JP7196746B2 - Pouring equipment for continuous casting - Google Patents
Pouring equipment for continuous casting Download PDFInfo
- Publication number
- JP7196746B2 JP7196746B2 JP2019075463A JP2019075463A JP7196746B2 JP 7196746 B2 JP7196746 B2 JP 7196746B2 JP 2019075463 A JP2019075463 A JP 2019075463A JP 2019075463 A JP2019075463 A JP 2019075463A JP 7196746 B2 JP7196746 B2 JP 7196746B2
- Authority
- JP
- Japan
- Prior art keywords
- downstream
- sliding
- plate
- sliding gate
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Description
本発明は、連続鋳造用注湯装置に関するものである。 The present invention relates to a pouring apparatus for continuous casting.
溶融金属、例えば溶鋼の連続鋳造においては、取鍋内に収容された溶鋼がタンディッシュに移注され、さらにタンディッシュから鋳型内に注入される。タンディッシュ底部にはスライディングゲートなどの流量調整機構が設けられ、スライディングゲートの下流側に浸漬ノズルが設けられ、浸漬ノズルの下端付近側部に、溶鋼を鋳型内に吐出する吐出孔が設けられている。 In the continuous casting of molten metal, such as molten steel, molten steel contained in a ladle is poured into a tundish and poured from the tundish into a mold. A flow control mechanism such as a sliding gate is provided at the bottom of the tundish, an immersion nozzle is provided downstream of the sliding gate, and a discharge hole for discharging molten steel into the mold is provided on the side near the lower end of the immersion nozzle. there is
大断面ブルーム連続鋳造やスラブ連続鋳造では浸漬ノズル側面に2孔の吐出孔を有し、吐出孔は通常、鋳型の幅方向(鋳片の幅方向)両側に向けて設けられる。これに対して、小断面ブルーム連続鋳造やビレット連続鋳造では、浸漬ノズル下端に、下方に向いた単孔の吐出孔が設けられる。以下「単孔浸漬ノズル」ともいう。本発明は、浸漬ノズルの吐出孔形状として単孔浸漬ノズルを用いた、連続鋳造用注湯装置を対象とする。 In large-section bloom continuous casting and slab continuous casting, there are two discharge holes on the side of the submerged nozzle, and the discharge holes are usually provided on both sides in the width direction of the mold (the width direction of the slab). On the other hand, in small-section bloom continuous casting and billet continuous casting, a single discharge hole directed downward is provided at the lower end of the submerged nozzle. Hereinafter, it is also referred to as a “single-hole submerged nozzle”. The present invention is directed to a pouring apparatus for continuous casting using a single-hole submerged nozzle as the shape of the discharge hole of the submerged nozzle.
単孔浸漬ノズルを用いた連続鋳造においては、吐出流がストランド内に深く浸入するとともに鋳型内溶鋼表面温度が低下しがちとなり、湯面は皮張りし始め、浮上する気泡や介在物を捕捉しやすくなる。その結果、鋳片中心部及び表層部の品質悪化や、モールドパウダーの滓化不良といった問題が生じることが知られている(非特許文献1参照)。さらに、ブレークアウトや浸漬ノズル破損といった操業上の問題につながる。 In continuous casting using a single-hole submerged nozzle, as the discharge flow penetrates deeply into the strand, the surface temperature of the molten steel in the mold tends to drop, and the surface of the molten steel begins to skin, trapping bubbles and inclusions that rise to the surface. easier. As a result, it is known that problems such as deterioration in the quality of the cast slab center and surface layers and poor slag formation of mold powder occur (see Non-Patent Document 1). In addition, it leads to operational problems such as breakouts and broken submerged nozzles.
特許文献1では、鋼の連続鋳造方法において使用される、内部に捩り板型旋回羽根を設置してノズル内を流下する溶鋼に旋回流を付与する連続鋳造用浸漬ノズルを「旋回流ノズル」と呼び、この旋回流ノズルを用いた連続鋳造方法について開示している。
特許文献1によると、筒状ノズルの底部に1つの吐出孔を有する単孔浸漬ノズルの場合に旋回流ノズルを適用すると、遠心力により吐出流が広がりながら吐出するので、吐出流速が低下し、吐出流が鋳片内に侵入する深さが低下するという、電磁ブレーキ的効果が得られる。この効果により、鋳型内における介在物の浮上が促進されたり(例えば非特許文献2)、鋳型内湯面(メニスカス)温度が上昇してモールドパウダーの溶融滓化が促進され鋳片肌が改善されたり、鋳片内部の温度が低下して等軸晶が増え鋳片中心部のポロシティ(引け巣)欠陥が減少したりするといった効果が期待されている。
さらに特許文献1によると、ノズル孔の内壁から吐出孔に向って拡管状断面を有するような単孔浸漬ノズルを用い、旋回流ノズルを用いた結果として、旋回しつつ流下する溶鋼が遠心力により横に広がりつつ吐出するので、吐出流により非金属介在物が鋳片の深くへ持ち込まれたり、鋳型内湯面(メニスカス)への溶鋼供給が不十分で温度が低下し気泡や非金属介在物の浮上分離が妨げられるといった問題が解消される。また、吐出孔近傍での溶鋼流の淀み域が小さくなるので、吐出孔への介在物付着も減少する。旋回しつつ流下する溶鋼が遠心力により横に広がりつつ吐出されるので、鋳型内湯面(メニスカス)への上昇流が生じて湯面温度が上昇し、気泡や非金属介在物の浮上分離を促進されるという効果が得られる。
In
According to
Furthermore, according to
特許文献2には、タンディッシュから鋳型への注入過程にある中間ノズルの形状を工夫し浸漬ノズル内に旋回流を付与する方法が開示されているが、この方法は旋回を付与する機構の形状が複雑で製造が困難である。さらに、特許文献3には、スライディングゲートの流路に切り欠きを設けて溶鋼を旋回させる方法が開示されているが、この方法は壁面近傍の流れに限定的に旋回を付与するもので得られる旋回が弱いことや溝や切り欠きが溶損して旋回付与効果が維持できない。
特許文献1においては、ノズル内部に捩り板型旋回羽根を設置した旋回流ノズルにおいて、旋回羽根捩りピッチPc、旋回羽根捩り角θ、旋回羽根の外径、旋回羽根の厚みを所定の範囲に規定した上で、旋回羽根下端と吐出孔との間において内径を絞り、タンディッシュと鋳型間の必要ヘッド予測値Hを所定の範囲内におさめた旋回流ノズルを使用して連続鋳造する方法が開示されている。
In
特許文献1に記載のように、浸漬ノズル内に捩り板型旋回羽根を設置することによって浸漬ノズル内を流下する溶湯流に旋回流を形成した上で、単孔浸漬ノズルを用いた連続鋳造を行うことにより、旋回しつつ流下する溶鋼が遠心力により横に広がりつつ吐出されるので、鋳型内湯面(メニスカス)への上昇流が生じて湯面温度が上昇し、気泡や非金属介在物の浮上分離を促進される。
また、加えて上記湯面温度上昇は湯面皮張りの抑制も期待され得る。
一方で、浸漬ノズル内に設けた捩り板型旋回羽根は溶損しやすく、効果が持続しないという課題があった。旋回羽根が溶損したときに浸漬ノズルを交換することとすると、浸漬ノズルの寿命が短くなるという問題が生じる。
As described in
In addition, the rise in the surface temperature of the molten steel can also be expected to suppress skinning of the molten surface.
On the other hand, the torsion plate-type swirl vane provided in the submerged nozzle is easily eroded, and there is a problem that the effect does not last. If the submerged nozzle is replaced when the swirl vane is eroded, the life of the submerged nozzle is shortened.
本発明は、浸漬ノズルやスライディングゲートの寿命を短縮することなく、浸漬ノズル内を流下する溶湯流に旋回流を付与することのできる、連続鋳造用注湯装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a pouring apparatus for continuous casting that can impart a swirling flow to the flow of molten metal that flows down through the submerged nozzle without shortening the service life of the submerged nozzle and the sliding gate.
即ち、本発明の要旨とするところは以下のとおりである。
[1]溶融金属を鋳型内に注湯するための連続鋳造用注湯装置であって、
溶融金属の流量を調整するスライディングゲートと、前記スライディングゲートの下方に設けられる浸漬ノズルとを有し、
前記スライディングゲートは溶融金属が通過する流路孔が形成された複数のプレートを有し、前記プレートのうちの少なくとも1枚のプレートは摺動が可能なスライド板であり、
それぞれのプレートにおける流路孔は、プレートの表面のうち、通過する溶融金属の上流側に位置する上流側表面に上流側表面開孔を形成し、下流側に位置する下流側表面に下流側表面開孔を形成し、上流側表面開孔図形の重心から下流側表面開孔図形の重心に向く方向を流路軸線方向とし、
プレートの摺動面に垂直な下流方向(以下「摺動面垂直下流方向」という。)と前記流路軸線方向とがなす流路軸線傾斜角度αが5°以上75°以下であり、
前記流路軸線方向を摺動面に投影した方向を摺動面流路軸線方向と呼び、スライディングゲートを閉とするときに前記スライド板を摺動する方向を摺動閉方向と呼び、摺動閉方向に対し、前記摺動面流路軸線方向が、前記摺動面垂直下流方向に見て時計回りになす角度を流路軸線回転角度θ(±180度の範囲)と呼び、当該流路軸線回転角度θは、隣接するプレート間で異なっており、最も上流側のプレートのθをθ1、その一つ下流側のプレートのθをθ2、さらに一つ下流側のプレートのθをθ3と順に番号を付け、ΔθN=θN-θN+1(Nは1以上の整数でプレートの枚数-1まで)としたとき、
角度ΔθNがいずれも10°以上かつ170°未満であって浸漬ノズル内に反時計回り旋回流を形成し、又は角度ΔθNがいずれも-170°超かつ-10°以下であって浸漬ノズル内に時計回り旋回流を形成し、
前記浸漬ノズルは、浸漬ノズル底部に開孔させた単一の吐出孔を有してなることを特徴とする連続鋳造用注湯装置。
[2]前記浸漬ノズルの吐出孔形状は、浸漬ノズル内壁から吐出孔出口に向かって拡管状形状を有するように成形してなることを特徴とする[1]に記載の連続鋳造用注湯装置。
[3]スライディングゲートを形成するプレートの数が2枚もしくは3枚でありスライド板が1枚であることを特徴とする、[1]又は[2]に記載の連続鋳造用注湯装置。
That is, the gist of the present invention is as follows.
[1] A pouring device for continuous casting for pouring molten metal into a mold,
Having a sliding gate for adjusting the flow rate of the molten metal and an immersion nozzle provided below the sliding gate,
The sliding gate has a plurality of plates formed with passage holes through which the molten metal passes, at least one of the plates being a slidable slide plate,
The channel holes in each plate form upstream surface openings on the upstream surface of the plate surface located upstream of the molten metal passing therethrough, and form upstream surface openings on the downstream surface located downstream of the surface of the plate. Forming the apertures, the direction from the center of gravity of the upstream side surface aperture pattern to the center of gravity of the downstream side surface aperture pattern is defined as the channel axis direction,
The channel axis line inclination angle α formed by the channel axis direction and the downstream direction perpendicular to the sliding surface of the plate (hereinafter referred to as the “sliding surface perpendicular downstream direction”) is 5° or more and 75° or less,
The direction in which the channel axis direction is projected onto the sliding surface is called the sliding surface channel axis direction, and the direction in which the slide plate slides when the sliding gate is closed is called the sliding closing direction. The angle formed by the sliding surface flow path axis direction clockwise with respect to the closing direction when viewed in the sliding surface perpendicular downstream direction is called a flow path axis rotation angle θ (within a range of ±180 degrees). The axis line rotation angle θ differs between the adjacent plates, and the θ of the plate on the most upstream side is θ 1 , the θ of the plate one downstream thereof is θ 2 , and the θ of the plate one further downstream is θ Numbered in order from 3 , and Δθ N = θ N - θ N+1 (N is an integer of 1 or more and up to the number of plates - 1),
All the angles Δθ N are 10° or more and less than 170° to form a counterclockwise swirling flow in the submerged nozzle, or all the angles Δθ N are more than -170° and -10° or less and the submerged nozzle Form a clockwise swirl flow in
A pouring apparatus for continuous casting, wherein the submerged nozzle has a single discharge hole opened at the bottom of the submerged nozzle.
[2] The pouring apparatus for continuous casting according to [1], wherein the shape of the discharge hole of the submerged nozzle is formed so as to have an expanded tubular shape from the inner wall of the submerged nozzle toward the outlet of the discharge hole. .
[3] The pouring apparatus for continuous casting according to [1] or [2], wherein the number of plates forming the sliding gate is two or three and the number of slide plates is one.
溶融金属を鋳型内に注湯するための連続鋳造用注湯装置として本発明を用いることにより、単孔浸漬ノズルを用いた連続鋳造を行うに際し、浸漬ノズルやスライディングゲートの寿命を短縮することなく、浸漬ノズル内を流下する溶湯流に旋回流を形成し、鋳型内湯面(メニスカス)への上昇流を形成して湯面温度を上昇し、気泡や非金属介在物の浮上分離を促進することができる。 By using the present invention as a continuous casting pouring device for pouring molten metal into a mold, continuous casting using a single-hole immersion nozzle can be performed without shortening the life of the immersion nozzle or sliding gate. Forming a swirling flow in the molten metal flow flowing down the submerged nozzle, forming an upward flow to the metal surface (meniscus) in the mold, raising the temperature of the metal surface, and promoting the floating and separation of bubbles and non-metallic inclusions. can be done.
本発明は、図1に示すように、溶融金属を鋳型22内に注湯するための連続鋳造用注湯装置20であって、溶融金属の流量を調整するスライディングゲート1と、スライディングゲート1の下方に設けられる浸漬ノズル11とを有する。スライディングゲート1において旋回流を形成し、溶融金属が浸漬ノズル内孔12を旋回しつつ流下する。浸漬ノズル11は、その底部に下方に向かって開孔させた吐出孔13を有し、浸漬ノズル内孔12を流下する溶融金属が旋回流を形成ながら吐出孔13から吐出し、図13(A)に示すように、吐出流19が鋳型内の鋳造方向と水平方向に対して浸漬ノズル中心軸端から同心円状に拡がり、吐出することを可能にしている。
The present invention, as shown in FIG. 1, is a continuous
《スライディングゲート》
まず、本発明のスライディングゲートについて、図1~図11に基づいて説明する。
鋼等の溶融金属の連続鋳造におけるタンディッシュ21から鋳型22への溶融金属23の注入過程において、溶融金属23の流量を調整する目的でスライディングゲート1が用いられる。2枚もしくは3枚のプレート2を重ねて構成されたスライディングゲート1において、各プレート2には流路孔6が設けられている。スライディングゲート1を構成するプレートのうちのスライド板4を摺動させ、各プレートの流路孔6の重なりによってスライディングゲート1が「開」となっているとき、流路孔6の上流側から下流側に向けて溶融金属が流通する。プレート2の摺動面30に垂直で下流方向に向かう方向(摺動面垂直下流方向32)は、上から下に向かって鉛直下方に向いている。
《Sliding Gate》
First, the sliding gate of the present invention will be described with reference to FIGS. 1 to 11. FIG.
The sliding
従来用いられているスライディングゲートにおいて、プレート2の流路孔6は、図10、図11に示すように、通常はその内周形状が円筒形であり、円筒の軸方向は摺動面垂直下流方向32に平行に構成されている。これに対し本発明は、図2~図9に示すように、流路孔6の向く方向を、摺動面垂直下流方向32からある角度を持った斜孔とし、摺動面30に投影した斜孔の方向を2枚ないしは3枚のプレートで異なった方向にしたものを適宜組み合わせることによって、スライディングゲート1及びその下流側の浸漬ノズル11内部の溶融金属流について、下流側に向かう流れのみでなく、周方向流速を付加し旋回流を形成するのである。
10 and 11, in a conventionally used sliding gate, the
流路孔6の断面形状として、通常は軸方向に垂直な断面が真円の円筒形状が用いられる。本発明のスライディングゲート1において、プレート2に形成される流路孔6は、円筒形状に限られるものではなく、また流路孔の軸方向についても、プレート内において変化するものであってもかまわない。そこでまず、プレート2に形成された流路孔6の軸線を定義することとする。
As the cross-sectional shape of the
図10によって、従来のスライディングゲート1の流路孔6について説明する。図10のスライディングゲート1は、3枚のプレート2を有し、上流側から上固定板3、スライド板4、下固定板5からなる。各プレート2には、断面が真円の円筒形状であって、円筒の軸方向が摺動面30に垂直下流方向(摺動面垂直下流方向32)に向いた流路孔6が形成されている。各プレートの上流側表面を上流面7u、下流側表面を下流面7dと呼ぶ。上流面7uにおいて流路孔6の内周面が形成する図形(上流側表面開孔)を上流開孔8uと呼ぶ。また、下流面7dにおいて流路孔6の内周面が形成する図形(下流側表面開孔)を下流開孔8dと呼ぶ。図10に示す例では流路孔6の円筒形状の軸線が摺動面に垂直であるため、図10(A)~(C)においては、上流開孔8uと下流開孔8dが重なっている。上流開孔8u、下流開孔8dの形状をそれぞれ図形と見なすと、当該図形の重心を定義することができる。それぞれ、上流側表面開孔図形重心を上流開孔重心9u、下流側表面開孔図形重心を下流開孔重心9dと呼ぶこととする。図10に示す例では、上流開孔8u、下流開孔8dともに図形形状が真円であるため、上流開孔重心9u、下流開孔重心9dは真円図形の中心と一致している。次に、上流開孔重心9uと下流開孔重心9dを通過し、下流側に向く方向を、流路軸線方向10と定義する。図10に示す例では、流路軸線方向10は摺動面垂直下流方向32と同じ方向となる。図10(F)おいて、一点鎖線で描写した線が流路軸線方向10である。
The
次に図2によって、本発明のスライディングゲート1の流路孔6について説明する。図2のスライディングゲート1は、3枚のプレートを有し、上流側から上固定板3、スライド板4、下固定板5からなる。各プレートには、軸方向断面が真円の円筒形状であって、円筒の軸方向が摺動面垂直下流方向32から傾いた方向となる流路孔6が形成されている。図2(A)(F)により、上固定板3を例にとって説明する。図2(F)は図2(A)のF-F矢視断面図である。円筒の軸方向と摺動面垂直下流方向32とが傾いているため、図2(A)において上流開孔8uと、下流開孔8dが異なった位置に描かれている。軸方向断面が真円で、軸方向が摺動面垂直下流方向32から傾いた円筒形状であるため、上流開孔8uと下流開孔8dとはそれぞれ僅かに真円から外れた楕円を形成している。ただし、図面上は便宜上真円として描画している。上流開孔8uと下流開孔8dそれぞれの図形の重心を上流開孔重心9u、下流開孔重心9dとして定めることができる。さらに、上流開孔重心9uと下流開孔重心9dとを通過して下流側に向くように、流路軸線方向10を定めることができる。図2(F)において、一点鎖線で描写した線が流路軸線方向10である。図2に示す例では、流路軸線方向10は、流路孔6を形成する、軸方向断面が真円の円筒形状の軸線方向と一致している。ここにおいて、プレートの摺動面に垂直な下流方向(摺動面垂直下流方向32)と流路軸線方向10とがなす角度を流路軸線傾斜角度αとおく。ここで、流路軸線方向を定めるのに円の中心ではなく開孔重心を用いているのは、開孔形状が真円でない場合にも普遍的に流路軸線方向を定義するためである。
Next, referring to FIG. 2, the
図10に示す例では、上固定板3の下流開孔8dとスライド板4の上流開孔8u、スライド板4の下流開孔8dと下固定板5の上流開孔8uが、それぞれ一致するように、スライド板4の摺動位置が定まっており、即ちスライディングゲート1は全開の状態である(図10(D)参照)。図10に示すスライディングゲート1は、スライド板4を図の左方向に移動することにより、スライディングゲート1の開度を小さくすることができる。図11は、図10と同じスライディングゲート1について、開度を1/2とした状態を示している。スライド板4の位置をさらに図の左側に移動することにより、スライディングゲート1を全閉とすることができる。図2、図3に示す例でも同様である。図2はスライディングゲート1が全開であり、上固定板3の下流開孔8dとスライド板4の上流開孔8u、スライド板4の下流開孔8dと下固定板5の上流開孔8uが、それぞれ一致するように、スライド板4の摺動位置が定まっている。図3は図2と同じスライディングゲート1について、スライディングゲート1の開度が1/2の状態を示している。そこで、スライディングゲート1を閉とするときにスライド板4を摺動する方向を、以下「摺動閉方向33」と呼ぶ。
In the example shown in FIG. 10, the
図2に示す本発明の例では、流路軸線方向10が摺動面垂直下流方向32に対して流路軸線傾斜角度αで傾いているため、流路軸線方向10を摺動面に投影した方向を摺動面流路軸線方向31としたとき、摺動面流路軸線方向31を定めることができる。図2(A)~(C)、(F)それぞれ、摺動面流路軸線方向31を細線矢印で示している。なお、図2(A)~(C)では、摺動面流路軸線方向31は流路軸線方向10と重なっている。また、図10に示す例では、流路軸線方向10が摺動面垂直下流方向32を向いているため、図10(A)~(C)には摺動面流路軸線方向31が現れない。
In the example of the present invention shown in FIG. 2, the
次に、摺動面流路軸線方向31と摺動閉方向33との間の角度関係について定義する。摺動閉方向33に対し、摺動面流路軸線方向31が、摺動面垂直下流方向32に見て時計回りになす角度を流路軸線回転角度θと呼ぶ。流路軸線回転角度θは、±180°の範囲の角度として定義する。即ち、摺動面流路軸線方向31が、摺動面垂直下流方向32に見て時計回りに+180°を超える角度(θ’)となったときには、「θ=θ’-360°」として、角度θをマイナスの値として定める。角度θの下添え字として、最も上流側のプレートのθをθ1、その一つ下流側のプレートのθをθ2、さらに一つ下流側のプレートのθをθ3と順に番号を付ける。代表してθNと表現するとき、Nは1以上の整数でスライディングゲート1のプレート枚数までの数値を意味する。図2に示す例では、上固定板3は角度θ1=-45°、スライド板4は角度θ2=+90°、下固定板5は角度θ3=-135°となる。
Next, the angular relationship between the sliding surface
さらに、スライディングゲート1において、相互に接する2枚のプレート間の流路軸線回転角度の関係について以下のように定義する。即ち、ΔθN=θN-θN+1としてΔθNを定める。ΔθNは、上記θNと同様、±180度の範囲の角度として定義する。即ち、ΔθNが+180°を超える角度(ΔθN’)となったときには、「ΔθN=ΔθN’-360°」として、ΔθNをマイナスの値として定める。また、ΔθNが-180°未満の角度(ΔθN’)となったときには、「ΔθN=ΔθN’+360°」として、ΔθNをプラスの値として定める。これにより、ΔθNは±180°の範囲内の数字となる。ここで、ΔθNが0°超+180°未満の場合には、上流から下流に向けて、流路軸線回転角度θNが反時計回りに変化していることを示す。逆に、ΔθNが-180°超0°未満の場合には、上流から下流に向けて、流路軸線回転角度θNが時計回りに変化していることを示す。図2に示す例では、Δθ1=θ1-θ2=-135°、Δθ2’=θ2-θ3=225°であるからΔθ2=Δθ2’-360°=-135°となる。Δθ1、Δθ2いずれも-180~0°の範囲内にあるので、流路軸線回転角度が時計回りに変化していることを示す。
Furthermore, in the sliding
以上のような準備のもと、本発明のスライディングゲート1が具備すべき条件とその理由について説明する。
Based on the above preparations, the conditions that the sliding
従来のスライディングゲート1においては、図10、図11に示すように、流路軸線方向10が摺動面に垂直であり、即ち流路軸線傾斜角度αが0°であり、傾きを有していなかった。それに対して本発明は、流路軸線方向10が摺動面垂直下流方向32に対して傾いており、流路軸線傾斜角度αが0°ではないことを第1の特徴とする。流路軸線が摺動面垂直下流方向32に対して傾いていることから、プレート内を流れる溶融金属は、摺動面垂直下流方向32の速度成分のみならず、摺動面垂直下流方向32に対して直角の速度成分(水平方向の速度成分)を有することとなる。本発明においては、流路軸線傾斜角度αが5°以上75°以下である。角度αを5°以上とすることにより、溶融金属は十分な水平方向の速度成分を持つこととなり、下記に示すように浸漬ノズル内における旋回流の形成を可能とする。角度αは、好ましくは15°以上、より好ましくは25°以上である。一方、角度αが大きすぎると耐火物の強度確保や損耗抑制の観点から好ましくないので、角度αを75°以下とする。角度αは、好ましくは65°以下、より好ましくは55°以下である。
In the conventional sliding
連続鋳造中のスライディングゲート1の開口状況について、タンディッシュ内の湯面レベルが一定で、一定鋳造速度で鋳造を行っている定常状態においては、スライディングゲートの開口を全開(図10参照)とするのではなく、開度を絞った状態(図11参照)で鋳造が行えるよう、スライディングゲート流路孔断面積の選択が行われている。図11はスライディングゲート1の開度が1/2である。この場合、スライディングゲート1の開口面積は、真円である流路孔の断面積の0.31倍と計算される。定常の連続鋳造中において、このように絞られた小断面が開口面積となる結果、スライディングゲート1のスライド板4よりも下流側については、流路内を小断面の高速な流れが流れていく状況となる。
Regarding the opening of the sliding
図3は、図2に示す形状の本発明のスライディングゲート1(開度全開)の開度を変更し、開度を1/2としたときのスライディングゲートを示している。図3(A)は図3(D)のA-A矢視図であり、上固定板3の下流開孔8dが一部実線、一部破線で描かれており、スライド板4については上流開孔8u(4)のみが同じく一部実線、一部破線で描かれている。図3(B)は図3(D)のB-B矢視図であり、スライド板4の上流開孔8uが全部実線、下流開孔8dが一部実線、一部破線で描かれており、下固定板5の上流開孔8uが同じく一部実線、一部破線で、下流開孔8dが全部破線で描かれている。図3(C)は図3(D)のC-C矢視図であり、下固定板5の上流開孔8uが全部実線、下流開孔8dが一部実線、一部破線で描かれている。
FIG. 3 shows a sliding gate in which the opening degree of the sliding gate 1 (fully opened) of the present invention having the shape shown in FIG. 2 is changed to 1/2. 3(A) is a view taken along the line AA in FIG. 3(D), in which the
図3に示すように開度を1/2としたときの、スライディングゲートの流路孔内及び浸漬ノズル内の溶融金属の流れについて、図4に基づいて説明を行う。図4において、図4(A)は図4(D)のA-A矢視図であり、上固定板3の下流開孔8dが一部実線、一部破線で描かれており、スライド板4については上流開孔8uのみが同じく一部実線、一部破線で描かれている。図4(B)は図4(D)のB-B矢視図であり、上固定板3の下流開孔8d(3)の位置が2点鎖線で示され、スライド板4の上流開孔8uが全部実線、下流開孔8dが一部実線、一部破線で描かれており、下固定板5の上流開孔8uが同じく一部実線、一部破線で、下流開孔8dが全部破線で描かれている。図4(C)は図4(D)のC-C矢視図であり、スライド板4の下流開孔8d(4)の位置が2点鎖線で示され、下固定板5の上流開孔8uが全部実線、下流開孔8dが一部実線、一部破線で描かれている。また、溶融金属の流線18が、図4(A)~(C)には太線矢印で、(D)(E)には太破線矢印で示されている。
The flow of molten metal in the passage hole of the sliding gate and in the submerged nozzle when the opening is set to 1/2 as shown in FIG. 3 will be described based on FIG. In FIG. 4, FIG. 4A is a view taken along line AA in FIG. 4, only the
図2、図3のスライディングゲート1については、前述のように、隣接する流路軸線回転角度θNの差ΔθNは、Δθ1=Δθ2=-135°であって、いずれもΔθNが-180°超0°未満であるから、上流から下流に向けて、流路軸線回転角度θNが時計回りに変化していることを示す。上固定板3の流路孔6内を流れる溶融金属流は、図4(A)に示すように、上固定板3の流路軸線方向10に沿って流れる。上固定板3とスライド板4の接触面では、上固定板3の下流開孔8d(図4(B)の2点鎖線)とスライド板4の上流開孔8u(図4(B)の実線)との重なり部(開口部)の小断面内を下流側に流下する。スライド板4の流路孔6内においては、上固定板3の下流開孔8d(図4(B)の2点鎖線)とスライド板4の上流開孔8u(図4(B)の実線)との重なり部(開口部)の小断面から流出した溶融金属流は、図4(B)に流線18を示すように、スライド板4の流路孔6の内側壁面(円筒面)に沿った旋回流を形成し、下流側の、スライド板4の下流開孔8d(図4(C)の2点鎖線)と下固定板5の上流開孔8u(図4(C)の実線)との重なり部(開口部)の小断面から、さらに下固定板5の流路孔6内に流出する。下固定板5の流路孔6内では、図4(C)に流線18を示すように、下固定板5の流路孔6の内側壁面(円筒面)に沿った旋回流を形成し、そのまま、下流側の浸漬ノズル11内に流出し、図4(D)(E)に示すように、流路内で流線18は旋回流を維持したまま、浸漬ノズル11内を下流側に移動していく。
Regarding the sliding
図11に示すような従来のスライディングゲート1を用いた場合、スライディングゲート1の開口部から流出する際に溶融金属流が有している運動エネルギーのすべてが下流方向に向かう流速に費やされている。それに対して、図3に示すような本発明のスライディングゲート1を用いた場合、スライディングゲート1から流出する際に、溶融金属流の運動エネルギーは下流方向に向かう流速と旋回して浸漬ノズルの内周面を旋回する旋回速度とに分散されるので、図11に示す従来のスライディングゲート1と比較し、下流方向に向かう流速を抑制することが可能となる。
When the conventional sliding
スライディングゲート1の流路孔6内に旋回流を形成し、スライディングゲート下流側の浸漬ノズル内においても旋回流を形成するための、隣接するプレートの流路軸線回転角度θN相互間の差である角度ΔθNの条件について説明する。前述のように、ΔθNは±180°の範囲内の角度として定義されている。ここにおいて、ΔθN=-10°超かつ+10°未満の場合には、流路軸線回転角度θNとθN+1の差異が小さすぎ、旋回流を形成できない。一方、ΔθNが+170°以上又は-170°以下の場合、ΔθNの絶対値が大きすぎ、かえって旋回流の形成を阻害することとなる。スライディングゲート1が2枚のプレートを有する場合、Δθ1のみが定義され、当該Δθ1が上記条件を満たしていれば良い。スライディングゲート1が3枚以上のプレートを有する場合、Δθ1に加え、Δθ2、さらにはそれ以上のΔθNが定義される。そして、ΔθNがいずれも10°以上かつ170°未満、又は角度ΔθNがいずれも-170°超かつ-10°以下であることが必要である。これにより、プレートの1枚目と2枚目の流路軸線方向10が時計回りに変化するときには3枚目以降についても同じように時計回りに変化し、プレートの1枚目と2枚目の流路軸線方向10が反時計回りに変化するときには3枚目以降についても同じように反時計回りに変化するので、スライディングゲート内で旋回流を有効に形成することが可能となる。ΔθNのより好ましい範囲は、30°以上、165°未満、又は-165°超、-30°以下である。
The difference between the channel axis rotation angles θ N of adjacent plates to form a swirl flow in the
スライディングゲート1を形成するプレートの数は、2枚もしくは3枚であると好ましい。図2~図4に示す例は、上述のとおり、プレートの数が3枚の場合である。図5、図6は、プレートの数が2枚であり、上流側から1枚目が上固定板3、2枚目がスライド板4を構成している。図5は開度が全開、図6は開度が1/2の場合である。α=51.95°、θ1=-26.57°、θ2=+26.57°であり、Δθ1=-53.14°であって、時計回りの旋回流を形成することができる。スライディングゲート1を形成するプレートの数が2枚もしくは3枚であると好ましい理由は、スライディングゲートの絞り機構発現には最低2枚のプレートが必要であり、4枚以上のプレートは流量調整に不要で、プレート数の増加に伴いコストが上昇するからである。
The number of plates forming the sliding
プレートに形成する流路孔6については、図7に示すような形状の流路孔6とすることもできる。図7は上固定板3の一例を示す。プレートの上流面7uから厚みの途中までは、流路孔6の形状は、断面真円の円筒形状であって、円筒の軸線が摺動面垂直下流方向32に向いている。プレートの下流面7dから厚みの途中までは、流路孔6の形状は、断面真円の円筒形状であって、円筒の軸線が摺動面垂直下流方向32から傾斜して形成されている。プレートの厚み途中において、上流面7uからの流路孔6と下流面7dからの流路孔6が段差なく接続されている。このような形状の流路孔6を有するプレートにおいても、図7(D)に示すように、上流側表面開孔図形の重心(上流開孔重心9u)から下流側表面開孔図形の重心(下流開孔重心9d)に向く方向を流路軸線方向10として定義することができる。
The
なお、スライディングゲート1を構成するプレートの厚みは同一でもよいが、スライド板4が最も薄いなどプレート毎に厚みが異なっていても構わない。また、スライディングゲート各プレートの入口および出口の流路孔形状は同じ大きさの円でもよいが、これが楕円もしくは長円であっても、本発明の規定を満たす限りにおいては、旋回流を得ることが可能である。あるいはその開孔面積が各プレートの入口および出口で異なっていても構わない。
The thickness of the plates constituting the sliding
角度αについては、全てのプレートで同一であっても異なっていても構わない。 The angle α may be the same or different for all plates.
《水モデル実験》
連続鋳造中における、吐出流の水平方向成分を定量的に評価するため、1/1スケール水モデル実験装置を用いた粒子画像流速計測法による吐出孔付近の速度分布計測を行った。特に、ゲート内径をDとした時に吐出孔先端から1.0Dの位置における速度分布に注目し、その位置での水平方向速度成分の平均を「水平方向速度強さ」とした。ここで、連続鋳造の1/1スケールの水モデル実験は、フルード数Frとレイノルズ数Reが一致している観点から溶鋼流動を十分に再現している。
《Water model experiment》
In order to quantitatively evaluate the horizontal component of the discharge flow during continuous casting, the velocity distribution near the discharge hole was measured by the particle image velocimetry method using a 1/1 scale water model experimental apparatus. In particular, attention was focused on the velocity distribution at a position 1.0D from the tip of the discharge hole when the gate inner diameter was D, and the average of the horizontal velocity components at that position was taken as the "horizontal direction velocity intensity". Here, the
スライディングゲートとして、浸漬ノズル内で旋回流を形成する本発明のスライディングゲート(以下「本発明ゲート」という。)と、従来から用いられている通常のスライディングゲート(以下「通常ゲート」という。)とを準備した。本発明ゲート、通常ゲートのいずれも、プレート厚みは35mm、プレートの流路孔径はφ50mmである。ここで、流路孔はプレートへの穴あけに使用するドリル径と一致する。 As the sliding gate, the sliding gate of the present invention that forms a swirling flow in the submerged nozzle (hereinafter referred to as the "present invention gate") and the conventionally used normal sliding gate (hereinafter referred to as the "normal gate"). prepared. Both the gate of the present invention and the normal gate have a plate thickness of 35 mm and a channel hole diameter of φ50 mm. Here, the channel holes match the diameter of the drill used to drill the holes in the plate.
プレート2の摺動面30に垂直な下流方向(摺動面垂直下流方向32)と流路軸線方向10とがなす流路軸線傾斜角度αについては、上固定板3のαをα1、スライド板4のαをα2、下固定板5のαをα3と順に番号を付ける。摺動面流路軸線方向31が摺動面垂直下流方向32に見て時計回りになす角度である流路軸線回転角度θについても同様に、上固定板3、スライド板4、下固定板5それぞれのθをθ1、θ2、θ3と順に番号を付ける。
Regarding the channel axis line inclination angle α between the
本発明ゲートは、図2~図4に示す形状を有し、α1=α3=35.531°、α2=32°であり、θ1=36.101°、θ2=90°、θ3=-143.899°(36.101-180)であり、浸漬ノズル内孔に流下する溶鋼流に時計回りの旋回流を形成する。通常ゲートは、図10、11に示す形状を有し、α1=α2=α3=0°であり、θ1、θ2、θ3は値がない。 The gate of the present invention has the shapes shown in FIGS . θ 3 =−143.899° (36.101−180), forming a clockwise swirling flow in the molten steel flowing down the inner hole of the submerged nozzle. A normal gate has the shape shown in FIGS. 10 and 11, where α 1 =α 2 =α 3 =0° and θ 1 , θ 2 , θ 3 have no values.
浸漬ノズル11は、いずれも浸漬ノズル底部に下方に向けて吐出孔13が開孔する単孔浸漬ノズルを用いた。吐出孔13の形状として、図12に示す3種類を用いた。図12(A)は、吐出孔13が直管である。図12(B)(C)は、浸漬ノズル内壁から吐出孔出口に向かって拡管状形状を有している。図12(B)は吐出孔13が直線状に拡管する山型であり、図12(C)は吐出孔13が内壁から滑らかに曲線で開孔するラッパ型である。さらに、直管単孔浸漬ノズルについては、浸漬ノズル上方の内壁形状が単純な円筒である通常直管単孔浸漬ノズルと、浸漬ノズル上方に、特許文献1に示す羽根が形成されている羽根付き直管単孔浸漬ノズルの2種類を用意した。
The submerged
スライディングゲートと浸漬ノズルについて、表1に示すような組み合わせを準備し、それぞれで水モデル実験を行った。 The combinations shown in Table 1 were prepared for the sliding gate and the immersion nozzle, and a water model experiment was conducted for each of them.
表1の試験条件C(本発明例)と試験条件E(比較例)のそれぞれについて、吐出孔13の下流側における吐出流19の流速と流れの方向を計測した。吐出孔の内径をD(=50mm)とし、吐出孔の出口、吐出孔から1.0D下方、吐出孔から2.0D下方における流速と流れの方向を計測し、結果の模式図を図13に示した。図13(A)は試験条件C(本発明例)、図13(B)は試験条件E(比較例)である。図13に示したように、通常ゲートを用い、旋回流を付与しない場合には、吐出孔13下方の吐出流19は、水平方向の流速成分を持たず、また下方に向かうにつれての流路の広がりも僅かである。それに対して、旋回流を付与した本発明の場合には、吐出孔13下方の吐出流19は、水平方向の流速成分を有し、また下方に向かうにつれての流路の広がりも大きくなることが明らかとなった。
For each of test condition C (invention example) and test condition E (comparative example) in Table 1, the flow velocity and flow direction of the
さらに表1の試験条件A~Eのすべてについて、水平方向速度成分強さと鋳造方向速度成分強さの計測結果を同じ表1に示す。
まず、単孔浸漬ノズルの吐出孔の出口形状が直管である場合について、スライディングゲート(以下単に「ゲート」とも呼称)と浸漬ノズル上部内部構造との組合せが旋回流に及ぼす影響を評価した。表1から明らかなように、浸漬ノズル上部内部構造が通常の円筒構造で通常ゲートとの組合せ(試験条件E)では鋳造方向に大きな吐出流速を示しているが、浸漬ノズル上部内部構造が羽根付きの構造で通常ゲートとの組合せ(試験条件D)及び本発明ゲートと浸漬ノズル上部内部構造が通常の円筒構造の組合せ(試験条件C)では、鋳造方向へ流れる流体の速度が小さくなることがわかる。これは、浸漬ノズル上部内部構造が通常の円筒構造で通常ゲートとの組合せ(試験条件E)で発生しなかった水平方向速度が浸漬ノズル内に旋回流を発生させる本発明ゲートと浸漬ノズル上部内部構造が通常の円筒構造の組合せ(試験条件C)で付加されたためだと考えられる。
次に、スライディングゲートとして本発明ゲートを用い、単孔浸漬ノズルの吐出孔の出口形状が及ぼす影響を評価した。単孔浸漬ノズルの吐出孔の出口形状に注目すると、出口形状が直管形状(試験条件C)であっても旋回の効果によって鋳造方向速度が抑制され、水平方向速度が付加されている。一方で、吐出孔の出口形状がラッパ型形状(試験条件A)や山型形状(試験条件B)だと、直管形状(試験条件C)に比べてより大きな鋳造方向速度の抑制効果と水平方向速度の増強効果が明らかになった。これは、壁付近の粘性によって、鋳造方向へ流れる流体がラッパ型形状や山型形状の壁に引き寄せられるように水平方向に向かう、コアンダ効果が発現しているためと考える。
Table 1 also shows the measurement results of the horizontal direction velocity component strength and the casting direction velocity component strength for all test conditions A to E in Table 1.
First, when the exit shape of the discharge hole of the single-hole submerged nozzle is a straight pipe, the influence of the combination of the sliding gate (hereinafter simply referred to as "gate") and the upper internal structure of the submerged nozzle on the swirling flow was evaluated. As is clear from Table 1, when the submerged nozzle upper internal structure is a normal cylindrical structure and the combination with a normal gate (test condition E) shows a large discharge flow velocity in the casting direction, the submerged nozzle upper internal structure has vanes. It can be seen that the speed of the fluid flowing in the casting direction is small in the combination of the structure of (test condition D) with the normal gate and the combination of the gate of the present invention and the upper internal structure of the submerged nozzle with a normal cylindrical structure (test condition C). . This is because the immersion nozzle upper internal structure is a normal cylindrical structure, and the horizontal velocity that did not occur in the combination with the normal gate (test condition E) generates a swirling flow in the immersion nozzle. It is believed that this is because the structure was added with a combination of ordinary cylindrical structures (test condition C).
Next, using the gate of the present invention as a sliding gate, the effect of the exit shape of the discharge hole of the single-hole submerged nozzle was evaluated. Focusing on the outlet shape of the discharge hole of the single-hole submerged nozzle, even if the outlet shape is a straight pipe shape (test condition C), the effect of swirling suppresses the casting direction speed and adds the horizontal direction speed. On the other hand, when the outlet shape of the discharge hole is a trumpet shape (test condition A) or a chevron shape (test condition B), the effect of suppressing the speed in the casting direction and the horizontal flow are greater than those of the straight pipe shape (test condition C). The enhancement effect of directional velocity is revealed. This is believed to be due to the Coanda effect, in which the fluid flowing in the casting direction moves horizontally so that it is attracted to the trumpet-shaped or chevron-shaped wall due to the viscosity near the wall.
取鍋溶鋼量が200トンのブルーム連続鋳造装置(2ストランド)において、本発明を適用した。鋳造する鋳片形状は、幅:250mm、厚み:250mmである。タンディッシュ容量は35トンであり、タンディッシュの底部に連続鋳造用注湯装置を設ける。連続鋳造用注湯装置は、溶融金属の流量を調整するスライディングゲートと、スライディングゲートの下方に設けられる浸漬ノズルとを有する。スライディングゲートは溶融金属が通過する流路孔が形成された3枚のプレートを有し、中央のプレートは摺動が可能なスライド板である。浸漬ノズルは、単孔浸漬ノズルである。 The present invention was applied to a bloom continuous casting apparatus (2 strands) with a ladle molten steel amount of 200 tons. The slab shape to be cast has a width of 250 mm and a thickness of 250 mm. The tundish capacity is 35 tons, and a pouring device for continuous casting is provided at the bottom of the tundish. A pouring device for continuous casting has a sliding gate for adjusting the flow rate of molten metal, and an immersion nozzle provided below the sliding gate. The sliding gate has three plates with passage holes through which the molten metal passes, and the central plate is a slide plate that can slide. The submerged nozzle is a single hole submerged nozzle.
スライディングゲートとして、前記水モデル実験と同様の本発明ゲート、通常ゲートを用いた。また、浸漬ノズルとして、前記水モデル実験と同様のノズルを用いた。 As the sliding gate, the gate of the present invention similar to the water model experiment, a normal gate was used. Also, as the immersion nozzle, the same nozzle as in the water model experiment was used.
湯面温度低下による湯面皮張りの評価方法として、鋳造後の鋳片中のパウダー巻き込み性欠陥の発生率を取り上げる。鋳片中のパウダー巻き込み性欠陥の発生率は、製品段階で判明するパウダー起因の欠陥発生率として評価した。連続鋳造用注湯装置のスライディングゲートとして通常ゲートを用い、浸漬ノズルとして通常ノズルを用いた条件(試験条件E)におけるパウダー巻き込み性欠陥の発生率を基準(1.0)とし、各条件のパウダー巻き込み性欠陥の発生率を指数化し、「鋳片品質」とした。 As a method for evaluating surface skinning due to a decrease in surface temperature, the rate of occurrence of powder entrapment defects in cast slabs after casting is taken up. The rate of occurrence of powder entrapment defects in the cast slab was evaluated as the rate of occurrence of defects caused by powder found at the product stage. Using a normal gate as a sliding gate of a pouring device for continuous casting and using a normal nozzle as an immersion nozzle (test condition E), the occurrence rate of powder entrainment defects was used as the standard (1.0), and the powder of each condition The occurrence rate of entrapment defects was indexed and defined as "slab quality".
連続鋳造用注湯装置の耐久性について、連続鋳造用注湯装置耐火物を交換なしで使用できる最長の鋳込み時間(以下「交換なし鋳込み時間」)に基づいて評価した。連続鋳造用注湯装置のスライディングゲートとして通常ゲートを用い、浸漬ノズルとして通常ノズルを用いた条件(試験条件E)における交換なし鋳込み時間を基準(1.0)とし、各条件の交換なし鋳込み時間を指数化し、「耐久性指数」とした。 The durability of the pouring apparatus for continuous casting was evaluated based on the longest casting time during which the refractory of the pouring apparatus for continuous casting can be used without replacement (hereinafter, "pouring time without replacement"). Using a normal gate as the sliding gate of the pouring device for continuous casting and using a normal nozzle as the immersion nozzle (test condition E), the casting time without replacement was used as the reference (1.0), and the casting time without replacement under each condition was indexed and defined as a "durability index".
連続鋳造用注湯装置として使用したスライディングゲート、浸漬ノズルの条件、鋳造結果について表2に示す。 Table 2 shows the conditions of the sliding gate and submerged nozzle used as the pouring device for continuous casting, and the casting results.
表2から、鋳型への給湯流に旋回を発生させる羽根付きノズル(試験条件D)と本発明ゲート(試験条件A~C)では、鋳片品質が向上し、鋳型内湯面皮張りが減ったと推測できる。さらに、浸漬ノズルの出口形状を山型形状(試験条件B)やラッパ型形状(試験条件A)にすると、さらに鋳片品質が向上することがわかる。これは、表1に示されるように単孔浸漬ノズルの吐出孔の出口形状が山型形状やラッパ型形状であれば水平方向速度成分強さがより大きな値を示す傾向と一致している。つまり、吐出孔の出口形状が山型形状やラッパ型形状であれば、鋳型内湯面の熱供給量が増大し、鋳型内湯面の皮張りが防止されることを示唆している。また、耐火物耐久性に関しては、一番低い数値を示している羽根付きノズル(試験条件D)に比べて、本発明ゲート(試験条件A~C)は高い数値を示した。さらに、本発明ゲート(試験条件A~C)の耐火物耐久性指数は1.3と試験条件Eの通常ゲートよりも高い数値を示すことも明らかとなった。 From Table 2, it is assumed that the bladed nozzle (test condition D) and the gate of the present invention (test conditions A to C), which generate a swirl in the hot water supply flow to the mold, improved the slab quality and reduced the hot water surface skinning in the mold. can. Furthermore, it can be seen that the cast slab quality is further improved by making the exit shape of the submerged nozzle into a chevron shape (test condition B) or a trumpet shape (test condition A). As shown in Table 1, this is in agreement with the tendency that the horizontal velocity component intensity shows a larger value when the exit shape of the discharge hole of the single-hole submerged nozzle is mountain-shaped or trumpet-shaped. In other words, it suggests that if the exit shape of the discharge hole is chevron-shaped or trumpet-shaped, the amount of heat supplied to the molten metal surface in the mold increases, and skinning of the molten metal surface in the mold is prevented. As for the durability of the refractory, the gates of the present invention (test conditions A to C) showed higher values than the bladed nozzle (test condition D), which showed the lowest value. Furthermore, it was found that the gates of the present invention (test conditions A to C) had a refractory durability index of 1.3, which was higher than that of the normal gate under test conditions E.
1 スライディングゲート
2 プレート
3 上固定板
4 スライド板
5 下固定板
6 流路孔
7u 上流面(上流側表面)
7d 下流面(下流側表面)
8u 上流開孔(上流側表面開孔)
8d 下流開孔(下流側表面開孔)
9u 上流開孔重心(上流側表面開孔図形重心)
9d 下流開孔重心(下流側表面海溝図面重心)
10 流路軸線方向
11 浸漬ノズル
12 浸漬ノズル内孔
13 吐出孔
18 流線
19 吐出流
20 連続鋳造用注湯装置
21 タンディッシュ
22 鋳型
23 溶融金属
30 摺動面
31 摺動面流路軸線方向
32 摺動面垂直下流方向
33 摺動閉方向
α 流路軸線傾斜角度
θ 流路軸線回転角度
1 sliding
7d downstream surface (downstream surface)
8u upstream aperture (upstream surface aperture)
8d downstream aperture (downstream surface aperture)
9u: Center of gravity of upstream aperture (center of gravity of upstream surface aperture pattern)
9d Downstream aperture center of gravity (downstream surface trench drawing center of gravity)
10 Flow
Claims (3)
溶融金属の流量を調整するスライディングゲートと、前記スライディングゲートの下方に設けられる浸漬ノズルとを有し、
前記スライディングゲートは溶融金属が通過する流路孔が形成された複数のプレートを有し、前記プレートのうちの少なくとも1枚のプレートは摺動が可能なスライド板であり、
それぞれのプレートにおける流路孔は、プレートの表面のうち、通過する溶融金属の上流側に位置する上流側表面に上流側表面開孔を形成し、下流側に位置する下流側表面に下流側表面開孔を形成し、上流側表面開孔図形の重心から下流側表面開孔図形の重心に向く方向を流路軸線方向とし、
プレートの摺動面に垂直な下流方向(以下「摺動面垂直下流方向」という。)と前記流路軸線方向とがなす流路軸線傾斜角度αが5°以上75°以下であり、
前記流路軸線方向を摺動面に投影した方向を摺動面流路軸線方向と呼び、スライディングゲートを閉とするときに前記スライド板を摺動する方向を摺動閉方向と呼び、摺動閉方向に対し、前記摺動面流路軸線方向が、前記摺動面垂直下流方向に見て時計回りになす角度を流路軸線回転角度θ(±180度の範囲)と呼び、当該流路軸線回転角度θは、隣接するプレート間で異なっており、最も上流側のプレートのθをθ1、その一つ下流側のプレートのθをθ2、さらに一つ下流側のプレートのθをθ3と順に番号を付け、ΔθN=θN-θN+1(Nは1以上の整数でプレートの枚数-1まで)としたとき、
角度ΔθNがいずれも10°以上かつ170°未満であって浸漬ノズル内に反時計回り旋回流を形成し、又は角度ΔθNがいずれも-170°超かつ-10°以下であって浸漬ノズル内に時計回り旋回流を形成し、
前記浸漬ノズルは、浸漬ノズル底部に開孔させた単一の吐出孔を有してなることを特徴とする連続鋳造用注湯装置。 A pouring device for continuous casting for pouring molten metal into a mold,
Having a sliding gate for adjusting the flow rate of the molten metal and an immersion nozzle provided below the sliding gate,
The sliding gate has a plurality of plates formed with passage holes through which the molten metal passes, at least one of the plates being a slidable slide plate,
The channel holes in each plate form upstream surface openings on the upstream surface of the plate surface located upstream of the molten metal passing therethrough, and form upstream surface openings on the downstream surface located downstream of the surface of the plate. Forming the apertures, the direction from the center of gravity of the upstream surface aperture pattern to the center of gravity of the downstream surface aperture pattern is defined as the channel axis direction,
The channel axis line inclination angle α formed by the channel axis direction and the downstream direction perpendicular to the sliding surface of the plate (hereinafter referred to as the “sliding surface perpendicular downstream direction”) is 5° or more and 75° or less,
The direction in which the channel axis direction is projected onto the sliding surface is called the sliding surface channel axis direction, and the direction in which the slide plate slides when the sliding gate is closed is called the sliding closing direction. The angle formed by the sliding surface flow path axis direction clockwise with respect to the closing direction when viewed in the sliding surface perpendicular downstream direction is called a flow path axis rotation angle θ (within a range of ±180 degrees). The axis line rotation angle θ differs between adjacent plates, and the θ of the plate on the most upstream side is θ 1 , the θ of the plate one downstream of that is θ 2 , and the θ of the plate one further downstream is θ Numbered in order from 3 , and Δθ N = θ N - θ N+1 (N is an integer of 1 or more and up to the number of plates - 1),
All the angles Δθ N are 10° or more and less than 170° to form a counterclockwise swirling flow in the submerged nozzle, or all the angles Δθ N are more than -170° and -10° or less and the submerged nozzle Form a clockwise swirl flow in
A pouring apparatus for continuous casting, wherein the submerged nozzle has a single discharge hole opened at the bottom of the submerged nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019075463A JP7196746B2 (en) | 2019-04-11 | 2019-04-11 | Pouring equipment for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019075463A JP7196746B2 (en) | 2019-04-11 | 2019-04-11 | Pouring equipment for continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020171944A JP2020171944A (en) | 2020-10-22 |
JP7196746B2 true JP7196746B2 (en) | 2022-12-27 |
Family
ID=72830445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019075463A Active JP7196746B2 (en) | 2019-04-11 | 2019-04-11 | Pouring equipment for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7196746B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7332878B2 (en) * | 2019-09-25 | 2023-08-24 | 日本製鉄株式会社 | Pouring equipment for molten metal |
JP7560737B2 (en) | 2021-03-31 | 2024-10-03 | 日本製鉄株式会社 | Sliding gate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001129646A (en) | 1999-10-29 | 2001-05-15 | Shinagawa Refract Co Ltd | Slide valve apparatus |
JP2003526516A (en) | 2000-03-16 | 2003-09-09 | ベスビウス クルーシブル カンパニー | Sliding gate for liquid metal flow control |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH420498A (en) * | 1965-03-09 | 1966-09-15 | Concast Ag | Device for changing the position of the casting stream, in particular during continuous casting |
JPS5920958U (en) * | 1982-07-29 | 1984-02-08 | 黒崎窯業株式会社 | Sliding nozzle with slanted hole to prevent negative pressure |
JPH0616930B2 (en) * | 1987-10-27 | 1994-03-09 | 株式会社神戸製鋼所 | Immersion nozzle for continuous casting |
US5518154A (en) * | 1994-11-17 | 1996-05-21 | Usx Corporation | Gate and pour tube assembly for use in throttling gate valve |
JPH11239852A (en) * | 1998-02-24 | 1999-09-07 | Sumitomo Metal Ind Ltd | Immersion nozzle for continuous casting and continuous casting method |
-
2019
- 2019-04-11 JP JP2019075463A patent/JP7196746B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001129646A (en) | 1999-10-29 | 2001-05-15 | Shinagawa Refract Co Ltd | Slide valve apparatus |
JP2003526516A (en) | 2000-03-16 | 2003-09-09 | ベスビウス クルーシブル カンパニー | Sliding gate for liquid metal flow control |
Also Published As
Publication number | Publication date |
---|---|
JP2020171944A (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4419934B2 (en) | Method for continuous casting of molten metal | |
JP7196746B2 (en) | Pouring equipment for continuous casting | |
JP5440610B2 (en) | Method for continuous casting of molten metal | |
KR102408212B1 (en) | sliding gate | |
JP3050101B2 (en) | Continuous casting pouring equipment | |
JP2008030069A (en) | Molten metal continuous casting method | |
JP7115230B2 (en) | Pouring equipment for continuous casting | |
JP3515762B2 (en) | Immersion nozzle for continuous casting and continuous casting method | |
EP3743231B1 (en) | Submerged entry nozzle for continuous casting | |
JP2021041409A (en) | Molten metal pouring device | |
JP6108324B2 (en) | Immersion nozzle | |
JP3460185B2 (en) | Immersion nozzle for casting | |
JP7332878B2 (en) | Pouring equipment for molten metal | |
KR20230002935A (en) | Immersion nozzle with rotatable insert | |
JP4896599B2 (en) | Continuous casting method of low carbon steel using dipping nozzle with dimple | |
WO2023190017A1 (en) | Immersion nozzle, mold, and steel continuous casting method | |
JP2022157084A (en) | sliding gate | |
JP5768751B2 (en) | Method for continuous casting of molten metal | |
JP2018058097A (en) | Immersion nozzle, continuous casting machine, and continuous casting method | |
JP3861861B2 (en) | Immersion nozzle for continuous casting and continuous casting method | |
JP4064794B2 (en) | Casting nozzle | |
JP2004283848A (en) | Immersion nozzle for continuous casting of steel | |
JP5266154B2 (en) | Rectifying structure that suppresses drift caused by opening and closing of slide plate | |
JP2009018324A (en) | Continuous casting device | |
JP2017104889A (en) | Immersion nozzle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221128 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7196746 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |