TWI361118B - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting Download PDF

Info

Publication number
TWI361118B
TWI361118B TW98117436A TW98117436A TWI361118B TW I361118 B TWI361118 B TW I361118B TW 98117436 A TW98117436 A TW 98117436A TW 98117436 A TW98117436 A TW 98117436A TW I361118 B TWI361118 B TW I361118B
Authority
TW
Taiwan
Prior art keywords
ridges
nozzle
outlets
impregnation
tubular body
Prior art date
Application number
TW98117436A
Other languages
Chinese (zh)
Other versions
TW201023997A (en
Inventor
Koji Kido
Joji Kurisu
Hiroshi Otsuka
Arito Mizobe
Takahiro Kuroda
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Publication of TW201023997A publication Critical patent/TW201023997A/en
Application granted granted Critical
Publication of TWI361118B publication Critical patent/TWI361118B/en

Links

Description

1361118 六、發明說明: 【發明戶斤屬之技術領域3 交互參照相關申請案 這個申請案根據及主張2008年3月27日提出申請的 曰本專利申請案第2008-084166號案及2008年12月27曰 提出申請的日本專利申請案第2008-335527號案的優先權 的利益,其全部内容在此以參照形式被併入本文。 發明背景 發明領域 本發明相關於用於將鋼水從一餵槽澆鑄至一鑄模的一 連續鑄造浸潰喷嘴。 C先前技術3 相關技術說明 在藉由連續地冷卻及凝固鋼水用於生產一預定形狀之 鑄鋼產品的一連續鑄造過程中,鋼水穿過位於一餵槽底部 的一連續鑄造浸潰噴嘴(此後還被稱為“浸潰噴嘴”)遭澆鑄 至一鑄模中。一般來說,該浸潰喷嘴包括具有一底部的一 管狀本體及一對出口。該管狀本體具有配置於一上方端處 用以使鋼水進入的一閘口及從該閘口延伸至該管狀本體内 部的一通路。該對出口配置於在該管狀本體之一下方部分 處的側壁中以便與該通路相通。該浸潰喷嘴的下方部分沒 入該鑄模中之鋼水中以防止澆鑄的鋼水飛入空氣中且防止 鋼水因與空氣相接觸而氧化。而且,該浸潰喷嘴的使用允 許調節該鑄模中的該鋼水流且從而防止漂浮於該鋼水表面 3 1361118 之上之諸如料及非金屬夾雜物的雜質陷人該鋼水中。 歲年朿,已需要改良在該連續鎮造過程中鋼的品 貝及生產率。以現有生產設備來提高鋼的生產率需要提高 洗鑄速度(生產量)。因此’為了增加鋼水通過該浸潰噴嘴的 數量’已嘗試採料如增加料嘴通料直黯在該鱗模 中一限制的空間内増加該等出口的尺寸的方法。 、 柁加°亥等出口尺寸導致流速在從該等出口之該等下方 β刀机出的出流與該等出σ之該等上方部分流出的出流之 間’及在從该右出口流出的出流與從該左出口流出的出流 之間'刀佈不平衡。該等不平賴雜(賴)歸在該鑄模之 β等狹窄的_之上且接著引起鋼水在該鑄模中以不穩定 的模式動。因此,在該鋼水表面上的液面波動由過多的 反向抓動所產生,且該鋼品質由於陷人鑄模粉末而降低, 且還發生諸如中斷的問題。 例如國際申請案第2G05/G49249號案揭露了包括一管 狀本體的-浸漬料’該本體在其—下方部分之側壁中具 有對相對的4尹、向出口。該等橫向出口各自由一或兩個向 内的水平凸Λ分為兩個或三個垂直配置的部分以產生總數 為四個或六個的出D 第 2005/049249 號案 (參見第18A及18B圖)。國際申請案 福述了該浸潰喷嘴允許阻止堵塞且允 。午產生在速度上更岣勻的且其中旋轉及漩渦 顯著減少的更 穩定及受控制的出流。 。玄等心明者執行了關於國際申請案第2GG5/G49249號 案的該浸潰喷嘴、—羽Α .. I知類型的浸潰喷嘴及該習知類型之 4 1361118 一修改的浸潰喷嘴(參見第19圖)的水模型測試,以研究在 鋼水從各浸潰喷嘴流出之模式中的變化。該習知類型的浸 潰喷嘴包括在一下方部分之該側壁中具有一對相對出口的 一管狀本體。該修改類型的浸潰喷嘴包括從該浸潰喷嘴之 内表面凸出進入該通路之相對的隆起部,該等隆起部配置 於該等相對出口之間的中間。 第20A及20B圖顯示指示關於該等浸潰喷嘴之該等水 模型測試之結果的圖形。在第20A圖之圖形中,該橫座標 表示如在顯示該鑄模之寬側壁之一前側圖中所見到之在該 浸潰喷嘴之右側或左側上的該等反向流動之速度之標準偏 差的平均值CJav,且該縱座標表示在該等右側與左側反向流 動之速度的標準偏差之間的差Λσ。在第20B圖之圖形 中,該橫座標表示該等右側及左側反向流動之速度之標準 偏差的平均值aav,且該縱座標表示該等右側及左側反向流 動之速度的平均值Vav。此外,樣品A與國際申請案第 2005/049249號案的該浸潰喷嘴(四個出口類型的喷嘴)相對 應,樣品B與該習知類型的浸潰喷嘴相對應,且樣品C與 該修改類型的浸潰喷嘴相對應。第20A圖指示該習知類型 的浸潰喷嘴(樣品B)展現了在該等右側與左側反向流動之 流速的標準偏差之間的最大差Λσ,即在該等右側及左側 反向流動之速度之間的最大差,而國際申請案第 2005/049249號案的浸潰喷嘴(樣品Α)及該修改類型的浸潰 喷嘴(樣品C)展現了在該等右側與左側反向流動之速度之 間較小的差。在另一方面,第20Β圖指示該習知類型的浸 5 1361118 潰噴嘴(樣品B)及國際申請案第2005/049249號案的浸潰喷 嘴(樣品A)展示了該等右側及左側反向流動之速度的較大 平均值Vav且該修改類型的浸潰噴嘴(樣品C)展現了該最小 平均值Vav。 在該等右側與左側反向流動之速度的標準偏差之間的 差Λσ及該等右側及左側反向流動之速度的平均值vav隨 著生產量的提高而増加。從改良平板之品質的觀點來說, 期望Δσ為2 cm/sec或更小,且Vav為10 cm/sec至30 cm/sec。注意的是所有該等樣品的八(7都為2 cm/sec或更 小,而所有該等樣品的Vav都在10 cm/sec至30 cm/sec之 範圍之外。 在國際申請案第2005/049249號案的浸潰噴嘴(四個出 口類型噴嘴)的情況中,如在第21A、21B圖中該等流體分 析結果之所指示,較大數量的該等出流從該等出口之該等 下方部分流出而較小數量的該等出流從該等上方部分流 出’其結果是該等反向流動之速度高達3 5 cm/sec。對於該 等流體分析’該鑄模設定為具有15〇〇 mm><235 mm之尺寸_ 且邊生產量設定為3.0 ton/min。 而且’具有四或更多個出口的國際申請案第 2005/049249號案的浸潰喷嘴不僅要求一複雜的製造過 程’而且很容易在發生堵塞或熱磨損該等出口時在該等右 側與左側出流之間引起不平衡。 本發明考慮到該等以上狀況予以做出,且本發明之〜 目的在於提供用於減小從該喷嘴之該等出口流出之鋼水的 6 1361118 衝銷且減小在該鋼水表面處的液面波動且易於製造之用於 連續鑄造的一浸潰喷嘴。 C發明内容3 發明概要 本發明相關於用於連續鑄造之一浸潰喷嘴。用於連續 鑄造之該浸潰喷嘴包括具有一底部的一管狀本體及一對相 對的出口。該管狀本體具有配置於一上方端處之用於使鋼 水進入的一閘口及從該閘口向下延伸至該管狀本體之内部 的一通路。該對相對的出口配置於在該管狀本體之一下方 部分處的一側壁中以便與該通路相通。用於連續鑄造之該 浸潰喷嘴進一步包括從該對出口之間之一内壁水平地凸出 進入該通路的一對相對的隆起部。該内壁定義了該通路。 如在此所使用之術語“隆起部從一内壁水平地凸出進 入該通路”是指隆起部各自從一内壁中之一側水平地延伸 至另一側,即從在一個出口與該内壁中一側之間的一邊界 至在該另一出口與該内壁中另一側之間的另一邊界。 在本發明之用於連續鑄造的該浸潰噴嘴中,較佳的是 a/a’在從0.05至0.38之範圍中且b/b’在0.05至0.5之範圍 中,其中a’及b’分別是在一前視圖中該等出口之一水平寬 度及一垂直長度;a是該等隆起部在端面處的一凸出高度; 且b是該等隆起部的一垂直寬度。而且,較佳的是c/b’在 0.15至0.7之範圍中,其中c是在一前視圖中該等出口之上 方邊緣與該等隆起部之垂直寬度中心之間的一垂直距離。 在本發明之用於連續鑄造的該浸潰噴嘴中,還較佳的 7 1361118 是該等隆起部在該等隆起部之一長度方向上在相對端處各 自具有傾斜部分。該等傾斜部分向下傾斜至該管狀本體之 一外部。此外,較佳的是各出口具有以與該等傾斜部分相 同的傾斜角向下傾斜至該管狀本體之外部的一上方端面及 一下方端面。 在本發明之用於連續鑄造的該浸潰喷嘴中,而且,較 佳的是Lz/L,在從0至1之範圍中,其中L,是該通路沿著 該等隆起部之一長度方向接近於該等出口之上方的一寬 度;且L2是該等隆起部除了該等傾斜部分以外的一長度。 圖式簡單說明 第1A圖顯示根攄本發明之一實施例,用於連續鑄造之 一浸潰喷嘴。 第1B圖是沿著第1A圖之線1B-1B所獲得的一截面圖。 第2圖是該浸潰喷嘴的一部分側視圖。 第3A及3B圖是該浸潰喷嘴之部分垂直截面圖。 第3C圖是沿著第3A圖之線3C-3C所獲得的一截面圖。 第3D圖是沿著第3B圖之線3D-3D所獲得的一截面 圖。 第4圖是根據本發明之該實施例,用於解釋使用該浸 潰喷嘴之模型來執行的水模型測試的一示意圖。 第5A圖顯示根據本發明之該實施例,該浸潰噴嘴之 a/a’與△ (7之間之關係的一圖形。 第5B圖顯示根據本發明之該實施例,表示該浸潰喷嘴 之a/a’與Vav之間之關係的一圖形。 8 第6A圖顯示根據本發明之該實施例,該浸潰喷嘴之 b/b’與△ ί;之間之關係的一圖形。 第6B圖顯示根據本發明之該實施例,表示該浸潰噴嘴 之b/b’與Vav之間之關係的一圖形。 第7A圖顯示根據本發明之該實施例,該浸潰噴嘴之 c/b’與△ σ之間之關係的一圖形。 第7Β圖顯示根據本發明之該實施例,表示該浸潰喷嘴 之c/b’與Vav之間之關係的一圖形。 第8A圖顯示根據本發明之該實施例,該浸潰喷嘴之 L2/Li與△ σ之間之關係的一圖形。 第8Β圖顯示根據本發明之該實施例,表示該浸潰喷嘴 之Lz/L!與Vav之間之關係的一圖形。 第9A圖顯示根據本發明之該實施例,該浸潰喷嘴之 R/a’與△ σ之間之關係的一圖形。 第9Β圖顯示根據本發明之該實施例,表示該浸潰喷嘴 之R/a’與Vav之間之關係的一圖形。 第10A圖是根據本發明之該實施例,用於流體分析中 之該浸潰喷嘴之一模擬模型的一示意圖。 第10B圖是根據先前技術,用於流體分析中之一浸潰 喷嘴之一模擬模型的一示意圖。 第11A圖及第11B圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰喷嘴之模擬模型來執行之流體分析之結果而獲得的流體 流動模式。 1361118 第12A圖及第12B圖顯示根據先前技術,如分別在一 垂直平面及一水平平面所看到的,作為使用該浸潰喷嘴之 模擬模型來執行之流體分析之結果而獲得的流體流動模 式。 第13圖顯示根據本發明之該實施例,該浸潰噴嘴之 △ Θ與Vav之間之關係的一圖形。 第14A圖及第14B圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰喷嘴之模擬模型來執行之流體分析(Θ=0 °)之結果而獲得 的流體流動模式。 第15A圖及第15B圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰喷嘴之模擬模型來執行之流體分析(θ=25°)之結果而獲得 的流體流動模式。 第16Α圖及第16Β圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰喷嘴之模擬模型來執行之流體分析(θ=35°)之結果而獲得 的流體流動模式。 第17Α圖及第17Β圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰喷嘴之模擬模型來執行之流體分析(θ=45°)之結果而獲得 的流體流動模式。 第18Α圖及第18Β圖是根據國際申請案第 2005/049249號案,用於連續鑄造之一浸潰噴嘴的截面圖。 10 1361118 第19圖是包括凸出進入該等相對出口之間之該通路的 隆起部的一浸潰喷嘴的一部分垂直截面圖。 第20A圖及第20B圖顯示分別表示%與μ之間之 關係及i7av與Vav之間之關係的圖形。 第Μ圖及f 21B目顯示根據國際中請案第 2〇05/〇49249說案’如分別在—垂直平面及—水平平面所看1361118 VI. Description of the invention: [Technical field of inventions] 3 Cross-reference related applications This application is based on and claims the patent application No. 2008-084166 filed on March 27, 2008 and 12 of 2008 The benefit of the priority of the Japanese Patent Application No. 2008-335527, filed on Jan. 27, the entire entire entire entire entire entire entire content BACKGROUND OF THE INVENTION Field of the Invention This invention relates to a continuous casting impregnation nozzle for casting molten steel from a feed tank to a mold. C Prior Art 3 Description of Related Art In a continuous casting process for continuously producing and cooling molten steel for producing a cast steel product of a predetermined shape, molten steel passes through a continuous casting impregnation nozzle located at the bottom of a feed tank (hereinafter also referred to as "dip nozzle") is cast into a mold. Generally, the impregnation nozzle includes a tubular body having a bottom and a pair of outlets. The tubular body has a gate disposed at an upper end for allowing molten steel to enter and a passage extending from the gate to the interior of the tubular body. The pair of outlets are disposed in a side wall at a portion below one of the tubular bodies to communicate with the passage. The lower portion of the impregnation nozzle is not in the molten steel in the mold to prevent the cast molten steel from flying into the air and preventing the molten steel from oxidizing due to contact with the air. Moreover, the use of the impregnation nozzle allows adjustment of the flow of molten steel in the mold and thereby prevents impurities such as materials and non-metallic inclusions floating on the surface 3 of the molten steel from being trapped in the molten steel. Years of age, it has been necessary to improve the properties and productivity of steel during this continuous township process. Increasing the productivity of steel with existing production equipment requires an increase in the rate of production (production). Thus, in order to increase the amount of molten steel passing through the impregnation nozzles, attempts have been made to increase the size of the outlets by increasing the size of the outlets in a confined space in the scale. And an outlet size such as °°°海, resulting in a flow rate between the outflow from the lower β-knife of the outlets and the outflow from the upper portion of the σ; and flowing out from the right outlet The 'knife is unbalanced between the outflow and the outflow from the left exit. These irregularities depend on the narrowness of the mold such as β and then cause the molten steel to move in an unstable mode in the mold. Therefore, the fluctuation of the liquid level on the surface of the molten steel is caused by excessive reverse grip, and the quality of the steel is lowered due to the trapping of the mold powder, and problems such as interruption also occur. For example, International Application No. 2G05/G49249 discloses a dip-containing material comprising a tubular body having opposite pairs of yokes in the side walls of the lower portion thereof. The transverse outlets are each divided into two or three vertically disposed portions by one or two inward horizontal ridges to produce a total of four or six out of the case No. 2005/049249 (see section 18A and 18B)). International application It is stated that the impregnation nozzle allows to block clogging and allow. Midday produces a more stable and controlled outflow that is more uniform in speed and where rotation and vortices are significantly reduced. . The Xuan et al. performed the impregnation nozzle of the International Application No. 2GG5/G49249, the plume of the type I. and the known type of 4 1361118 a modified impregnation nozzle ( See Figure 19 for a water model test to investigate the change in the mode in which molten steel flows from each of the impregnation nozzles. The conventional type of impregnation nozzle includes a tubular body having a pair of opposed outlets in the side wall of a lower portion. The modified type of impregnation nozzle includes opposing ridges projecting from the inner surface of the impregnation nozzle into the passage, the ridges being disposed intermediate the opposite outlets. Figures 20A and 20B show graphs indicating the results of the water model tests for the impregnation nozzles. In the graph of Fig. 20A, the abscissa indicates the standard deviation of the speeds of the reverse flows on the right or left side of the impregnation nozzle as seen in the front side view showing one of the wide side walls of the mold. The average value CJav, and the ordinate indicates the difference Λσ between the standard deviations of the speeds of the reverse flow of the right side and the left side. In the graph of Fig. 20B, the abscissa indicates the average value aav of the standard deviations of the speeds of the right and left reverse flows, and the ordinate indicates the average value Vav of the speeds of the right and left reverse flows. Further, the sample A corresponds to the dipping nozzle (four outlet type nozzles) of the international application No. 2005/049249, the sample B corresponds to the conventional type of impregnation nozzle, and the sample C and the modification The type of impregnation nozzle corresponds. Figure 20A indicates that the conventional type of impregnation nozzle (Sample B) exhibits a maximum difference Λσ between the standard deviations of the flow rates of the right and left reverse flows, i.e., reverse flow on the right and left sides. The maximum difference between the speeds, and the dipping nozzle (sample Α) of the international application No. 2005/049249 and the immersion nozzle (sample C) of this modified type exhibit the speed of reverse flow on the right and left sides The difference between the smaller. On the other hand, Figure 20 indicates that the conventional type of immersion 5 1361118 nozzle (sample B) and the international application of the immersion nozzle (sample A) of the application No. 2005/049249 show the right and left reverse A larger average value Vav of the velocity of the flow and this modified type of impregnation nozzle (sample C) exhibits this minimum average value Vav. The difference σ between the standard deviation of the speed of the reverse flow on the right side and the left side and the average value vav of the speeds of the reverse flow on the right and left sides increase as the throughput increases. From the viewpoint of improving the quality of the flat plate, it is desirable that Δσ is 2 cm/sec or less, and Vav is from 10 cm/sec to 30 cm/sec. Note that all of these samples are eight (7 are 2 cm/sec or less, and all of these samples have Vav outside the range of 10 cm/sec to 30 cm/sec. In International Application No. 2005 In the case of the impregnation nozzle of the No. 049249 (four outlet type nozzles), as indicated by the results of the fluid analysis in Figures 21A, 21B, a larger number of such outflows from the outlets The lower portion flows out and a smaller number of such flows exits from the upper portion. The result is that the reverse flow rate is as high as 35 cm/sec. For the fluid analysis, the mold is set to have 15 turns. 〇mm><235 mm size_ and side production is set to 3.0 ton/min. And the 'dip nozzle of International Application No. 2005/049249 with four or more outlets requires not only a complicated manufacturing The process 'and it is easy to cause an imbalance between the right side and the left side outflow when clogging or thermal wear occurs. The present invention has been made in view of the above circumstances, and the object of the present invention is to provide For reducing the steel flowing out of the outlets of the nozzle 6 1361118 of water reverses and reduces the liquid level fluctuation at the surface of the molten steel and is easy to manufacture a dipping nozzle for continuous casting. C SUMMARY OF THE INVENTION The present invention relates to a dipping for continuous casting The squirt nozzle includes a tubular body having a bottom and a pair of opposite outlets. The tubular body has a gate disposed at an upper end for allowing molten steel to enter and a gate extending downwardly to a passage of the interior of the tubular body. The pair of opposite outlets are disposed in a side wall at a portion below the tubular body to communicate with the passage. The impregnation nozzle for continuous casting is further A pair of opposing ridges extending horizontally from the inner wall of the pair of outlets into the passageway. The inner wall defines the passageway. As used herein, the term "the ridge portion projects horizontally from an inner wall "The passage" means that the ridges each extend horizontally from one side of one of the inner walls to the other side, that is, from a boundary between one outlet and one of the inner walls to the other outlet Another boundary between the other side of the inner wall. In the impregnation nozzle for continuous casting of the present invention, it is preferred that a/a' is in the range from 0.05 to 0.38 and b/b' In the range of 0.05 to 0.5, wherein a' and b' are respectively a horizontal width and a vertical length of the outlets in a front view; a is a convex height of the ridges at the end faces; and b Is a vertical width of the ridges. Moreover, it is preferred that c/b' is in the range of 0.15 to 0.7, where c is the vertical width of the upper edge of the outlets and the ridges in a front view A vertical distance between the centers. In the dip nozzle for continuous casting of the present invention, it is also preferred that the ridges have respective ridges at the opposite ends in one of the lengthwise directions of the ridges. Tilted section. The inclined portions are inclined downward to an outside of the tubular body. Further, it is preferable that each of the outlets has an upper end surface and a lower end surface which are inclined downward to the outside of the tubular body at the same inclination angle as the inclined portions. In the impregnation nozzle for continuous casting of the present invention, and more preferably Lz/L, in the range from 0 to 1, wherein L is the passage along the length of one of the ridges A width that is close to the upper of the outlets; and L2 is a length of the ridges other than the inclined portions. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A shows an impregnation nozzle for continuous casting according to an embodiment of the present invention. Fig. 1B is a cross-sectional view taken along line 1B-1B of Fig. 1A. Figure 2 is a partial side view of the impregnation nozzle. 3A and 3B are partial vertical cross-sectional views of the impregnation nozzle. Fig. 3C is a cross-sectional view taken along line 3C-3C of Fig. 3A. Fig. 3D is a cross-sectional view taken along line 3D-3D of Fig. 3B. Fig. 4 is a schematic view for explaining a water model test performed using the model of the immersion nozzle in accordance with this embodiment of the present invention. Fig. 5A is a view showing a relationship between a/a' and Δ (7) of the immersion nozzle according to the embodiment of the present invention. Fig. 5B is a view showing the immersion nozzle according to the embodiment of the present invention. A graph of the relationship between a/a' and Vav. 8 Figure 6A shows a graph of the relationship between b/b' and Δί; of the immersion nozzle according to this embodiment of the present invention. 6B shows a graph showing the relationship between b/b' and Vav of the dipping nozzle according to the embodiment of the present invention. Fig. 7A shows the c/ of the dipping nozzle according to the embodiment of the present invention. A graph of the relationship between b' and Δσ. Fig. 7 is a view showing a relationship between c/b' and Vav of the immersion nozzle according to the embodiment of the present invention. Fig. 8A shows In this embodiment of the invention, a pattern of the relationship between L2/Li and Δσ of the impregnation nozzle. Fig. 8 is a view showing Lz/L! and Vav of the impregnation nozzle according to the embodiment of the present invention. A graph of the relationship between Fig. 9A shows the R/a' and Δσ between the impregnation nozzles according to this embodiment of the invention. A graph of the relationship. Fig. 9 is a view showing a relationship between R/a' and Vav of the dipping nozzle according to the embodiment of the present invention. Fig. 10A is a view of the embodiment according to the present invention, A schematic diagram of one of the simulation models for the impregnation nozzle used in fluid analysis. Figure 10B is a schematic diagram of one of the simulation models of one of the impregnation nozzles used in fluid analysis according to the prior art. Figure 11A and 11B The figure shows the fluid flow pattern obtained as a result of fluid analysis performed using a simulation model of the impregnation nozzle, as seen in a vertical plane and a horizontal plane, respectively, in accordance with this embodiment of the invention. 12A and 12B show fluid flow patterns obtained as a result of fluid analysis performed using a simulation model of the impregnation nozzle, as seen in a vertical plane and a horizontal plane, respectively, according to the prior art. Figure 13 is a view showing the relationship between Δ Θ and Vav of the immersion nozzle according to the embodiment of the present invention. Figs. 14A and 14B show the embodiment according to the present invention. Fluid flow patterns obtained as a result of fluid analysis (Θ = 0 °) performed using a simulation model of the impregnation nozzle, as seen in a vertical plane and a horizontal plane, respectively. 15A and 15B The figure shows the results obtained by fluid analysis (θ = 25°) performed using a simulation model of the impregnation nozzle as seen in a vertical plane and a horizontal plane, respectively, according to this embodiment of the present invention. Fluid flow pattern. Figures 16 and 16 show fluid analysis performed as a simulation model using the impregnation nozzle, as seen in a vertical plane and a horizontal plane, respectively, in accordance with this embodiment of the invention ( The fluid flow pattern obtained as a result of θ = 35°). Figures 17 and 17 show fluid analysis performed as a simulation model using the impregnation nozzle as seen in a vertical plane and a horizontal plane, respectively, according to this embodiment of the invention (θ = 45°) The fluid flow pattern obtained as a result of ). Figure 18 and Figure 18 are cross-sectional views of one of the impregnation nozzles for continuous casting according to International Application No. 2005/049249. 10 1361118 Figure 19 is a partial vertical cross-sectional view of a dip nozzle including a ridge that projects into the passage between the opposing outlets. Fig. 20A and Fig. 20B show graphs showing the relationship between % and μ and the relationship between i7av and Vav, respectively. The first map and the f 21B show that according to the international case No. 2〇05/〇49249, as seen in the vertical plane and the horizontal plane respectively

到的’作為使用減潰嘴嘴之模擬模型來執行之流體分析 之結果而獲得的流體流動模式。 【實施方式3 較佳實施例之詳細說明 第1A_示了根據本發明之—實施例,驗連續禱造 之一浸潰喷嘴U)(此後還稱為‘‘浸潰噴嘴”)。貫穿該實施例, 係以該浸㈣嘴U)垂直設置的方式來設定該等方向。 該浸潰喷嘴10包括具有-底部15的—圓柱形管狀本The fluid flow pattern obtained as a result of the fluid analysis performed using the simulation model of the nozzle. [Embodiment 3] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1A shows an embodiment of the present invention, in which a continuous impregnation nozzle U) (hereinafter also referred to as ''dipping nozzle') is used. In an embodiment, the directions are set in a manner that the dip (four) mouth U) is vertically disposed. The dip nozzle 10 includes a cylindrical tubular body having a bottom portion 15

=11及-對相對的出Π Η ' 14。辭狀本體u在上方端 外具有用於使鋼水進人的13及延伸至該管狀本體 一1之内部的-通路12。該對相對的出σ 14、14配置於其 :下方部分處以便與該通路12相通。因為該浸潰喷嘴需要 :有耐剝落性及_純,所㈣f狀本體η由諸如氧化 石墨之一对火材料製成。 一當從-前視圖觀看時,該等出口 14、14有具有圓㈣ :矩形«。鮮狀本體在財平方向上從定義在 =出口 之間之該通路12之一内㈣凸出進入該 12的相對的隆起部16、16。即該等相對的隆起部16、 11 丄观118=11 and - on the relative exit Η '14. The speech body u has a 13 for extending molten steel and a passage 12 extending to the inside of the tubular body 1 at the upper end. The pair of opposing exits σ 14, 14 are disposed at a lower portion thereof to communicate with the passage 12. Since the impregnation nozzle requires: flaking resistance and _pure, the (iv) f-shaped body η is made of a fire material such as one of oxidized graphite. The outlets 14, 14 have a circle (four): a rectangle « when viewed from the front view. The fresh body protrudes into the opposite ridges 16, 16 of the 12 from one of the passages 12 defined between the outlets in the fiscal direction. That is, the relative ridges 16, 11 丄 118

16對於穿過料各自的出口 14、14之中心的—垂直平面對 稱配置(在第1A圖巾以連續雙虛料以顯示)。料隆起部 16、16是-實質上矩形截面。該術語“實質上矩形截面,,企 圖涵蓋具有圓角的一矩形截面。該等隆起部i6、i6之間的 間隙是不變的。錢起部16在其長度方向之該等相對端處 具有向下傾斜至該管狀本體u之外側(參見第从及3B圖) 的傾斜部分。該等隆起部16、16的長度方向指沿 著穿過該等各自出口 Μ、14之該等中心之—線的一方向。 各出口 14具有向下傾斜至該管狀本體u之外側的一上方 4面14a及-下方端面I4b。在此實施例中’該等傾斜部分 ba、16a及該上方端面14a與該下方端面撕卩該相同的 傾斜角傾斜。16 for the vertical plane symmetry configuration of the center of each of the outlets 14, 14 through the material (in Figure 1A, the towel is shown as a continuous double material). The ridges 16, 16 are - substantially rectangular sections. The term "substantially rectangular cross section, is intended to cover a rectangular cross section having rounded corners. The gap between the ridges i6, i6 is constant. The money riser 16 has at the opposite ends of its length direction Tilting downwardly to the sloping portion of the outer side of the tubular body u (see Figures 2 and 3B). The lengthwise direction of the ridges 16, 16 refers to the centers passing through the respective outlets 14, 14 - One direction of the wire. Each of the outlets 14 has an upper 4 face 14a and a lower end face I4b which are inclined downward to the outer side of the tubular body u. In this embodiment, the inclined portions ba, 16a and the upper end face 14a are The lower end face is torsed by the same inclination angle.

如果各出口 14具有向下傾斜至該管狀本體u之外側 的泫上方端面14a及該下方端面14b,但是該等隆起部Μ、 不在亥長度方向上該等相對端處向下傾斜那麼該等出 流流動穿過該等隆起部16、16之上方的該等空間時將受阻 於該等隆起部16、16。因此,該等出流向上流出該等出口 14、從而流出的該等出流在該鑄模中該鋼水表面處與 '•玄等反向流動相碰撞,使該等相向流動之該等速度不穩 定因為這個原因,各隆起部16之該等相對端處的該等傾 斜。P刀16a、16a在該長度方向上以與各出口 14之該上方 端面14a及下方端面14b相同的傾斜角傾斜。 各該等隆起部16、16從該内壁18之一側水平延伸至 另側,即從在一個出口 14與該内壁18中之一側之間的 12 1361118 一邊界至在另一個出口 14與該内壁18中之另一側之間的 另一邊界。較佳地,各隆起部16在該長度方向上該等相對 端處的該等端面,即該等各自傾斜部分16a、16a之該等端 面,如第3A圖之所顯示,是垂直於該等隆起部16、16之 長度方向的垂直面。然而在該管狀本體11是圓柱形等時, 該等端面可具有如第3B圖所顯示之匹配該管狀本體11之 曲率的一曲率。具有這一曲率的該等端面不會影響鋼水的 流出。 較佳地,該管狀本體11在該底部15處具有一凹進的 鋼水貯槽17。雖然不具有該凹進的貯槽17不會不利地影響 本發明之效果,但是該凹進的鋼水貯槽17藉由暫時地保持 澆鑄至該浸潰喷嘴10中的鋼水而允許鋼水更均勻且更穩定 地分佈於在該等出口 14、14之間。無論該等出口 14、14 之一水平寬度a’是否與該通路12之寬度(在該通路12是圓 柱形的情況下,為其直徑)相同,都不會影響本發明之效果。 習知的浸潰喷嘴遭受較大量的該等出流從該等出口的 下方部分流出,這導致流速在從該等出口之該等下方部分 流出的該等出流與從該等上方部分流出的該等出流之間分 佈不平衡。根據本發明之該實施例,該浸潰喷嘴10在另一 方面由於該等相對的隆起部16、16阻止該鋼水流動穿過該 浸潰喷嘴10的效果,故允許足夠數量的出流也從該等上方 部分流出。此外,由於在該等隆起部16、16之間用以調節 該流動之該間隙的效果,當從穿過該等各自出口 14、14之 中心的該垂直平面觀察時,向下流動穿過該間隙的該鋼水 13 1361118 對於該浸潰喷嘴ίο之軸是兩邊相對稱的。而且,該浸潰噴 嘴10藉由允許該等出流均勻地流出該等出口 14、14的整 個區域,來減小撞擊在該鑄模之狹窄側壁上之該等出流的 最大速度,且依次降低該等反向流動的速度。這解決了在 該鋼水表面之該液面波動及鑄模粉末陷入之該等問題,且 從而防止降低該鋼的品質。 此外,因為該浸漬喷嘴10藉由形成從在該對出口之間 之該内壁突出進入該通路的該等相對隆起部而獲得,所以 該浸潰喷嘴10可藉由形成一傳統的浸潰喷嘴的一方法而輕 易地予以製造。 形成一傳統的浸潰喷嘴中之出口之方法的範例包括: 一方法,其包含在一管狀本體中形成具有小於最終預期之 一大小的出口,且接著垂直於該管狀本體鑽孔該等出口以 擴大該等出口且形成具有一預期截面尺寸的隆起部;及一 方法,其包含藉由CIP(冷均壓)以一貫心棒形成凹入部,其 是將成為隆起部之部分,接著用粘土(用於產生該管狀本體 的一材料)來填充該等凹入部,且按壓該粘土,從而形成具 有一預期截面尺寸的隆起部。 [水模型測試] 為了決定在其間具有該等隆起部16、16之該等出口 14、14的最佳化組態,使用該浸潰喷嘴10之模型執行水模 型測試。在下面將描述所執行的該等水模型測試。 用以決定在其間具有該等隆起部16、16之該等出口 14、14之最優化組態的參數表示如下。該等出口 14、14 14 1361118 的水平寬度及垂直長度如在一前視圖中所見到的分別表示 為a’及b’;該等隆起部16、16在該等端面處的凸出高度表 示為a,該等隆起部16、16具有一實質上為矩形的截面, 且該等隆起部16、16的垂直寬度表示為b;且在該等出口 14、14之上方邊緣至該等隆起部16、16之垂直寬度中心之 間的該垂直距離表示為c(參見第2圖)。該通路12在該等 隆起部16、16之該長度方向上接近於該等出口 14、14之 上方的寬度表示為Li,且該等隆起部16、16之除了該等傾 斜部分16a、16a以外的長度(即水平部分16b、16b的長度) 表示為L2(參見第3A及3B圖)。該等傾斜部分16a、16a、 該等上方端面14a、14a及該等下方端面14b、14b的向下 傾斜角表示為Θ,且該等出口 14、14之圓角的曲率半徑表 示為R。 第4圖是用於解釋該等水模型測試的一示意圖。 一 1/1比例的鑄模21由一丙烯酸樹脂組成。該鑄模21 的尺寸經決定使得該等長側的長度(在第4圖中,在該左-右方向上)是925 mm且使得該等短側的長度(在第4圖中, 在垂直於該紙表面的一方向上)是210 mm。水藉由一泵以 等於1.4 m/min之一循環速度的一速度循環流經該浸潰喷 嘴10及該鑄模21。 該浸潰噴嘴10定位於該鑄模21的中心使得該等出口 14、14面向該鑄模21的該等狹窄側壁23、23。螺旋槳式 流速檢測器22、22分別安裝於與該鑄模21之狹窄側壁23、 23相距325 mm(該鑄模21之該等長側之長度的1/4)且距離 15 1361118 該水表面30 mm深處。接著,該等反向流動Fr、Fr的速 度每隔三分鐘予以量測。在此之後,計算在該等右側及左 側反向流動Fr、Fr之速度的標準偏差間的差△ σ與其平均 值Vav且估計該等結果。 此處,將描述關於在該等反向流動與該生產量之間的 相關性。 該等水模型測試遭執行以釐清在該浸潰噴嘴之右側上 與左側上之該等反向流動的標準偏差之間的差Δσ與該生 產量之間的相關性及在該右側與左側反向流動之速度的平 均值Vav與該生產量之間的相關性。該等水模型測試的結 果指示該等值△ (7及Vav的增加與該生產量的提高成比 例。用於該等測試之該所設想的鑄模及浸潰喷嘴的尺寸經 決定使得該鑄模具有700 mm至2000 mm之長度及150 mm 至350 mm之寬度且該浸潰喷嘴的該通路具有15 cm2至120 cm2之截面面積(直徑為50 mm至120 mm),這些尺寸通常 應用於平板的連續鑄造中。 當該生產量低於1.4 ton/min時,在鋼水之表面處該等 反向流動的速度過慢。然而,當該生產量高於7 ton/min時, 該等反向流動的速度過快,由於在該鋼水的表面處所增加 的液面波動及鑄模粉末的陷入,導致鋼之品質有降低的危 險。因此,期望該生產量從1.4 ton/min至7 ton/min。該測 試顯示當在該等右側與左側反向流動之速度的標準偏差之 間的差△ σ為2.0 cm/sec或以下時且當該右側及左側反向 流動之速度的平均值Vav為1 〇 cm/sec至3 0 cm/sec時,該 16 1361118 生產量在以上所提及的最佳化範圍之内。因此,2.0 cm/sec 及以下的△〇與10 cm/sec至30 cm/sec的Vav在評估執行 用以決定在其間具有該等.隆起部之該等出口的最佳化組態 之該等水模型測試之以下所提及的結果中作為關鍵的範 圍。 在水模型測試中該等生產量使用該方程式予以轉換: 鋼水的比重/水的比重=7.0。所以,該等以上的生產量等於 鋼水的生產量。 第5A圖顯示了表示a/a’與△ σ之間之相關性的一圖 形。第5Β圖顯示了表示a/a’與Vav之間之相關性的一圖 形。在此等圖式中,點♦表示個別的測試測量且該實線表 示一回歸曲線,且該等表示應用於稍後將提及之圖式中。 第5A及5B圖指示當a/a’在0.05至0.38之範圍内時,△ <7 為 2.0 cm/sec 或以下且 Vav 為 10 cm/sec 至 30 cm/sec。 在a/a,低於0.05時,該等隆起部不足以展示阻礙及調 節該流動的效果,導致在浸潰喷嘴之該等右側及左側之上 之不對稱流且反向流動具有超過3 0 cm/sec的速度。這將導 致在鋼水之表面液面中一廣泛的波動及諸如鑄模粉末之陷 入的不利影響。在另一方面,當a/a’超過0.38時,在該等 出口之該等下方部分的該等出流具有稍微過慢的速度,即 在該等出口之該等上方部分的該等出流具有過高的速度, 且該等反向流動具有超過30 cm/sec的速度。這將導致在鋼 水之表面液面中一廣泛的波動及諸如鑄模粉末之陷入的不 利影響。 17 1361118 用於本測試巾的該等其他參數設定為該等下面值。 b/b^0.25 . c/b^O.57 . L2/Ll=0.83 . θ=15° * R/a»=0.14 〇 第6Α圖顯示了表示b/b,與Δσ之間之該相關性的一 圖形。第6Β圖顯示了表示b/b,與l之間之該相關性的一 圖形。此等圖式指示當b/b,在〇〇5至〇5之範圍内時,△ σ是2.0 cm/sec或以下且Vav為1〇⑽/似至3〇⑽/咖。 當b/b’在0.05至〇.5之範圍之外時,將發生與當_, 在0.05之0.38之範圍之外所觀察到之一樣的現象:在鋼水 之表面液面中—廣泛的波動;及諸如鑄模粉末之陷入的不 利影響。 用於本測試中的該等其他參數設定為該等下面值。 a/a,=0.2卜 c/b,=〇.48,L2/K77,θ=15。,R/a,=〇.l4。 第7A圖顯示了表示在e/b,與心之間之該相關性的一 圖形。第7Β圖顯示了表示在c/b,與^之間之該相關性的 -圖形。帛7A圖指示心對e/b’的改變較不敏感,而第 7B圖指示當c/b,在〇·15至〇 7之範圍内時l為1〇⑽/咖 至 30 cm/sec。 當c/b’在0.15至0.7之範圍之外時,將發生與當a/a, 在0.05之0.38之範圍之外所觀察到之—樣的現象:在鋼水 之表面液面中-廣泛的波動;及諸如鑄模粉末之陷入的不 利影響。 用於本測試中的該等其他參數設定為該等下面值。 a/a’=0.24 ’ b/b’=0.25,L2/L丨=0.77,θ=15。,R/a,=〇.l4。 第8A圖顯示了表示在i^/L,與八σ之間之該相關性的 18 1361118 -圖形。第犯圖顯示了表示在L2/L丨與Vav之間之該相關 性的一圖形。此等圖式指示當l2U〇jl i之範圍内時, △ σ是2.〇 cm/sec或以下且Vav為1〇⑽/咖至3〇 cm/sec。 IVL,=0意思是LfO,即該等隆起部16、16是沒有水 平部分16b、16b之倒立的v形。在另一方面,當l仏大 於1時,製造該浸潰喷嘴將很困難。 在第认及8B圖中,點◊表示作為對比測試,使用不 φ 具有隆起部的一喷嘴的個別測試的測量。 用於本測試中的該等其他參數設定為該等下面值。 a/a —0.29 ’ b/b’=〇.25 ’ c/b,=〇.5,θ=15。,R/a,=014。 第9A圖顯示了表示在R/a,與“之間之該相關性的 • —圖形。第9Β圖顯示了表示在R/a,與^之間之該相關性 HI形。R/a’=〇.5意思是該等出口是橢圓形或圓形的形 狀。第9A圖指示隨著R/a,的增加,輕微增加但不 :改變很大。在另—方面,第9Β圖指示隨著R/a,的增加且 _ «而1^著4出°面積的減小,Vav增加,但是Vav在1 〇 cm/sec 30 cm/sec之範圍内。因巾’該測試證明即使在該等出口 之该等圓角具有-大曲率半徑時,該等隆起部也是有效的。 用於本測試中的該鑄模具有lSGGmmx235 mm之尺寸 且該生產量為3.0t〇n/min。 ;本及j 式中的戎等其他參數設定為該等下面值。 a/a 0_13 ’ b/b’=〇.25 ’ c/b’=〇.4 ’ L2/L,=卜 θ=0。。 士 …員示了根據本發明之該實施例,使用用於連續 禱每之„玄等《漬喷嘴所執行的水模型測試的結果,一個喷 19 嘴在該管狀本體之底部具有鋼水的貯槽,另一個不具有貯 槽。表格1指示及Vav不會因為存在或缺少該貯槽而 變化很大且在最佳化的範圍中。 用於本測試中的該等其他參數設定為該等下面值。該 鑄模具有1200 mmx235 mm之尺寸且該生產量為2.4 ton/min ° a/a’=0.14,b/b’=0.33,c/b’=0.5,L^/Lfl,θ=0ο, R/a’=0_14。 [表格1] 具有貯槽 不具有貯槽 Δ 〇 (cm/sec) 1.17 1.32 Vav (cm/sec) 26.3 28.4 [流體分析] 將描述根據本發明之該實施例來自用於連續鑄造之該 浸潰喷嘴及根據先前技術來自一浸潰喷嘴之出流的流體分 析。 該等流體分析藉由使用由Fluent亞太股份有限公司(即 目前的ANSYS日本K.K)所製造的FLUENT(流體分析軟體) 予以執行。第10A圖顯示了根據本發明之該實施例,該浸 潰喷嘴的一模擬模型,而第10B圖顯示了根據該先前技 術,一浸潰喷嘴的一模擬模型。根據該先前技術之用於該 等分析中的該喷嘴包括具有一底部的一圓柱形本體及一對 相對的出口。該對相對的出口配置於在該本體之一下方部 分的該側壁中以便與該通路相通。根據本發明之該實施例 之該浸潰噴嘴藉由提供具有相對隆起部的該習知的喷嘴而 20 1361118 獲得。下面是它們參數的值:a/a’=0」3,b/b’=0.13, c/b,=0.43,1^/1^=0.68,θ=150 該等分析在該鑄模為1540 mm長及235 mm寬且該生 產量為2.7 ton/min的假定之下予以執行。 第11A及11B圖呈現了根據本發明之該實施例,使用 該模擬模型之該等流體分析的結果。第12A及12B圖呈現 了根據先前技術,使用該模擬模型之該等流體分析的結 果。此等圖式指示了,對比於根據該先前技術之該模擬模 型,根據本發明之該實施例之該模擬模型減小了在該鑄模 中該等右側及左側出流中的衝銷、降低了在該鋼水表面處 該等反向流動的速度、且因此降低了在該鋼水表面的該液 面波動。這改良了平板的品質及平板高速鑄造的生產效率。 第13圖顯示了表示在該平均值Vav相對於該差ΛΘ中 之一變化的一圖形。該平均值Vav是由該等流體分析所計 算出之該等右側及左側反向流動之該等速度的平均值。該 差ΛΘ是在該等隆起部之該等傾斜部分的該傾斜角與該等 出口之該等上方端面及下方端面的該傾斜角之間的差。當 △ Θ為負值時,該等隆起部之該等傾斜部分之傾斜程度小 於該等出口之該等上方端面及下方端面的傾斜程度。第13 圖指示了當ΛΘ為0時,即該等隆起部之該等傾斜部分具 有與該等出口之該等上方端面及下方端面相同的傾斜角 時,Vav最小。第13圖還顯示了當ΛΘ在從-10°至+7°之範 圍内時Vav在10 cm/sec至3 0 cm/sec之範圍内,且該等反 向流動的速度是有利的。 21 1361118 在該等隆起部之該等傾斜部分與該等出口之該等上方 端面及該等下方端面具有相同的傾斜角的條件下,藉由關 於藉由改變該等傾斜部分與該等上方端面及該等下方端面 的傾斜角所導致之該等出流的改變的流體分析,進一步研 究關於根據本發明之該實施例之用於連續鑄造的該浸潰喷 嘴。該等流體分析的該等結果顯示於第14A至17B圖中。 下面是用於該等流體分析中之該等參數的該等值。 第 14A 及 14B 圖:a/a,=0_13,b/b,=0.25,c/b,=0.4, L2/L丨=1,θ=0。,生產量=3.0ton/min 第 15A 及 15B 圖:a/a,=0.13,b/b,=0.13,c/b,=0.43, 1^/1^=0.68,θ=25。,生產量=2.7 ton/min 第 16A 及 16B 圖:a/a,=0.13,b/b,=0.13,c/b,=0.43, 1^/1^=0.68,θ=35。,生產量=2.7 ton/min 第 17A 及 17B 圖:a/a,=0.13,b/b,=0.13,c/b,=0.43, Ι^/Ι^=0·68,θ=45。,生產量=2.7 ton/min 顯示於第14A至17B圖的該等流體分析的結果及顯示 於第11A及11B圖中之θ=15°下的前述流體分析的結果指 示當該傾斜角在0°至45°範圍之内時,在該鑄模中該等出 流中的衝銷減小了且鋼水表面處該等反向流動的速度也降 低了。 儘管以上已描述及說明了本發明之較佳的實施例,但 是應理解的是此等為本發明之示範且不認為是限制本發 明。在不背離本發明之精神或範圍的情況下,附加、省略、 替換及其他修改可予以作出。此外,本發明不認為受前述 22 1361118 的描述限制,且僅受該等附加的申請專利範圍限制。 【圖式簡單說明】 第1A圖顯示根據本發明之一實施例,用於連續鑄造之 一浸潰喷嘴。 第1B圖是沿著第1A圖之線1B-1B所獲得的一截面圖。 第2圖是該浸潰噴嘴的一部分側視圖。 第3A及3B圖是該浸潰喷嘴之部分垂直截面圖。 第3C圖是沿著第3A圖之線3C-3C所獲得的一截面圖。 第3D圖是沿著第3B圖之線3D-3D所獲得的一截面 圖。 第4圖是根據本發明之該實施例,用於解釋使用該浸 潰喷嘴之模型來執行的水模型測試的一示意圖。 第5A圖顯示根據本發明之該實施例,該浸潰喷嘴之 a/a’與△ σ之間之關係的一圖形。 第5Β圖顯示根據本發明之該實施例,表示該浸潰喷嘴 之a/a’與Vav之間之關係的一圖形。 第6A圖顯示根據本發明之該實施例,該浸潰噴嘴之 b/b’與△ (7之間之關係的一圖形。 第6B圖顯示根據本發明之該實施例,表示該浸潰噴嘴 之b/b’與Vav之間之關係的一圖形。 第7A圖顯示根據本發明之該實施例,該浸潰喷嘴之 c/b’與△ σ之間之關係的一圖形。 第7Β圖顯示根據本發明之該實施例,表示該浸潰喷嘴 之c/b’與Vav之間之關係的一圖形。 23 1361118 第8A圖顯示根據本發明之該實施例,該浸潰喷嘴之 L2/L丨與Λσ之間之關係的一圖形。 第8Β圖顯示根據本發明之該實施例,表示該浸潰喷嘴 之1^/1^與Vavi間之關係的一圖形。 第9A圖顯示根據本發明之該實施例,該浸潰喷嘴之 R/a’與△ σ之間之關係的一圖形。 第9Β圖顯示根據本發明之該實施例,表示該浸潰噴嘴 之R/a’與Vav之間之關係的一圖形。 第10A圖是根據本發明之該實施例,用於流體分析中 之該浸潰喷嘴之一模擬模型的一示意圖。 第10B圖是根據先前技術,用於流體分析中之一浸潰 噴嘴之一模擬模型的一示意圖。 第11A圖及第11B圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰噴嘴之模擬模型來執行之流體分析之結果而獲得的流體 流動模式。 第12A圖及第12B圖顯示根據先前技術,如分別在一 垂直平面及一水平平面所看到的,作為使用該浸潰喷嘴之 模擬模型來執行之流體分析之結果而獲得的流體流動模 式。 第13圖顯示根據本發明之該實施例,該浸潰喷嘴之 △ Θ與Vav之間之關係的一圖形。 第14A圖及第14B圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 24 1361118 潰喷嘴之模擬模型來執行之流體分析(Θ=0°)之結果而獲得 的流體流動模式。 第15Α圖及第15Β圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰喷嘴之模擬模型來執行之流體分析(θ=25°)之結果而獲得 的流體流動模式。 第16Α圖及第16Β圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰喷嘴之模擬模型來執行之流體分析(θ=35°)之結果而獲得 的流體流動模式。 第17Α圖及第17Β圖顯示根據本發明之該實施例,如 分別在一垂直平面及一水平平面所看到的,作為使用該浸 潰噴嘴之模擬模型來執行之流體分析(θ=45°)之結果而獲得 的流體流動模式。 第18Α圖及第18Β圖是根據國際申請案第 2005/049249號案,用於連續鑄造之一浸潰喷嘴的截面圖。 第19圖是包括凸出進入該等相對開口之間之該通路的 隆起部的一浸潰噴嘴的一部分垂直截面圖。 第20Α圖及第20Β圖顯示分別表示σ3ν與Δσ之間之 關係及aav與Vav之間之關係的圖形。 第21A圖及第21B圖顯示根據國際申請案第 2005/049249號案,如分別在一垂直平面及一水平平面所看 到的,作為使用該浸潰喷嘴之模擬模型來執行之流體分析 之結果而獲得的流體流動模式。 25 1361118 【主要元件符號說明】 10...浸潰喷嘴 a...凸出高度 11...管狀本體 a'...水平寬度 1B···線 A...樣品 12...通路 b...垂直寬度 13·"閘口 b’...垂直長度 14··.出口 B...樣品 14a...上方端面 C...垂直距離 14b...下方端面 C...樣品 15...底部 Fr...反向流動 16...隆起部 L1...寬度 16a...傾斜部分 L2…長度 16b...水準部分 R...曲率半徑 17...貯槽 Vav...平均值 18...内壁 Sav...平均值 21…鑄模 Θ...傾斜角 22...螺旋槳式流速檢測器 △δ…差 23...狹窄側壁 △Θ…差 3C/3D...線If each of the outlets 14 has an upper end surface 14a and a lower end surface 14b which are inclined downward to the outer side of the tubular body u, but the ridges Μ are not inclined downward at the opposite ends in the lengthwise direction, then the same The flow of the flow through the spaces above the ridges 16, 16 will be hindered by the ridges 16, 16. Therefore, the outflows flow upwardly out of the outlets 14, so that the outflows in the mold collide with the reverse flow of the surface of the molten steel in the mold, so that the speeds of the opposite flows are not Stabilization For this reason, the inclinations at the opposite ends of the ridges 16 are. The P blades 16a and 16a are inclined at the same inclination angle as the upper end surface 14a and the lower end surface 14b of each of the outlets 14 in the longitudinal direction. Each of the ridges 16, 16 extends horizontally from one side of the inner wall 18 to the other side, i.e., from a boundary between one of the outlets 14 and one of the inner walls 18 to the other outlet 14 Another boundary between the other of the inner walls 18. Preferably, the end faces of the ridges 16 at the opposite ends in the longitudinal direction, that is, the end faces of the respective inclined portions 16a, 16a, as shown in FIG. 3A, are perpendicular to the The vertical faces of the ridges 16, 16 in the longitudinal direction. However, when the tubular body 11 is cylindrical or the like, the end faces may have a curvature matching the curvature of the tubular body 11 as shown in Fig. 3B. Such end faces having this curvature do not affect the outflow of molten steel. Preferably, the tubular body 11 has a recessed molten steel sump 17 at the bottom 15. Although the sump 17 which does not have the recess does not adversely affect the effect of the present invention, the recessed molten steel sump 17 allows the molten steel to be more uniform by temporarily maintaining the molten steel cast into the immersion nozzle 10. And more stably distributed between the outlets 14, 14. Whether or not the horizontal width a' of one of the outlets 14, 14 is the same as the width of the passage 12 (in the case where the passage 12 is cylindrical), the effect of the present invention is not affected. Conventional impregnation nozzles are subjected to a relatively large amount of such outflows from the lower portion of the outlets, which results in flow rates at the outflows from the lower portions of the outlets and from the upper portions. There is an imbalance in the distribution between the outflows. According to this embodiment of the invention, the impregnation nozzle 10, on the other hand, allows the molten steel to flow through the impregnation nozzle 10 due to the opposing ridges 16, 16, allowing a sufficient amount of outflow to also Flowing out from the upper part. Moreover, due to the effect of adjusting the gap between the ridges 16, 16 between the ridges 16, 16 as viewed from the vertical plane passing through the centers of the respective outlets 14, 14, The molten steel 13 1361118 of the gap is symmetrical with respect to the axis of the impregnation nozzle ίο. Moreover, the impregnation nozzle 10 reduces the maximum velocity of the outflows impinging on the narrow sidewalls of the mold by allowing the outflows to flow uniformly over the entire area of the outlets 14, 14 and sequentially decreasing The speed of these reverse flows. This solves the problem of the fluctuation of the liquid level on the surface of the molten steel and the sinking of the mold powder, and thereby prevents the quality of the steel from being lowered. Furthermore, since the dip nozzle 10 is obtained by forming the opposing ridges that protrude into the passage from the inner wall between the pair of outlets, the immersion nozzle 10 can be formed by forming a conventional immersion nozzle It is easy to manufacture by one method. An example of a method of forming an outlet in a conventional impregnation nozzle includes: a method comprising forming an outlet in a tubular body having a size less than a final expected size, and then drilling the outlets perpendicular to the tubular body to Enlarging the outlets and forming a ridge having a desired cross-sectional dimension; and a method comprising forming a recess by a CIP (cold equalization) with a consistent mandrel, which is a portion that will become a ridge, followed by clay (using A material is created in the tubular body to fill the recesses, and the clay is pressed to form a ridge having a desired cross-sectional dimension. [Water Model Test] In order to determine an optimized configuration of the outlets 14, 14 having the ridges 16, 16 therebetween, the water model test was performed using the model of the immersion nozzle 10. The water model tests performed are described below. The parameters used to determine the optimal configuration of the outlets 14, 14 with the ridges 16, 16 therebetween are indicated below. The horizontal width and vertical length of the outlets 14, 14 14 1361118 are shown as a' and b', respectively, as seen in a front view; the raised heights of the ridges 16, 16 at the end faces are expressed as a, the ridges 16, 16 have a substantially rectangular cross section, and the vertical widths of the ridges 16, 16 are indicated as b; and the upper edges of the outlets 14, 14 to the ridges 16 The vertical distance between the centers of the vertical widths of 16 is denoted as c (see Figure 2). The width of the passage 12 in the longitudinal direction of the raised portions 16, 16 close to the outlets 14, 14 is represented as Li, and the raised portions 16, 16 are other than the inclined portions 16a, 16a. The length (i.e., the length of the horizontal portions 16b, 16b) is expressed as L2 (see Figs. 3A and 3B). The downwardly inclined angles of the inclined portions 16a, 16a, the upper end faces 14a, 14a and the lower end faces 14b, 14b are denoted by Θ, and the radius of curvature of the rounded corners of the outlets 14, 14 is denoted by R. Figure 4 is a schematic diagram for explaining the testing of the water models. A 1/1 ratio mold 21 is composed of an acrylic resin. The size of the mold 21 is determined such that the length of the isometric side (in the left-right direction in Fig. 4) is 925 mm and the length of the short sides (in Fig. 4, perpendicular to The side of the paper surface is 210 mm. Water is circulated through the impregnation nozzle 10 and the mold 21 by a pump at a speed equal to one cycle speed of 1.4 m/min. The dip nozzle 10 is positioned at the center of the mold 21 such that the outlets 14, 14 face the narrow side walls 23, 23 of the mold 21. The propeller-type flow rate detectors 22, 22 are respectively mounted at a distance of 325 mm from the narrow side walls 23, 23 of the mold 21 (1/4 of the length of the isometric side of the mold 21) and a distance of 15 1361118. The water surface is 30 mm deep. At the office. Then, the speeds of the reverse flows Fr, Fr are measured every three minutes. After that, the difference Δ σ between the standard deviations of the speeds of the right and left reverse flows Fr, Fr and its average value Vav are calculated and the results are estimated. Here, the correlation between the reverse flow and the throughput will be described. The water model tests are performed to clarify the correlation between the difference Δσ between the standard deviation of the reverse flows on the right side of the impregnation nozzle and the reverse flow on the left side and the production amount on the right side and the left side The correlation between the average value Vav of the velocity of the flow and the production amount. The results of the water model tests indicate that the equivalent Δ (the increase in 7 and Vav is proportional to the increase in throughput). The size of the mold and the impregnation nozzle contemplated for the tests is determined such that the mold has Length from 700 mm to 2000 mm and width from 150 mm to 350 mm and the passage of the impregnation nozzle has a cross-sectional area of 15 cm2 to 120 cm2 (50 mm to 120 mm in diameter), these dimensions are usually applied to the continuity of the plate In the case of casting, when the production amount is less than 1.4 ton/min, the reverse flow rate is too slow at the surface of the molten steel. However, when the production amount is higher than 7 ton/min, the reverse flow The speed is too fast, and the quality of the steel is lowered due to the increased liquid level fluctuation at the surface of the molten steel and the falling of the mold powder. Therefore, the production amount is expected to be from 1.4 ton/min to 7 ton/min. This test shows that when the difference Δ σ between the standard deviations of the reverse flow rates of the right side and the left side is 2.0 cm/sec or less and the average value Vav of the speeds of the right and left reverse flows is 1 〇 When cm/sec to 30 cm/sec, the 16 1361118 is born The amount is within the above-mentioned optimization range. Therefore, Δ〇 of 2.0 cm/sec and below and Vav of 10 cm/sec to 30 cm/sec are performed in the evaluation to determine that there is such a bulge in between. The results of the water model tests for the optimal configuration of these exports are the key ranges in the following results. In the water model test, these production quantities are converted using this equation: the specific gravity of molten steel / The specific gravity of water = 7.0. Therefore, the above production amount is equal to the production amount of molten steel. Fig. 5A shows a graph showing the correlation between a/a' and Δσ. The fifth graph shows the representation a. A graph of the correlation between /a' and Vav. In these figures, point ♦ represents individual test measurements and the solid line represents a regression curve, and the representations are applied to the figures to be mentioned later. In Figures 5A and 5B, when a/a' is in the range of 0.05 to 0.38, Δ <7 is 2.0 cm/sec or less and Vav is 10 cm/sec to 30 cm/sec. a, below 0.05, the ridges are insufficient to demonstrate the effect of hindering and adjusting the flow, resulting in the impregnation nozzle The asymmetric flow on the right and left sides and the reverse flow have a velocity of more than 30 cm/sec. This will result in a wide fluctuation in the surface level of the molten steel and adverse effects such as the trapping of the mold powder. In one aspect, when a/a' exceeds 0.38, the outflows in the lower portions of the outlets have a slightly too slow velocity, i.e., the outflows in the upper portions of the outlets have High speed, and these reverse flows have speeds in excess of 30 cm/sec. This will result in a wide range of fluctuations in the surface level of the molten steel and adverse effects such as the trapping of the mold powder. 17 1361118 These other parameters for this test towel are set to these lower values. b/b^0.25 . c/b^O.57 . L2/Ll=0.83 . θ=15° * R/a»=0.14 〇 Figure 6 shows the correlation between b/b and Δσ a graphic. Figure 6 shows a graph showing the correlation between b/b, and l. These figures indicate that when b/b, in the range of 〇〇5 to 〇5, Δσ is 2.0 cm/sec or less and Vav is 1〇(10)/like to 3〇(10)/coffee. When b/b' is outside the range of 0.05 to 〇.5, the same phenomenon as observed when _ is outside the range of 0.38 of 0.05: in the surface level of molten steel - extensive Fluctuations; and adverse effects such as the trapping of the mold powder. These other parameters used in this test are set to these lower values. a/a, = 0.2 b c/b, = 〇.48, L2/K77, θ=15. , R / a, = 〇.l4. Figure 7A shows a graph showing this correlation between e/b and the heart. Figure 7 shows a graph showing the correlation between c/b, and ^. Figure 7A indicates that the heart is less sensitive to changes in e/b', while Figure 7B indicates that when c/b is in the range of 〇15 to 〇7, l is 1〇(10)/coffee to 30 cm/sec. When c/b' is outside the range of 0.15 to 0.7, it will occur as if a/a, outside the range of 0.38 of 0.05, is observed: in the surface level of molten steel - extensive Fluctuations; and adverse effects such as the trapping of the mold powder. These other parameters used in this test are set to these lower values. a/a' = 0.24 ' b / b' = 0.25, L2 / L 丨 = 0.77, θ = 15. , R / a, = 〇.l4. Figure 8A shows the 18 1361118 - graph representing this correlation between i^/L, and eight sigma. The first map shows a graph showing the correlation between L2/L丨 and Vav. These patterns indicate that when l2U 〇 jl i is in the range, Δ σ is 2. 〇 cm / sec or less and Vav is 1 〇 (10) / coffee to 3 〇 cm / sec. IVL, =0 means LfO, i.e., the ridges 16, 16 are inverted v-shapes without the horizontal portions 16b, 16b. On the other hand, when l仏 is larger than 1, it will be difficult to manufacture the impregnation nozzle. In the figures and 8B, the point ◊ indicates the measurement of the individual test using a nozzle having no ridge as a comparison test. These other parameters used in this test are set to these lower values. a/a - 0.29 ' b/b' = 〇.25 ' c/b, = 〇.5, θ = 15. , R / a, = 014. Fig. 9A shows the graph representing the correlation between R/a and ". The figure 9 shows the correlation HI between R/a and ^. R/a' =〇.5 means that the outlets are elliptical or circular in shape. Figure 9A indicates a slight increase with R/a, but not: a large change. On the other hand, the 9th map indicates With the increase of R/a, and _ « and 1 ^ 4 out of the area reduction, Vav increases, but Vav is in the range of 1 〇 cm / sec 30 cm / sec. Because the towel 'the test proves that even in the The ridges are also effective when the rounded corners of the outlet have a large radius of curvature. The casting mold used in this test has a size of lSGGmmx235 mm and the throughput is 3.0 t〇n/min. Other parameters such as 戎 in the formula are set to the following values: a/a 0_13 ' b/b'=〇.25 ' c/b'=〇.4 ' L2/L,= θ=0. ... the staff member according to the embodiment of the present invention, using a water model test performed by a continuous nozzle for each of the water spray nozzles, a spray nozzle having a molten steel tank at the bottom of the tubular body, another There are no sump. Table 1 indicates that Vav does not vary greatly and is in an optimized range due to the presence or absence of the sump. These other parameters used in this test are set to these lower values. The casting mold has a size of 1200 mm x 235 mm and the throughput is 2.4 ton/min ° a/a' = 0.14, b/b' = 0.33, c/b' = 0.5, L^/Lfl, θ = 0ο, R/ a'=0_14. [Table 1] having a sump without a sump Δ 〇 (cm/sec) 1.17 1.32 Vav (cm/sec) 26.3 28.4 [Fluid analysis] The dipping nozzle for continuous casting according to this embodiment of the present invention will be described. Fluid analysis from the outflow of an impregnation nozzle according to the prior art. These fluid analyses were performed by using FLUENT (Fluid Analysis Software) manufactured by Fluent Asia Pacific Co., Ltd. (currently ANSYS Japan K.K.). Fig. 10A shows a simulation model of the immersion nozzle according to this embodiment of the invention, and Fig. 10B shows a simulation model of an immersion nozzle according to the prior art. The nozzle for use in such analysis according to the prior art includes a cylindrical body having a bottom and a pair of opposed outlets. The pair of opposing outlets are disposed in the side wall of a portion below one of the bodies to communicate with the passage. The dipping nozzle according to this embodiment of the invention is obtained by providing the conventional nozzle having a relatively raised portion 20 1361118. The following are the values of their parameters: a/a'=0"3, b/b'=0.13, c/b, =0.43, 1^/1^=0.68, θ=150 The analysis is 1540 mm in the mold. Executed under the assumption of a length of 235 mm and a throughput of 2.7 ton/min. Figures 11A and 11B present the results of such fluid analysis using the simulation model in accordance with this embodiment of the present invention. Figures 12A and 12B present the results of such fluid analysis using the simulation model in accordance with the prior art. The drawings indicate that, in contrast to the simulation model according to the prior art, the simulation model according to the embodiment of the present invention reduces the offset and the reduction in the right and left outflows in the mold. The velocity of the reverse flow at the surface of the molten steel, and thus the fluctuation of the liquid level at the surface of the molten steel. This improves the quality of the flat plate and the production efficiency of the flat plate high speed casting. Fig. 13 shows a graph showing the change in the average value Vav with respect to the difference 。. The average value Vav is the average of the speeds of the right and left reverse flows calculated by the fluid analysis. The difference is the difference between the inclination angle of the inclined portions of the raised portions and the inclination angles of the upper end faces and the lower end faces of the outlets. When Δ Θ is a negative value, the inclination of the inclined portions of the raised portions is less than the inclination of the upper end faces and the lower end faces of the outlets. Fig. 13 indicates that when ΛΘ is 0, that is, the inclined portions of the ridges have the same inclination angle as the upper end faces and the lower end faces of the outlets, Vav is the smallest. Fig. 13 also shows that Vav is in the range of 10 cm/sec to 30 cm/sec when the crucible is in the range from -10° to +7°, and the speed of such reverse flow is advantageous. 21 1361118 under the condition that the inclined portions of the raised portions have the same inclination angle as the upper end faces and the lower end faces of the outlets, by changing the inclined portions and the upper end faces And the fluid analysis of the changes in the outflow caused by the inclination angles of the lower end faces, further studying the impregnation nozzle for continuous casting according to this embodiment of the invention. These results of these fluid analyses are shown in Figures 14A through 17B. The following are the values for the parameters in the fluid analysis. Figures 14A and 14B: a/a, = 0-13, b/b, = 0.25, c/b, = 0.4, L2/L丨 = 1, θ = 0. , Production = 3.0 ton / min 15A and 15B Figure: a / a, = 0.13, b / b, = 0.13, c / b, = 0.43, 1 ^ / 1 ^ = 0.68, θ = 25. Production volume = 2.7 ton/min Figures 16A and 16B Figure: a/a, = 0.13, b/b, = 0.13, c/b, = 0.43, 1^/1^ = 0.68, θ = 35. Production volume = 2.7 ton/min Figures 17A and 17B Figure: a/a, = 0.13, b/b, = 0.13, c/b, = 0.43, Ι^/Ι^=0·68, θ=45. Production amount = 2.7 ton/min The results of the fluid analysis shown in Figs. 14A to 17B and the results of the aforementioned fluid analysis at θ = 15° shown in Figs. 11A and 11B indicate that the inclination angle is 0. In the range of ° to 45°, the offset in the outflows in the mold is reduced and the speed of the reverse flow at the surface of the molten steel is also reduced. While the preferred embodiment of the invention has been shown and described, it is understood Additions, omissions, substitutions, and other modifications can be made without departing from the spirit and scope of the invention. Further, the invention is not to be considered as limited by the description of the above-mentioned 22 1361118, and is only limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A shows an impregnation nozzle for continuous casting according to an embodiment of the present invention. Fig. 1B is a cross-sectional view taken along line 1B-1B of Fig. 1A. Figure 2 is a partial side view of the impregnation nozzle. 3A and 3B are partial vertical cross-sectional views of the impregnation nozzle. Fig. 3C is a cross-sectional view taken along line 3C-3C of Fig. 3A. Fig. 3D is a cross-sectional view taken along line 3D-3D of Fig. 3B. Fig. 4 is a schematic view for explaining a water model test performed using the model of the immersion nozzle in accordance with this embodiment of the present invention. Fig. 5A shows a graph of the relationship between a/a' and Δσ of the immersion nozzle according to this embodiment of the present invention. Fig. 5 is a view showing a relationship between a/a' and Vav of the immersion nozzle according to this embodiment of the present invention. Fig. 6A is a view showing a relationship between b/b' and Δ (7) of the immersion nozzle according to the embodiment of the present invention. Fig. 6B is a view showing the immersion nozzle according to the embodiment of the present invention. A graph of the relationship between b/b' and Vav. Fig. 7A shows a graph of the relationship between c/b' and Δσ of the impregnation nozzle according to this embodiment of the present invention. A graph showing the relationship between c/b' and Vav of the impregnation nozzle is shown in accordance with this embodiment of the invention. 23 1361118 Figure 8A shows L2/ of the impregnation nozzle in accordance with this embodiment of the present invention. A graph of the relationship between L 丨 and Λ σ. Fig. 8 is a view showing a relationship between 1^/1^ and Vavi of the immersion nozzle according to the embodiment of the present invention. In this embodiment of the invention, a graph of the relationship between R/a' and Δσ of the impregnation nozzle. Fig. 9 is a view showing the R/a' and Vav of the impregnation nozzle according to the embodiment of the present invention. A graph of the relationship between. Figure 10A is a diagram of the embodiment of the present invention for use in fluid analysis for the dipping spray One of the nozzles simulates a schematic diagram of the model. Figure 10B is a schematic diagram of one of the simulation models of one of the impregnation nozzles used in fluid analysis according to the prior art. Figures 11A and 11B show this embodiment in accordance with the present invention. , as seen in a vertical plane and a horizontal plane, respectively, as a fluid flow pattern obtained as a result of fluid analysis performed using the simulation model of the impregnation nozzle. Figures 12A and 12B show according to the prior art , as seen in a vertical plane and a horizontal plane, respectively, as a fluid flow pattern obtained as a result of fluid analysis performed using a simulation model of the impregnation nozzle. Figure 13 shows this embodiment in accordance with the present invention. a pattern of the relationship between Δ Θ and Vav of the immersion nozzle. Figures 14A and 14B show the embodiment according to the present invention as seen in a vertical plane and a horizontal plane, respectively. The fluid flow pattern obtained using the simulation model of the dip 24 1361118 nozzle to perform the fluid analysis (Θ = 0°). The 15th and 15th panels show This embodiment of the invention, as seen in a vertical plane and a horizontal plane, respectively, is a fluid flow pattern obtained as a result of fluid analysis (θ = 25°) performed using a simulation model of the impregnation nozzle. Figure 16 and Figure 16 show fluid analysis performed as a simulation model using the impregnation nozzle as seen in a vertical plane and a horizontal plane, respectively, according to this embodiment of the invention (θ = 35°) Fluid flow pattern obtained as a result of the invention. Figures 17 and 17 show the simulation model using the impregnation nozzle as seen in a vertical plane and a horizontal plane, respectively, according to this embodiment of the invention. The fluid flow pattern obtained as a result of the fluid analysis performed (θ = 45°). Figure 18 and Figure 18 are cross-sectional views of one of the impregnation nozzles for continuous casting according to International Application No. 2005/049249. Figure 19 is a partial vertical cross-sectional view of a dip nozzle including ridges projecting into the passage between the opposing openings. Fig. 20 and Fig. 20 show graphs showing the relationship between σ3ν and Δσ and the relationship between aav and Vav, respectively. Figures 21A and 21B show the results of fluid analysis performed as a simulation model using the impregnation nozzle as seen in a vertical plane and a horizontal plane, respectively, according to International Application No. 2005/049249 And the fluid flow pattern obtained. 25 1361118 [Description of main component symbols] 10...Immersion nozzle a... Projection height 11...Tube body a'...Horizontal width 1B···Line A...Sample 12...Path b...vertical width 13·"gate b'...vertical length 14··.outlet B...sample 14a...upper end face C...vertical distance 14b...lower end face C... Sample 15... bottom Fr... reverse flow 16... ridge L1...width 16a...inclined portion L2...length 16b...level portion R...curvature radius 17...slot Vav...average 18...inner wall Sav...average 21...casting Θ...inclination angle 22...propeller type flow velocity detector Δδ...pod 23...sarrow sidewall △Θ...poor 3C /3D...line

2626

Claims (1)

1361118 七、申請專利範圍: 1. 一種用於連續鑄造的浸潰喷嘴,其包括(1)具有一底部的 一管狀本體,該管狀本體具有配置於一上方端且用於使 鋼水進入的一閘口及從該閘口向下延伸至該管狀本體 内部的一通路,及(2)配置於該管狀本體之一下方部分處 之一側壁中的一對相對的出口,以便與該通路相通,該 浸潰喷嘴包含: 從在該對出口之間之一内壁水平凸出進人該通路 的一對相對的隆起部,該内壁定義該通路。 2. 如申請專利範圍第1項所述之浸潰喷嘴,其中a/a’在從 0.05至0.38之範圍中且b/b’在從0.05至0.5之範圍中, 其中a’及b’分別是在一前視圖中該等出·口的一水平寬 度及一垂直長度;a是在端面處該等隆起部的一凸出高 度;且b是該等隆起部的一垂直寬度。 3. 如申請專利範圍第2項所述之浸潰喷嘴,其中c/b’在從 0.15至0.7之範圍中,其中c是在一前視圖中該等出口 之上方邊緣與該等隆起部之垂直寬度中心之間的一垂 直距離。 4. 如申請專利範圍第1項所述之浸潰喷嘴,其中該等隆起 部在該等隆起部的一長度方向上在相對端處各自具有 傾斜部分,該等傾斜部分向下傾斜至該管狀本體的一外 部。 5. 如申請專利範圍第4項所述之浸潰噴嘴,其中各出口具 有以與該等傾斜部分相同的傾斜角向下傾斜至該等管 27 1361118 狀本體之該外部的一上方端面及一下方端面。 6. 如申請專利範圍第5項所述之浸潰喷嘴,其中1^2/1^在 從0至1之範圍中,其中L!是沿著該等隆起部之一長 度方向接近於該等出口之上方的該通路的一寬度;且 L2是該等隆起部除了該等傾斜部分以外的一長度。 7. 如申請專利範圍第6項所述之浸潰喷嘴,其中該等出口 之該等上方端面及下方端面與該等隆起部之該等傾斜 部分以0°至45°之一傾斜角來傾斜。 8. 如申請專利範圍第1項所述之浸潰喷嘴,其中該等隆起 部在該等隆起部的一長度方向上在相對端處各自具有 端面,該等端面係與該等隆起部之該長度方向垂直之垂 直面。 9. 如申請專利範圍第1項所述之浸潰喷嘴,其中該管狀本 體在一底部具有用於鋼水的一凹進貯槽。 281361118 VII. Patent Application Range: 1. An impregnation nozzle for continuous casting, comprising: (1) a tubular body having a bottom, the tubular body having a one disposed at an upper end for allowing molten steel to enter a gate and a passage extending downward from the gate to the inside of the tubular body, and (2) a pair of opposite outlets disposed in a side wall of a lower portion of the tubular body to communicate with the passage, the dip The collapse nozzle includes: a pair of opposing ridges that project horizontally from the inner wall between the pair of outlets, the inner wall defining the passage. 2. The impregnation nozzle of claim 1, wherein a/a' is in the range from 0.05 to 0.38 and b/b' is in the range from 0.05 to 0.5, wherein a' and b' are respectively Is a horizontal width and a vertical length of the outlets in a front view; a is a projection height of the ridges at the end faces; and b is a vertical width of the ridges. 3. The impregnation nozzle of claim 2, wherein c/b' is in the range from 0.15 to 0.7, wherein c is the upper edge of the outlets and the ridges in a front view A vertical distance between the centers of vertical widths. 4. The impregnation nozzle of claim 1, wherein the ridges each have an inclined portion at opposite ends in a length direction of the ridges, the inclined portions being inclined downward to the tubular An exterior of the body. 5. The impregnation nozzle of claim 4, wherein each of the outlets has an upper end surface that is inclined downwardly at the same inclination angle as the inclined portions to the outside of the tubes 27 1361118-shaped body and Square end face. 6. The impregnation nozzle of claim 5, wherein 1^2/1^ is in a range from 0 to 1, wherein L! is close to the length along one of the lengths of the ridges a width of the passage above the outlet; and L2 is a length of the ridges other than the inclined portions. 7. The impregnation nozzle of claim 6, wherein the upper end surface and the lower end surface of the outlets and the inclined portions of the ridges are inclined at an inclination angle of 0 to 45 . 8. The immersion nozzle of claim 1, wherein the ridges each have an end face at opposite ends in a length direction of the ridges, the end faces and the ridges Vertical plane perpendicular to the length direction. 9. The impregnation nozzle of claim 1, wherein the tubular body has a recessed sump for molten steel at a bottom. 28
TW98117436A 2008-12-27 2009-05-26 Immersion nozzle for continuous casting TWI361118B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008335527 2008-12-27
JP2009040594A JP4578555B2 (en) 2008-12-27 2009-02-24 Immersion nozzle for continuous casting

Publications (2)

Publication Number Publication Date
TW201023997A TW201023997A (en) 2010-07-01
TWI361118B true TWI361118B (en) 2012-04-01

Family

ID=42700108

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98117436A TWI361118B (en) 2008-12-27 2009-05-26 Immersion nozzle for continuous casting

Country Status (2)

Country Link
JP (1) JP4578555B2 (en)
TW (1) TWI361118B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183544A (en) * 2011-03-03 2012-09-27 Kurosaki Harima Corp Immersion nozzle
TWI726000B (en) * 2015-11-10 2021-05-01 美商維蘇威美國公司 Casting nozzle comprising flow deflectors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238658A (en) * 1991-01-10 1992-08-26 Kawasaki Steel Corp Immersion nozzle for continuous casting
JP3050101B2 (en) * 1994-09-22 2000-06-12 株式会社神戸製鋼所 Continuous casting pouring equipment
JP2001347348A (en) * 2000-06-07 2001-12-18 Nippon Steel Corp Immersion nozzle for continuous casting
JP4076516B2 (en) * 2004-04-07 2008-04-16 品川白煉瓦株式会社 Immersion nozzle for continuous casting of steel

Also Published As

Publication number Publication date
JP2010167488A (en) 2010-08-05
TW201023997A (en) 2010-07-01
JP4578555B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US8037924B2 (en) Immersion nozzle for continuous casting
TWI361118B (en) Immersion nozzle for continuous casting
US8870041B2 (en) Immersion nozzle for continuous casting
WO2013161578A1 (en) Submerged nozzle of continuous casting apparatus
AU2010281743A1 (en) Immersion nozzle
US8113391B2 (en) Immersion nozzle for continuous casting
CN108025352A (en) Dipping spray nozzle
KR102442885B1 (en) In-mold flow control device and in-mold flow control method in thin slab casting
JP2012183544A (en) Immersion nozzle
JP3826034B2 (en) Drift prevention immersion nozzle and sliding nozzle device
CN108495727B (en) Continuous casting water gap with flow guide block
CN103611897B (en) A kind of regulation device producing wide cut Casting Rolled Sheet melt stream thermal field
JP2002018562A (en) Method for continuously casting slab and immersion nozzle
JP2002254162A (en) Drift preventing constitution for immersion nozzle
JP2006021239A (en) Continuous casting method
JP2009066619A (en) Method and apparatus for continuously casting steel
BR112021010225A2 (en) immersion nozzle
JP4200793B2 (en) Immersion nozzle for continuous casting
US7641081B2 (en) Immersion nozzle
JP2010005665A (en) Immersion nozzle for continuous casting