JPH02165851A - Submerged nozzle for continuous casting - Google Patents

Submerged nozzle for continuous casting

Info

Publication number
JPH02165851A
JPH02165851A JP32026788A JP32026788A JPH02165851A JP H02165851 A JPH02165851 A JP H02165851A JP 32026788 A JP32026788 A JP 32026788A JP 32026788 A JP32026788 A JP 32026788A JP H02165851 A JPH02165851 A JP H02165851A
Authority
JP
Japan
Prior art keywords
nozzle
molten steel
flow
state
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32026788A
Other languages
Japanese (ja)
Inventor
Nobufumi Kasai
宣文 笠井
Morio Kawasaki
守夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32026788A priority Critical patent/JPH02165851A/en
Publication of JPH02165851A publication Critical patent/JPH02165851A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Abstract

PURPOSE:To make molten steel stream in a mold in a state of commutation and to prevent involving of powder by making bottom part in a submerged nozzle for supplying the molten metal the recessed hemispherical state and forming upper edge of a molten steel discharging hole to the arc-state from inside of the nozzle toward the outlet. CONSTITUTION:The molten steel discharged from a tundish is allowed to flow down in the submerged nozzle 2 and discharged into a mold from discharging holes 2a, 2b at right and left sides. Then, the bottom part 2d in the nozzle 2 is made to the recessed hemi-spherical state and the upper edges 2e in the discharging holes 2a, 2b are formed to the arc-state from the inside of the nozzle 2 toward the outlet. Further, at the time of using (r) for radius of this nozzle 2, R1 for radius of hemi-spherical face at the bottom part 2d, D for the depth thereof and R2 for radius of arc at the upper edge of the discharging hole, they are made to R>r, D<r/2 and R2 = about (0.9-1.1) r. By this method, the molten steel flow speed discharged from the nozzle 2 is made uniform, and the flow rates from the discharging holes 2a, 2b at right and left sides are made to equal, and eddy and excessive rising flow are not developed and the involving of the powder is eliminated and the quality of a cast slab is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造で用いる給湯用浸漬ノズル、詳しく
はノズルから吐出される溶鋼流を整流化する浸漬ノズル
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an immersed nozzle for hot water supply used in continuous casting, and more particularly to an immersed nozzle for rectifying a flow of molten steel discharged from the nozzle.

(従来の技術) 連続鋳造法においては、溶湯(以下、綱の鋳造に関して
は溶鋼と記す)は、タンデイシュから浸漬ノズルを経て
鋳型内に注入される。
(Prior Art) In the continuous casting method, molten metal (hereinafter referred to as molten steel for steel casting) is injected into a mold from a tundish through an immersion nozzle.

第1図は、その状態をしめしたもので、タンデイシュ(
図示せず)から排出された溶鋼1は、浸漬ノズル2内を
流下し左右の吐出口(2a、 2b)から鋳型3内に吐
出される。吐出された?811Ilは鋳型3の短辺側に
衝突して上昇流1aと下降流1bに分かれる。その際上
昇流1aが大き過ぎるとメニスカス上のパウダー4を溶
鋼中に巻き込んで鋳片の品質を低下する。
Figure 1 shows this state.
The molten steel 1 discharged from the immersion nozzle 2 (not shown) flows down the immersion nozzle 2 and is discharged into the mold 3 from the left and right discharge ports (2a, 2b). Was it spit out? 811Il collides with the short side of the mold 3 and is divided into an upward flow 1a and a downward flow 1b. At this time, if the upward flow 1a is too large, the powder 4 on the meniscus will be drawn into the molten steel, reducing the quality of the slab.

そこで、従来においては、■第2図に示すようにノズル
吐出口(2a、 2b)の角度θを下向きに大きくした
り、浸漬ノズル2の位置を深くして上昇流1aを弱めた
り、■第3図のように、浸漬ノズル2の底部2dを凹形
に形成し、浸漬ノズル2内を流下する溶alを底部の凹
部に衝突させ、吐出口から流出する溶鋼流をゆるやかに
したり、或いは■ノズル吐出口の形状を縦長の楕円形や
長方形にして溶鋼の流速を均一にする、などの対策を講
じパウダーの巻き込みを防止している。
Therefore, in the past, as shown in FIG. As shown in Fig. 3, the bottom 2d of the immersion nozzle 2 is formed in a concave shape, and the molten metal flowing down inside the immersion nozzle 2 collides with the concave part of the bottom, so that the flow of molten steel flowing out from the discharge port is made gentle; Measures are taken to prevent powder from being drawn in, such as by making the nozzle outlet into a vertically elongated oval or rectangle to ensure a uniform flow rate of molten steel.

しかしながら、上記の方法には、それぞれ次のような問
題がある。
However, each of the above methods has the following problems.

すなわち、前記■のノズル吐出角度θを下向きにしたり
、ノズルの位置を深くする方法は、鋳造初期においては
効果が認められるが、鋳造後半になってノズル内壁や吐
出口にA 1 zOsなどが付着すると、溶鋼の流れが
変化してその効果が失われる。また下降流1bが大き過
ぎると、介在物の浮上を妨げ却って品質を悪化する。前
記■の底部2dに凹部を有する浸漬ノズル2では、第3
図に示すように、ノズル内で異常な乱流が生じて吐出口
(2a、2b)からの流れが不安定になるため、パウダ
ーの巻き込み防止効果が小さい。また前記■の溶鋼の流
速分布を平均化するノズルでは、吐出量が少ない時には
効果があるが、高速鋳造の場合のように吐出量が多くな
ると流速分布が乱れて効果がなくなる。
In other words, the above-mentioned method (2) of setting the nozzle discharge angle θ downward or deepening the nozzle position is effective in the early stage of casting, but in the latter half of casting, A 1 zOs etc. adhere to the inner wall of the nozzle and the discharge port. Then, the flow of molten steel changes and the effect is lost. Furthermore, if the downward flow 1b is too large, it prevents inclusions from floating and actually deteriorates the quality. In the submerged nozzle 2 having a concave portion in the bottom portion 2d of (2), the third
As shown in the figure, abnormal turbulence occurs within the nozzle and the flow from the discharge ports (2a, 2b) becomes unstable, so that the effect of preventing powder entrainment is small. In addition, the nozzle that averages the flow velocity distribution of molten steel described in (1) is effective when the discharge amount is small, but when the discharge amount becomes large as in the case of high-speed casting, the flow velocity distribution becomes disordered and becomes ineffective.

(発明が解決しようとする課題) この発明の目的は、従来の浸漬ノズルの問題点を解消す
るため、鋳型固溶′w4iJiを整流化してパウダーの
巻き込みを防止する浸漬ノズルを提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide an immersion nozzle that rectifies the mold solid solution 'w4iJi and prevents powder from being drawn in, in order to solve the problems of conventional immersion nozzles. .

(課題を解決するための手段) 連続鋳造時に起こるパウダー巻き込みは、主に下記の原
因によることが知られている。
(Means for Solving the Problem) It is known that powder entrainment that occurs during continuous casting is mainly due to the following causes.

(1)第4図に示すように、メニスカス直下の流速が増
大すればするほど、パウダー巻き込み指数が大きくなる
。なお巻き込み指数とは、巻き込み発生頻度をメニスカ
ス直下の流速ごとに整理したもので、その発生頻度をあ
られす数値である。
(1) As shown in FIG. 4, as the flow velocity directly below the meniscus increases, the powder entrainment index increases. The entrainment index is a numerical value that indicates the frequency of occurrence of entrainment, organized by flow velocity directly below the meniscus.

(2)メニスカス直下の流速は、ノズルからの最大吐出
速度によって定まる。
(2) The flow velocity directly below the meniscus is determined by the maximum discharge velocity from the nozzle.

(3)第5図(a)及び第5図〜)(第5図(a)のA
−A矢視図)に示すように、パウダー4の巻き込みは上
昇流の過大の他にノズル2の近傍に生じる渦5によって
も生じる。そして、渦5はメニスカス直下の左側の上昇
流1aLと右側の上昇流lawとの速度差により発生す
る。
(3) Fig. 5(a) and Fig. 5~) (A in Fig. 5(a)
- As shown in the arrow view A), the entrainment of the powder 4 is caused not only by the excessive upward flow but also by the vortex 5 generated in the vicinity of the nozzle 2. The vortex 5 is generated due to the speed difference between the left upward flow 1aL and the right upward flow law just below the meniscus.

(4)鋳造速度が速くなるほど、左と右の吐出口からの
流量差が増大する。
(4) As the casting speed increases, the difference in flow rates from the left and right discharge ports increases.

本発明者らは、上記の事実に基づいて更に検討を進めた
結果、次のような知見を得た。
The present inventors conducted further studies based on the above facts, and as a result, they obtained the following knowledge.

(a)  パウダーの巻き込みは、鋳型内の溶鋼流が偏
った流れをしない限り発生しない。
(a) Powder entrainment will not occur unless the flow of molten steel in the mold is uneven.

[有])左右の吐出速度を等しくするには、吐出口近傍
のノズル内溶鋼の乱れをできるだけ小さくし、吐出流を
整流化すればよい。
[Yes]) In order to make the left and right discharge speeds equal, the turbulence of the molten steel in the nozzle near the discharge port should be minimized and the discharge flow should be rectified.

(C)  上記(a)とら)は、浸漬ノズルの底部及び
吐出口を適正な形状にすることにより実現できる。
(C) The above (a) can be realized by appropriately shaping the bottom and discharge port of the immersion nozzle.

この発明は、上記知見に基づいてなされたものであり、
その要旨は「連続鋳造において使用する給湯用浸漬ノズ
ルであって、ノズルの底部が富んだ半球面状をなし、溶
鋼吐出口の上縁が内側から出口にかけて円弧状に形成さ
れていることを特徴とする連続鋳造用浸漬ノズル」にあ
る。
This invention was made based on the above findings,
The gist of the product is ``It is an immersion nozzle for hot water supply used in continuous casting, and the bottom of the nozzle has a full hemispherical shape, and the upper edge of the molten steel discharge port is formed in an arc shape from the inside to the exit. ``Immersion nozzle for continuous casting''.

(作用) 以下、本発明の連続鋳造用浸漬ノズルを図面により説明
する。
(Function) Hereinafter, the continuous casting immersion nozzle of the present invention will be explained with reference to the drawings.

第6図(alは、本発明の浸漬ノズルの縦断面を示す図
である6図示のように、この浸漬ノズル2は、半径rの
溶鋼流下通路2cとその下部に外部に通じる吐出口2a
と2bを有している。そして、ノズルの底部2dは窪ん
だ半球面状をなし、前記吐出口の上縁2eはノズルの内
側から出口にかけて円弧状に形成されている。
FIG. 6 (al is a diagram showing a vertical cross section of the immersion nozzle of the present invention) As shown in FIG.
and 2b. The bottom portion 2d of the nozzle has a concave hemispherical shape, and the upper edge 2e of the discharge port is formed in an arc shape from the inside of the nozzle to the exit.

ところで、ノズル底部2dの半球面と吐出口上縁2eの
円弧は、適正に形成されていることが望ましい、前記底
部半球面の半径R1は、溶鋼流下通路の半径r以上とし
、その深さDは溶鋼流下通路の半径rの172以下にす
るのがよい、底部半球面の半径R1がノズル半径rより
小さいと適正な整流ができず、又深さDが流下通路の半
径r1/2より大きいと整流作用をしないからである。
By the way, it is desirable that the hemispherical surface of the nozzle bottom 2d and the circular arc of the upper edge 2e of the discharge port be properly formed.The radius R1 of the bottom hemispherical surface is equal to or larger than the radius r of the molten steel flow passage, and its depth D is preferably 172 or less of the radius r of the molten steel flow passage. If the radius R1 of the bottom hemispherical surface is smaller than the nozzle radius r, proper rectification will not be possible, and the depth D is larger than the radius r1/2 of the flow passage. This is because it does not have a rectifying effect.

吐出口上縁円弧の半径R2は、溶鋼流下通路2Cの半径
rの0.9〜1.1倍にするのが好ましい。円弧の半径
R2が流下通路半径rの0.9倍未満であると溶鋼流の
整流作用をしない。一方、半径Rtが流下通路半径「の
1.1倍を越えると吐出口部分のノズル厚さが薄くなっ
て、そのン容1員が早くなって寿命を縮める。
The radius R2 of the arc of the upper edge of the discharge port is preferably 0.9 to 1.1 times the radius r of the molten steel flow passage 2C. If the radius R2 of the arc is less than 0.9 times the radius r of the flow passage, there is no rectifying effect on the flow of molten steel. On the other hand, if the radius Rt exceeds 1.1 times the radius of the flow passage, the thickness of the nozzle at the discharge port becomes thinner, and the volume increases quickly, shortening the life of the nozzle.

次に本発明の浸漬ノズルによりの整流作用を説明する。Next, the rectification effect of the immersion nozzle of the present invention will be explained.

第6図(b)(第6図(a)のB−B断面図)は、ノズ
ル内の溶鋼流動状態を示したものである。スライディン
グノズル6を通過した溶鋼流は、図示のように浸漬ノズ
ルの流下通路2c内をS字状に歪んで流下する。ところ
が、ノズル底部2dが半球面状に形成されているため、
流下した溶鋼1は再びノズル内を反転して上昇し、流下
して来る溶鋼と衝突混合して流動が鎮静化される。その
あと吐出口から排出されるが、吐出口(2a、2b)の
上縁2eは円弧状に形成されているので、両社出口から
等量づつ、しかもゆるやかに整流されて吐出される。
FIG. 6(b) (BB sectional view of FIG. 6(a)) shows the flow state of molten steel in the nozzle. The molten steel flow that has passed through the sliding nozzle 6 is distorted in an S-shape and flows down in the flow passage 2c of the immersion nozzle as shown in the figure. However, since the nozzle bottom 2d is formed in a hemispherical shape,
The molten steel 1 that has flowed down reverses itself inside the nozzle again and rises, and collides with and mixes with the molten steel that is flowing down, so that the flow is suppressed. After that, it is discharged from the discharge ports, but since the upper edges 2e of the discharge ports (2a, 2b) are formed in an arc shape, the same amount is discharged from both outlets, and the flow is gently rectified.

(実施例1) 溶鋼の代わりに水を用いて、本発明のノズルと第1図に
示す従来のノズルの吐出口における流速を調べた。この
試験は、計算により求めた平均流速値と水モデルによる
実測値を比較し、その値が計算値に近いほど平均化され
ているという考えに基づいている。第7図(a)は、こ
の試験に用いたノズル2の片方の吐出口2aの局部断面
図であり、a、bい0%6点は流速測定点を示している
。その結果を第7図(b)に示す0図中の(a)線は下
記式により計算された平均流速値である。
(Example 1) Using water instead of molten steel, the flow velocity at the discharge port of the nozzle of the present invention and the conventional nozzle shown in FIG. 1 was investigated. This test is based on the idea that the calculated average flow velocity value is compared with the actual value measured using a water model, and that the closer the value is to the calculated value, the more averaged it is. FIG. 7(a) is a local cross-sectional view of one discharge port 2a of the nozzle 2 used in this test, and six points a and b at 0% indicate flow velocity measurement points. The results are shown in FIG. 7(b). The line (a) in FIG. 7 is the average flow velocity value calculated by the following formula.

V−Q/2A ここで、■は平均吐出速度、Qは吐出量、2Aは両方の
吐出口の面積である。
V-Q/2A Here, ■ is the average discharge speed, Q is the discharge amount, and 2A is the area of both discharge ports.

第7図(ハ)において、轟は本発明ノズルのa点におけ
る流速、・はb点、■は0点、◆はd点の流速である。
In FIG. 7(c), the sound is the flow velocity at point a of the nozzle of the present invention, . is the flow velocity at point b, ■ is 0 point, and ◆ is the flow velocity at point d.

またΔは従来ノズルのa点における流速、050、◇は
、それぞれb点、0点、d点の流速である。この図から
、本発明ノズルの場合の流速は、計算により求めた(a
)線にほぼ沿っており平均化され整流されていることが
わかる。一方、従来のノズルの流速は大きくばらつき、
流れが乱れていることが知れる。
Further, Δ is the flow velocity at point a of the conventional nozzle, and 050 and ◇ are the flow velocity at point b, point 0, and point d, respectively. From this figure, the flow velocity in the case of the nozzle of the present invention was determined by calculation (a
) line, indicating that it is averaged and rectified. On the other hand, the flow velocity of conventional nozzles varies widely,
It can be seen that the flow is turbulent.

(実施例2) 前述したように、左と右の吐出速度が異なると、メニス
カス近傍で渦を生じパウダーを巻き込む。
(Example 2) As described above, when the left and right discharge speeds are different, a vortex is generated near the meniscus and the powder is drawn in.

そこで、本実施例では水モデルを用いて両側の吐出口か
ら排出される水の流速を調査した。なおノズルは実施例
1で用いたものを使用した。
Therefore, in this example, a water model was used to investigate the flow rate of water discharged from the discharge ports on both sides. Note that the nozzle used in Example 1 was used.

その結果を第8図に示す0図において、・は本発明のノ
ズルの場合を、Oは従来のノズルの場合を示している。
The results are shown in FIG. 8. In Figure 0, * indicates the case of the nozzle of the present invention, and O indicates the case of the conventional nozzle.

この図から、本発明ノズルの場合は、左右の吐出口から
の流速差はほとんどないが、従来のノズルでは、かなり
の流速差があることがわかる。
From this figure, it can be seen that in the case of the nozzle of the present invention, there is almost no difference in flow velocity from the left and right discharge ports, but in the conventional nozzle, there is a considerable difference in flow velocity.

(実施例3) 下記のような種々の浸漬ノズルを用いて水モデル試験を
行い、渦および上昇流によるパウダーの巻き込み頻度を
調べた。
(Example 3) A water model test was conducted using various submerged nozzles as described below, and the frequency of powder entrainment due to vortices and upward flow was investigated.

使用したノズルは、第2図に示す吐出角度θが20度の
従来型ノズル(A型)、同じく吐出角度が30度の従来
型ノズル(D型)、第3図に示すノズル底部が凹型に形
成された従来型ノズル(C型)、および第6図に示す本
発明のノズル(D型)、である。
The nozzles used were a conventional nozzle (type A) with a discharge angle θ of 20 degrees as shown in Figure 2, a conventional nozzle (type D) with a discharge angle of 30 degrees, and a nozzle with a concave bottom as shown in Figure 3. The conventional nozzle (C type) formed and the nozzle of the present invention (D type) shown in FIG.

試験結果を第9図に示す。図中、○が渦によるパウダー
の巻き込みを示し、・が上昇流による巻き込みを示して
いる0図から明らかなように、従来型のノズルは何れも
渦及び上昇流によるパウダー巻き込みの発生頻度が高い
が、本発明のノズルの場合は極めて低い。
The test results are shown in Figure 9. In the figure, ○ indicates powder entrainment due to vortices, and . indicates entrainment due to upward flow. As is clear from the figure, all conventional nozzles have a high frequency of powder entrainment due to vortices and upward flow. However, in the case of the nozzle of the present invention, it is extremely low.

(実施例4) 上記実施例3で使用したA−D型のノズルを用いてスラ
ブを鋳造し、このスラブから冷延鋼板を製造したとき、
その表面に現れたパウダーに起因するスルパー疵の発生
率を調査した。
(Example 4) When a slab was cast using the A-D type nozzle used in Example 3, and a cold rolled steel plate was manufactured from this slab,
The incidence of Sulper flaws caused by powder appearing on the surface was investigated.

その結果を第10図に示す、なお図中の括弧内数量は調
査対象にした鋳片のトお数である。
The results are shown in FIG. 10, and the numbers in parentheses in the figure are the number of slabs that were investigated.

この図から分かるように、本発明のD型ノズルの場合は
、従来のA〜C型のノズルよりも表面疵の発生率が非常
に低い。
As can be seen from this figure, the D-type nozzle of the present invention has a much lower incidence of surface flaws than the conventional A to C-type nozzles.

(実施例5) 実操業で上記A−D型ノズルを使用してスポーリング(
ノズルを構成する耐火物の表面に生じる微細な割れ)の
発生率を調べた。
(Example 5) Spalling (
We investigated the incidence of microscopic cracks that occur on the surface of the refractories that make up the nozzle.

その結果を第11図に示す。これから、本発明のノズル
(D型)は、従来のノズル(A−C型)に比べ、その発
生率が極めて低く耐スポーリング性に非常に優れている
ことがわかる。
The results are shown in FIG. From this, it can be seen that the nozzle of the present invention (D type) has an extremely low incidence of spalling and has excellent spalling resistance compared to the conventional nozzle (A-C type).

(発明の効果) 以上説明したように、本発明の浸漬ノズルを用いれば、
ノズルから吐出する溶鋼流速が均一化され、左右の吐出
口から流出量も等しくなって渦や過度の上昇流が生じな
い、その結果、パウダーを巻き込むことがなくなり鋳片
品質が向上する。
(Effect of the invention) As explained above, if the immersion nozzle of the present invention is used,
The flow rate of the molten steel discharged from the nozzle is made uniform, and the flow rate from the left and right discharge ports is also equal, so that eddies and excessive upward flow do not occur.As a result, powder is not dragged in, and the quality of the slab is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、浸漬ノズルから吐出された溶鋼流が鋳型内を
環流する状態を示す図、 第2図は、浸漬ノズルの吐出角度を下向きに太き(して
上昇流を弱(する状態を示す1第3図は、底部に凹部を
形成した浸漬ノズルの図、 第4図は、メニスカス直下の流速とパウダー巻き込み指
数との関係を示す図、 第5図(a)@は、左右の上昇流の速度差により渦が生
じる状態を示す図、 第6図(a)は、本発明の浸漬ノズルの縦断面を示す図
、 第61伽)は、第6図(a)のB−B断面を示すと共に
、ノズル内の溶鋼流動状態を示す図、第7図(a)は、
水モデル試験における吐出口の測定点を示す図、 第7図(ロ)は、計算により求めた平均流速値と水モデ
ル試験による実測値との関係を示す図、第8図は、水モ
デル試験における本発明ノズルと従来ノズルの左右吐出
口の流速を示す図、第9図は、水モデル試験における本
発明ノズルと従来ノズルのパウダー巻き込み発生頻度を
示す図、 第10図は、本発明ノズルと従来ノズルを実操業で使用
した時の表面疵発生率を示す図、第11図は、実操業で
使用した本発明ノズルと従来ノズルのスポーリング発生
率を示す図、である。 1は溶鋼、1aは上昇流、lbは下降流、2は浸漬ノズ
ル、2a、 2bは吐出口、2cは流下通路、2dはノ
ズル底部、2eは吐出口上縁、3は鋳型、4はパウダー
、5は渦、6はスライディングノズル。
Figure 1 shows the state in which the molten steel flow discharged from the immersion nozzle circulates inside the mold. Figure 2 shows the state in which the molten steel flow discharged from the immersion nozzle circulates in the mold. 1 Figure 3 is a diagram of a submerged nozzle with a recess formed at the bottom. Figure 4 is a diagram showing the relationship between the flow velocity just below the meniscus and the powder entrainment index. Figure 5 (a) @ shows the rise in the left and right sides. Figure 6(a) is a diagram showing a vertical cross section of the immersion nozzle of the present invention; Figure 61) is a cross section taken along line B-B in Figure 6(a). FIG. 7(a) is a diagram showing the flow state of molten steel in the nozzle.
Figure 7 (b) is a diagram showing the measurement points of the discharge outlet in the water model test, Figure 7 (b) is a diagram showing the relationship between the calculated average flow velocity value and the actual value measured in the water model test, and Figure 8 is the water model test. FIG. 9 is a diagram showing the frequency of powder entrainment in the nozzle of the present invention and the conventional nozzle in a water model test. FIG. FIG. 11 is a diagram showing the incidence of surface flaws when a conventional nozzle is used in actual operation, and FIG. 11 is a diagram showing the incidence of spalling between the nozzle of the present invention and the conventional nozzle used in actual operation. 1 is the molten steel, 1a is the upward flow, lb is the downward flow, 2 is the immersion nozzle, 2a, 2b are the discharge ports, 2c is the downstream passage, 2d is the bottom of the nozzle, 2e is the upper edge of the discharge port, 3 is the mold, 4 is the powder , 5 is a vortex, and 6 is a sliding nozzle.

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造において使用する給湯用浸漬ノズルであって、
ノズルの底部が窪んだ半球面状をなし、溶鋼吐出口の上
縁がノズル内側から出口にかけて円弧状に形成されてい
ることを特徴とする連続鋳造用浸漬ノズル。
A immersion nozzle for hot water supply used in continuous casting,
1. An immersion nozzle for continuous casting, characterized in that the bottom of the nozzle has a concave hemispherical shape, and the upper edge of the molten steel discharge port is formed in an arc shape from the inside of the nozzle to the exit.
JP32026788A 1988-12-19 1988-12-19 Submerged nozzle for continuous casting Pending JPH02165851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32026788A JPH02165851A (en) 1988-12-19 1988-12-19 Submerged nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32026788A JPH02165851A (en) 1988-12-19 1988-12-19 Submerged nozzle for continuous casting

Publications (1)

Publication Number Publication Date
JPH02165851A true JPH02165851A (en) 1990-06-26

Family

ID=18119598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32026788A Pending JPH02165851A (en) 1988-12-19 1988-12-19 Submerged nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH02165851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603860A (en) * 1994-07-25 1997-02-18 Voest-Alpine Industrieanlagenbau Gmbh Immersed casting tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603860A (en) * 1994-07-25 1997-02-18 Voest-Alpine Industrieanlagenbau Gmbh Immersed casting tube

Similar Documents

Publication Publication Date Title
EP0925132B1 (en) Submerged nozzle for the continuous casting of thin slabs
JP4419934B2 (en) Method for continuous casting of molten metal
US5882577A (en) Tundish
AU2003254783B2 (en) Casting nozzle
JPH0852547A (en) Immersion casting pipe
JP3515762B2 (en) Immersion nozzle for continuous casting and continuous casting method
EP3743231B1 (en) Submerged entry nozzle for continuous casting
EP1854571B1 (en) Refractory nozzle for the continous casting of steel
JPH0120052Y2 (en)
JPH02165851A (en) Submerged nozzle for continuous casting
JP7115230B2 (en) Pouring equipment for continuous casting
JP3324598B2 (en) Continuous slab casting method and immersion nozzle
JP7196746B2 (en) Pouring equipment for continuous casting
UA86601C2 (en) submerged entry nozzle with plurality of discharge outlets (embodiments)
JP4064794B2 (en) Casting nozzle
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JP4265412B2 (en) Metal continuous casting method
JPS62292255A (en) Nozzle for pouring molten metal
CA2442857A1 (en) Improved regulation of a stream of molten metal
US20040100002A1 (en) Regulation of a stream of molten metal
JP3093606B2 (en) Nozzle for twin belt type continuous casting machine
JP2001087843A (en) Immersion nozzle for continuous casting
JPH03226340A (en) Submerged nozzle for continuous casting
RU36784U1 (en) INTERMEDIATE BUCKET FOR CONTINUOUS METAL CASTING
JP2901983B2 (en) Immersion nozzle for continuous casting