.4 or more regardless of the pouring amount. And the variation became large, resulting in a bad result. However, when casting is performed with the discharge port widened and the D / d of the immersion nozzle in the range of 1.0 to 1.5 (○), the product inconsistency index may be 0.3 or less. As a result, a high quality cast slab could be produced.
[0036]
Further, even when casting is performed with the outer circumference of the discharge port widened by 50% and the D / d of the immersion nozzle in the range of 1.0 to 1.5 (▲), the product mismatch index is 0.25 or less. And a high quality cast slab could be produced. When the discharge port is widened, the D / d of the immersion nozzle is set in the range of 1.0 to 1.5, and the molten steel in the mold is subjected to electromagnetic stirring (MD-EMS) and cast (●), In addition, there was no occurrence of internal defects, and it was possible to manufacture a cast piece in which the occurrence of product inconsistency was stably prevented, and the quality of the steel material processed from the cast piece was good.
[0037]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions without departing from the gist are within the scope of the present invention.
For example, in addition to the electromagnetic stirrer that stirs the molten steel in the mold, the electromagnetic stirrer arranged in the mold may be arranged on the support segment of the slab to stir the unsolidified molten steel. Further, the discharge port of the immersion nozzle may be a circular one or a rectangular one such as a square or a rectangle.
[0038]
【The invention's effect】
As described above, in the method for continuously casting high-quality stainless steel slabs according to claims 1 to 6, the molten steel in the tundish is cast into a mold through a dipping nozzle using a bending-type continuous casting machine having a vertical portion. In the casting method of molten stainless steel using a vertical bending continuous caster for pouring, the immersion nozzle whose discharge port is widened from the inside to the outside with respect to the axis of the immersion nozzle is immersed in the mold and poured. Since the casting is performed at the pouring rate of 0.6 to 5.0 tons / minute, the flow of molten steel is suppressed from becoming strong, the flow of molten steel is made uniform in the width direction of the mold, and powder due to the discharge flow of molten steel is formed. Bubbles and inclusions that enter the deep part of the slab accompanying the entrainment and downward flow of the slab can be suppressed, and the quality of the slab can be improved.
[0039]
In particular, in the continuous casting method for a high-quality stainless steel slab according to the second aspect, the outlet of the nozzle is widened within an angle range of 15 degrees upward to 45 degrees downward with respect to the axis of the immersion nozzle. Therefore, it is possible to make the discharge flow slow, and to suppress the drift of the discharge flow of the molten steel caused by clogging of the discharge port to produce a better quality slab without surface and internal defects. can do.
[0040]
In the continuous casting method for a high-quality stainless steel slab according to the third aspect, the immersion depth of the immersion nozzle is set to 100 to 350 mm downward from the meniscus and the molten metal is poured into the mold. Entrapment of powder or intrusion of bubbles or inclusions into the deep portion of the slab can be suppressed, and the quality of the slab can be improved.
In the continuous casting method for a high quality stainless steel slab according to claim 4, since the ratio of the inner diameter D of the immersion nozzle to the diameter d of the discharge port is 1.0 to 1.5, the molten steel is discharged from the discharge port. The flow velocity can be reduced, and the drift of the discharge flow during casting can be suppressed, and defects of the slab due to the drift of the discharge flow can be prevented.
[0041]
In the continuous casting method for a high-quality stainless steel slab according to claim 5, since at least 50% or more of the discharge ports of the immersion nozzle have a widening angle in the outward direction with respect to the axis of the immersion nozzle, the discharge port is formed. Is increased to at least 50%, the discharge flow velocity of the molten steel can be reduced, the drift of the discharge flow during casting can be suppressed, and the overall strength of the immersion nozzle can be prevented from lowering.
In the continuous casting method of high quality stainless steel slab according to claim 6, since the molten steel poured into the mold is electromagnetically stirred, a swirling molten steel flow is formed around the inner periphery of the mold to form the vicinity of the immersion nozzle or the solidified shell. Can enhance the shell-washing effect on the inner surface of the steel, remove bubbles and inclusions trapped in the solidified shell, and produce a slab having a high quality surface layer.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a continuous casting apparatus used for a continuous casting method of a high-quality stainless steel slab according to an embodiment of the present invention.
FIG. 2 is a sectional view of an immersion nozzle used in a continuous casting apparatus.
FIG. 3 is a graph showing a relationship between an inner diameter D of an immersion nozzle / an inner diameter d of a discharge port and a product mismatch index.
FIG. 4 is a graph showing a relationship between a pouring amount and a product incompatibility index.
[Explanation of symbols]
1 Continuous casting equipment 2 Stainless steel molten steel (molten steel)
Reference Signs List 3 tundish 4 immersion nozzle 5 discharge port 6 solidified shell 7 mold 8 slab 9 support segment 10 powder 11a, 11b electromagnetic stirring device D inner diameter of immersion nozzle d inner diameter of discharge port

Claims (6)

垂直部を有する曲げ型連続鋳造機を用いてタンディッシュ内の溶鋼を浸漬ノズルを介して鋳型に注湯する垂直曲げ連鋳機を用いたステンレス溶鋼の鋳造方法において、吐出口を浸漬ノズルの軸心に対して内側から外側に拡角にした浸漬ノズルを鋳型内に浸漬して溶鋼を注湯し、該注湯量を5.0トン/分以下にして鋳造することを特徴とする高品質ステンレス鋳片の連続鋳造方法。In a casting method of stainless steel molten steel using a vertical bending continuous caster in which molten steel in a tundish is poured into a mold through an immersion nozzle by using a bending type continuous casting machine having a vertical portion, a discharge port is connected to an axis of the immersion nozzle. A high-quality stainless steel characterized by casting molten steel by pouring molten steel by dipping a dipping nozzle whose angle is widened from the inside to the outside with respect to the core, and pouring the molten steel at a rate of 5.0 tons / min or less. A continuous casting method for slabs. 請求項1記載の高品質ステンレス鋳片の連続鋳造方法において、前記浸漬ノズルの吐出口が浸漬ノズルの軸心に対して外側方向に上向き15度〜下向き45度の角度の範囲以内となる拡角の吐出口を有することを特徴とする高品質ステンレス鋳片の連続鋳造方法。2. The continuous casting method for a high-quality stainless steel slab according to claim 1, wherein the discharge port of the immersion nozzle has an angle of 15 degrees upward to 45 degrees downward with respect to the axis of the immersion nozzle. A continuous casting method for high quality stainless steel slabs, characterized by having a discharge port. 請求項1又は2記載の高品質ステンレス鋳片の連続鋳造方法において、前記浸漬ノズルの浸漬深さをメニスカスから下方に100〜350mmにして鋳型に注湯することを特徴とする高品質ステンレス鋳片の連続鋳造方法。3. The high quality stainless steel slab according to claim 1, wherein the immersion depth of the immersion nozzle is 100 to 350 mm below the meniscus and poured into the mold. Continuous casting method. 請求項1〜3のいずれか1項に記載の高品質ステンレス鋳片の連続鋳造方法において、前記浸漬ノズルの内径Dと吐出口の直径dの比が1.0〜1.5にすることを特徴とする高品質ステンレス鋳片の連続鋳造方法。The continuous casting method for a high-quality stainless steel slab according to any one of claims 1 to 3, wherein a ratio of an inner diameter D of the immersion nozzle to a diameter d of the discharge port is 1.0 to 1.5. Features a continuous casting method for high quality stainless steel slabs. 請求項1〜4のいずれか1項に記載の高品質ステンレス鋳片の連続鋳造方法において、前記浸漬ノズルの吐出口の外周の少なくとも50%以上が浸漬ノズルの軸心に対して外側方向に拡角の角度を有することを特徴とする高品質ステンレス鋳片の連続鋳造方法。5. The continuous casting method for a high-quality stainless steel slab according to claim 1, wherein at least 50% or more of the outer circumference of the discharge port of the immersion nozzle expands outward with respect to the axis of the immersion nozzle. A continuous casting method for high quality stainless steel slabs, characterized by having an angle. 請求項1〜5のいずれか1項に記載の高品質ステンレス鋳片の連続鋳造方法において、前記鋳型内に注湯された溶鋼を電磁攪拌することを特徴とするステンレス溶鋼の連続鋳造方法。The method for continuously casting high-quality stainless steel slabs according to any one of claims 1 to 5, wherein the molten steel poured into the mold is electromagnetically stirred.
JP2002263608A 2002-09-10 2002-09-10 Continuous casting method for stainless steel slabs to prevent surface and internal defects Expired - Fee Related JP3817209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263608A JP3817209B2 (en) 2002-09-10 2002-09-10 Continuous casting method for stainless steel slabs to prevent surface and internal defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263608A JP3817209B2 (en) 2002-09-10 2002-09-10 Continuous casting method for stainless steel slabs to prevent surface and internal defects

Publications (2)

Publication Number Publication Date
JP2004098127A true JP2004098127A (en) 2004-04-02
JP3817209B2 JP3817209B2 (en) 2006-09-06

Family

ID=32263280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263608A Expired - Fee Related JP3817209B2 (en) 2002-09-10 2002-09-10 Continuous casting method for stainless steel slabs to prevent surface and internal defects

Country Status (1)

Country Link
JP (1) JP3817209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000896A (en) * 2004-06-17 2006-01-05 Kobe Steel Ltd Continuous casting method
CN111683766A (en) * 2018-02-28 2020-09-18 贺利氏电测骑士国际有限公司 Method and device for monitoring a continuous casting process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382137B (en) * 2017-03-03 2021-09-10 日铁不锈钢株式会社 Continuous casting method and continuous casting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000896A (en) * 2004-06-17 2006-01-05 Kobe Steel Ltd Continuous casting method
JP4553639B2 (en) * 2004-06-17 2010-09-29 株式会社神戸製鋼所 Continuous casting method
CN111683766A (en) * 2018-02-28 2020-09-18 贺利氏电测骑士国际有限公司 Method and device for monitoring a continuous casting process
CN111683766B (en) * 2018-02-28 2022-03-22 贺利氏电测骑士国际有限公司 Method and device for monitoring a continuous casting process
US11673187B2 (en) 2018-02-28 2023-06-13 Heraeus Electro-Nite International N.V. Method and apparatus for monitoring a continuous steel casting process

Also Published As

Publication number Publication date
JP3817209B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JPH1110301A (en) Stopper device for controlling high accurate flow rate and continuous casting method using it and device therefor
JP2004001057A (en) Dipping nozzle for continuous casting of thin slab
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JP2004344900A (en) Dipping nozzle and continuous casting method using the same
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP4203167B2 (en) Continuous casting method for molten steel
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JPH08155593A (en) Method for continuously casting thin cast slab and immersion nozzle for continuous casting
JPH04220148A (en) Molten steel supplying nozzle
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
RU2419508C2 (en) Mixer
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JP4490947B2 (en) Metal melt discharge structure.
JP2002079355A (en) Method for continuously casting steel
JP2003080350A (en) Method for continuously casting high cleanliness steel
JPH04238658A (en) Immersion nozzle for continuous casting
JP3726692B2 (en) Continuous casting method
JP2001232449A (en) Immersed nozzle for continuous casting
JP4492333B2 (en) Steel continuous casting method
JP2004209512A (en) Continuous casting method and immersion nozzle
JP2007237244A (en) Tundish upper nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R151 Written notification of patent or utility model registration

Ref document number: 3817209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees