JPH06126409A - Method for supplying molten steel into slab continuous casting mold - Google Patents

Method for supplying molten steel into slab continuous casting mold

Info

Publication number
JPH06126409A
JPH06126409A JP28457792A JP28457792A JPH06126409A JP H06126409 A JPH06126409 A JP H06126409A JP 28457792 A JP28457792 A JP 28457792A JP 28457792 A JP28457792 A JP 28457792A JP H06126409 A JPH06126409 A JP H06126409A
Authority
JP
Japan
Prior art keywords
molten steel
nozzle
mold
immersion nozzle
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28457792A
Other languages
Japanese (ja)
Inventor
Toshitane Matsukawa
敏胤 松川
Susumu Yuhara
晋 油原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28457792A priority Critical patent/JPH06126409A/en
Publication of JPH06126409A publication Critical patent/JPH06126409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To prevent the drift of molten steel discharged into a mold from one pair of discharging holes at the right and left sides arranged at the lower end part of an immersion nozzle. CONSTITUTION:Flow passage of the immersion nozzle 3 is symmetrically partitioned to the right and left sides with a mid partitioning wall 15, and by individual sliding nozzle 2 connected with each flow passage of the immersion nozzle 3 partitioned to the right and left sides, the molten steel supplying rate into each discharging hole 8 is independently controlled. By this method, the drift of the molten steel discharged into the mold 4 from one pair of the discharging holes 8 in the right and left sides arranged at the lower end part of the immersion nozzle 3 can easily be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タンディッシュに取り
付けられたスライディングノズルを制御しつつ左右一対
の吐出孔を有する浸漬ノズルから鋳型内に注入される溶
鋼の偏流を防止するのに好適なスラブ連鋳鋳型への溶鋼
供給方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab suitable for controlling a sliding nozzle attached to a tundish and preventing uneven flow of molten steel injected into a mold from a dipping nozzle having a pair of left and right discharge holes. The present invention relates to a method for supplying molten steel to a continuous casting mold.

【0002】[0002]

【従来の技術】従来、連続鋳造におけるタンディッシュ
から鋳型への溶鋼注入は図5に示すようにタンディッシ
ュ1の底部に設けられたスライディングノズル2の下部
に位置する浸漬ノズル30の先端部を鋳型4の溶鋼5中に
浸漬した状態で行っている。タンディッシュ1には上ノ
ズル6が設けてあり、上ノズル6の下部にはそれぞれ同
一内径の開孔を有する固定プレート2a、スライドプレ
ート2b、下プレート2cの3層のプレートで構成され
たスライディングノズル2が取付けられており、固定プ
レート2aと下プレート2cの間でスライドプレート2
bを油圧シリンダ7を用いてスライドさせ、開孔絞り位
置を制御してタンディッシュ1内からの溶鋼流量を制御
している。
2. Description of the Related Art Conventionally, molten steel is poured from a tundish into a mold in continuous casting, as shown in FIG. 5, the tip of a dipping nozzle 30 located below a sliding nozzle 2 provided at the bottom of a tundish 1 is used as a mold. It is performed while being immersed in the molten steel 5 of No. 4 in FIG. An upper nozzle 6 is provided in the tundish 1, and a sliding nozzle composed of a three-layer plate including a fixed plate 2a, a slide plate 2b, and a lower plate 2c each having an opening with the same inner diameter at a lower portion of the upper nozzle 6. 2 is attached to the slide plate 2 between the fixed plate 2a and the lower plate 2c.
b is slid by using the hydraulic cylinder 7 to control the aperture restriction position to control the molten steel flow rate from the inside of the tundish 1.

【0003】スライディングノズル2の下部に接続され
た浸漬ノズル30は、短辺と長辺からなるスラブ連鋳鋳型
4の中央部に配置されており、タンディッシュ1内の溶
鋼をスライディングノズル2の開孔絞り位置を制御しつ
つ浸漬ノズル30内を流下させて左右の吐出孔8から連鋳
鋳型4内に注入される。吐出孔8より注入された溶鋼5
は短辺側の凝固シェル9に衝突した後、上昇流と下降流
に分流されるが定常時は左右の吐出孔8から注入される
溶鋼量が均等になっているので上昇流および下降流は流
動する間に減速される結果、上昇流および下降流による
トラブルは発生しない。
An immersion nozzle 30 connected to the lower part of the sliding nozzle 2 is arranged at the center of the slab continuous casting mold 4 having short sides and long sides, and the molten steel in the tundish 1 is opened by the sliding nozzle 2. It is made to flow down through the immersion nozzle 30 while controlling the hole throttle position, and is injected into the continuous casting mold 4 from the left and right discharge holes 8. Molten steel 5 injected from discharge hole 8
After colliding with the solidified shell 9 on the short side, it is divided into an upflow and a downflow, but in a steady state, the amount of molten steel injected from the left and right discharge holes 8 is equal, so the upflow and the downflow are As a result of being decelerated while flowing, troubles due to upflow and downflow do not occur.

【0004】前述のように連続鋳造においてタンディッ
シュ1から連鋳鋳型4内への溶鋼注入量制御はスライデ
ィングノズル2によって行われているが、浸漬ノズル3
の下部に設けた左右一対の吐出孔8から連鋳鋳型4内へ
注入される溶鋼5の流量が左右で異なって不均等となる
溶鋼偏流が生じることがある。このような溶鋼偏流が生
じる原因の一つは、図3に示すように浸漬ノズル30を使
用していると、溶鋼中に存在するアルミナなどの脱酸生
成物が浸漬ノズル30の内孔14や吐出孔8の内面に付着物
10を形成したり、溶鋼流によって吐出孔耐火物が溶損さ
れて左右の吐出孔8の形状が不均一になる。その結果、
吐出孔8の通過断面積に大小が生じ、連鋳鋳型4内への
注入量は、通路断面積の大きい方が多くなり、小さい方
が少なくなるからである。
As described above, in continuous casting, the molten steel injection amount from the tundish 1 into the continuous casting mold 4 is controlled by the sliding nozzle 2, but the immersion nozzle 3 is used.
The flow rate of the molten steel 5 injected into the continuous casting mold 4 from the pair of left and right discharge holes 8 provided in the lower part of the right and left may be different from each other on the left and right, and uneven molten steel flow may occur. One of the causes of such molten steel drift is that when the immersion nozzle 30 is used as shown in FIG. 3, the deoxidation product such as alumina present in the molten steel is caused by the inner hole 14 of the immersion nozzle 30. Deposits on the inner surface of the discharge hole 8
10, the discharge hole refractory is melted by the molten steel flow, and the shapes of the left and right discharge holes 8 become uneven. as a result,
This is because the passage cross-sectional area of the discharge hole 8 becomes large and small, and the injection amount into the continuous casting mold 4 becomes large when the passage cross-sectional area is large and becomes small when it is small.

【0005】溶鋼偏流の他の原因は、通常、図4に示す
ように溶鋼の注入量を制御するためスライディングノズ
ル2の開孔を絞った状態で注入することになるため、そ
の構造上からして浸漬ノズル3内を流下する溶鋼主流11
が内孔14の中央を通らず、左右のどちらかに偏る。その
影響を受けて左右一対の吐出孔8から連鋳鋳型4内に注
入される溶鋼量は、一方が多くなり、他方が少なくなる
からである。
Another cause of drift of molten steel is that it is usually injected with the opening of the sliding nozzle 2 narrowed in order to control the injection amount of molten steel as shown in FIG. Main flow of molten steel flowing down through the immersion nozzle 3 11
Does not pass through the center of the inner hole 14 and is biased to either left or right. This is because the amount of molten steel injected from the pair of left and right discharge holes 8 into the continuous casting mold 4 under the influence of this is large in one and small in the other.

【0006】図3に示すように浸漬ノズル30の吐出孔8
にアルミナ等の付着物10が付着すると、溶鋼の注入を妨
げるので必要な溶鋼量を確保するため、例えばスライデ
ィングノズル2の開孔を全開とした場合には、浸漬ノズ
ル30内を流下する溶鋼主流11は内孔14の中央部に位置す
る。このとき、アルミナ等の付着物がなければ左右の吐
出孔8から注入される溶鋼量は均等になるが、吐出孔8
内に形成される付着物10が左右で異なっていると通路断
面積が左右不均一となる。すなわち右側の付着物10が少
なく左側の付着物10が多い場合には、吐出孔8の溶鋼通
路断面積は右側が大きく左側が小さい。このため左右の
吐出孔8から注入される溶鋼量の均等関係が崩れて、右
側が多く、左側が少なくなり、いわゆる溶鋼偏流が生じ
ることになる。
As shown in FIG. 3, the discharge hole 8 of the immersion nozzle 30.
If the deposit 10 such as alumina adheres to the molten steel, it impedes the injection of the molten steel, so in order to ensure the required amount of molten steel, for example, when the sliding nozzle 2 is fully opened, the molten steel main flow that flows down in the immersion nozzle 30 is used. 11 is located in the center of the inner hole 14. At this time, if there are no deposits such as alumina, the amount of molten steel injected from the left and right discharge holes 8 will be uniform, but
If the deposits 10 formed inside are different on the left and right, the cross-sectional area of the passage becomes uneven on the left and right. That is, when the amount of the deposit 10 on the right side is small and the amount of the deposit 10 on the left side is large, the molten steel passage cross-sectional area of the discharge hole 8 is large on the right side and small on the left side. For this reason, the equal relationship of the amount of molten steel injected from the left and right discharge holes 8 is broken, so that the right side is large and the left side is small, and so-called molten steel drift occurs.

【0007】浸漬ノズル30の吐出孔8から注入される溶
鋼量が多い右側では短辺4a内に形成された凝固シェル
9への衝突力が大きく、溶鋼が凝固シェル9の内面に沿
って上方および下方に勢いよく分流することになる。こ
のようにして勢いの強い上昇流は湯面盛り上がり12を生
起して湯面上のフラックス13が鋳型4の内壁面と凝固シ
ェル9との間に供給されるのを阻害して供給不足とな
り、凝固シェル9の形成が不均一となり、鋳造される鋳
片の湯じわや割れの原因になるばかりでなく、フラック
ス13を巻き込み鋳片の非金属介在物性欠陥の原因ともな
る。また勢力の強い右側の下降流は溶鋼5の深くまで達
して非金属介在物の浮上を妨げるので凝固シェル9にト
ラップされ鋳片の非金属介在物性欠陥をもたらす原因と
なる。
On the right side where the amount of molten steel injected from the discharge hole 8 of the dipping nozzle 30 is large, the collision force against the solidified shell 9 formed in the short side 4a is large, and the molten steel moves upward along the inner surface of the solidified shell 9 and The flow will be split down vigorously. In this way, the strong upward flow causes rise of the molten metal surface 12 and prevents the flux 13 on the molten metal surface from being supplied between the inner wall surface of the mold 4 and the solidification shell 9, resulting in insufficient supply. The formation of the solidified shell 9 becomes non-uniform and causes not only wrinkles and cracks in the cast slab but also non-metallic inclusion physical defects in the slab by entraining the flux 13. Further, the rightward descending flow, which has a strong influence, reaches deep into the molten steel 5 and hinders the floating of the non-metallic inclusions, and is trapped by the solidified shell 9 and causes defects in the non-metallic inclusions of the slab.

【0008】一方、吐出孔8から注入される溶鋼量が少
ない左側では短辺4a内に形成された凝固シェル9への
衝突力が小さく、溶鋼が凝固シェル9の内面に沿って上
方および下方に分流する力は弱い。このため右側のよう
なトラブルは生じることはないが、溶鋼流量が少ないた
め吐出孔8内の溶鋼流によどみが発生し易く、アルミナ
等の付着によりノズル閉塞を起こし易く、多連々鋳造の
実施を困難とし生産性を害するばかりでなく、浸漬ノズ
ル取替による耐火物コストの増加を伴うことになる。
On the other hand, on the left side where the amount of molten steel injected from the discharge hole 8 is small, the impact force on the solidified shell 9 formed in the short side 4a is small, and the molten steel is moved upward and downward along the inner surface of the solidified shell 9. The shunting power is weak. For this reason, the trouble as shown on the right side does not occur, but since the molten steel flow rate is small, stagnation is likely to occur in the molten steel flow in the discharge hole 8 and nozzle clogging is likely to occur due to adhesion of alumina etc. Not only is it difficult to impair the productivity, but also the refractory cost increases due to the replacement of the immersion nozzle.

【0009】このようにして一旦偏流が生じるとこれを
解消することはなかなか困難であり、偏流の程度が激し
くなると、鋳型4内で形成された凝固シェル9の再溶解
によるブレークアウト等の操業トラブルや、鋳型4内の
湯面変動等による鋳片表面欠陥が発生しやすく、最悪の
場合、鋳造を中止せざるを得なくなる。前記のように浸
漬ノズル3に生じた偏流により左右の吐出孔8からの溶
鋼吐出量に大小の差が生じると連続鋳造の操業に支障が
あるばかりでなく鋳片の品質悪化を招き好ましくない。
In this way, once the uneven flow occurs, it is difficult to eliminate it, and when the uneven flow becomes severe, operational trouble such as breakout due to remelting of the solidified shell 9 formed in the mold 4 is caused. In addition, slab surface defects are likely to occur due to fluctuations in the molten metal level in the mold 4, and in the worst case, casting must be stopped. As described above, if the amount of molten steel discharged from the left and right discharge holes 8 is different due to the uneven flow generated in the immersion nozzle 3, not only the operation of continuous casting is hindered but the quality of the slab is deteriorated, which is not preferable.

【0010】そこで浸漬ノズルの吐出孔から連鋳鋳型内
に流出する左右の溶鋼量が不均等となる溶鋼偏流を抑制
すべく特開昭62−197258号公報には、浸漬ノズルの左右
の溶鋼レベル差を湯面計を用いて検出し、この溶鋼隆起
によるレベル差を抑制するように鋳造速度を低速に制御
して偏流を解消するものが開示されている。しかるに鋳
造速度を低速にすると浸漬ノズルの吐出孔8内の溶鋼流
のよどみによりアルミナの付着を起こし易く、返って溶
鋼偏流を助長する危険性があり、確実に偏流を防止する
ことは困難である。
Therefore, in order to suppress the uneven flow of molten steel that flows out of the discharge hole of the immersion nozzle into the continuous casting mold, uneven distribution of molten steel is disclosed in JP-A-62-197258. It is disclosed that the difference is detected by using a level gauge and the casting speed is controlled to be low so as to suppress the level difference due to the molten steel swelling, thereby eliminating the drift. However, if the casting speed is slowed down, the adherence of alumina is likely to occur due to the stagnation of the molten steel flow in the discharge holes 8 of the immersion nozzle, and there is a risk of promoting molten steel uneven flow, and it is difficult to reliably prevent uneven flow. .

【0011】さらには図6に示すように浸漬ノズル30の
吐出孔から吐出した溶鋼を鋳型4の長辺背面に設置した
電磁攪拌装置31を用いて電磁攪拌するものあるいは図7
に示すように電磁ブレーキ装置32を設置して浸漬ノズル
30の吐出孔8から吐出した溶鋼流に電磁ブレーキをかけ
て流速を低下させるものが知られている。しかしなが
ら、電磁攪拌装置31あるいは電磁ブレーキ装置32を設置
するものは溶鋼偏流を緩和することはできるけれども十
分でなく、本質的に溶鋼偏流を防止できないという弱点
があった。
Further, as shown in FIG. 6, the molten steel discharged from the discharge hole of the immersion nozzle 30 is electromagnetically stirred by using an electromagnetic stirrer 31 installed on the back surface of the long side of the mold 4, or FIG.
Install the electromagnetic brake device 32 as shown in
It is known that an electromagnetic brake is applied to the molten steel flow discharged from the 30 discharge holes 8 to reduce the flow velocity. However, the device provided with the electromagnetic stirrer 31 or the electromagnetic brake device 32 can reduce the molten steel drift, but is not sufficient, and has a weak point that it cannot essentially prevent the molten steel drift.

【0012】特開昭63−33171 号公報には、浸漬ノズル
の溶鋼通路に沿って延びる棒状の芯材を設けるものがま
た特開昭63−295056号公報には浸漬ノズルの溶鋼流路の
中心を通ってかつスライディングノズルのスライド方向
に平行な板状部材を設けるものが開示されている。しか
るに前記棒状の芯材あるいは板状部材を浸漬ノズルの溶
鋼通路に設けても、スライディングノズルの開度調節に
より落下する溶鋼の偏りは存在するので、浸漬ノズルに
設けた左右一対の吐出孔から吐出される溶鋼偏流を十分
に防止するのは困難である。万一、偏流が発生すると溶
鋼流路に存在する棒状の芯材または板状部材がアルミナ
付着媒体となり付着物が成長し、偏流を助長するので逆
効果となる危険性が大である。
In Japanese Patent Laid-Open No. 63-33171, a bar-shaped core member extending along the molten steel passage of the immersion nozzle is provided, and in Japanese Patent Laid-Open No. 63-295056, the center of the molten steel flow path of the immersion nozzle. It is disclosed that a plate-shaped member that passes through and is parallel to the sliding direction of the sliding nozzle is provided. However, even if the rod-shaped core material or the plate-shaped member is provided in the molten steel passage of the immersion nozzle, there is a deviation of the molten steel that falls due to the adjustment of the opening of the sliding nozzle. It is difficult to sufficiently prevent the molten steel drift that is caused. Should a nonuniform flow occur, the rod-shaped core material or plate-shaped member present in the molten steel flow path will become an alumina adhering medium to grow the adhering matter, which will promote the nonuniform flow, and therefore the risk of adverse effects is large.

【0013】[0013]

【発明が解決しようとする課題】本発明は前記従来技術
の問題点を解消し、タンディッシュの下部に設けたスラ
イディングノズルの開孔絞り位置を調整するだけで大掛
りな設備を設けることなく、浸漬ノズルの左右一対の吐
出孔より注入される溶鋼量をバランスさせることができ
るスラブ連鋳鋳型への溶鋼供給方法を提供することを目
的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and adjusts the aperture throttle position of the sliding nozzle provided in the lower part of the tundish without providing a large-scale facility. It is an object of the present invention to provide a method for supplying molten steel to a slab continuous casting mold, which can balance the amount of molten steel injected from a pair of left and right discharge holes of an immersion nozzle.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
の本発明は、スラブ連鋳鋳型の中央部に左右一対の吐出
孔を有する浸漬ノズルを配置して、タンディッシュ内の
溶鋼をスライディングノズルを制御しつつ浸漬ノズルの
流路を流下させて吐出孔から鋳型内へ注入するに際し、
前記浸漬ノズルの流路を中仕切り壁で左右対称に仕切
り、この左右に仕切った浸漬ノズルの流路にそれぞれ接
続した別々のスライディングノズルにより各々の吐出孔
への溶鋼供給量を独立に制御することを特徴とするスラ
ブ連鋳鋳型への溶鋼供給方法である。
According to the present invention for achieving the above object, a immersion nozzle having a pair of left and right discharge holes is arranged in a central portion of a slab continuous casting mold, and a molten steel in a tundish is sliding nozzle. When pouring into the mold from the discharge hole by flowing down the flow path of the immersion nozzle while controlling
The flow path of the immersion nozzle is symmetrically partitioned by a middle partition wall, and the amount of molten steel supplied to each discharge hole is independently controlled by separate sliding nozzles connected to the flow paths of the immersion nozzle divided into the left and right sides. Is a method of supplying molten steel to a slab continuous casting mold.

【0015】[0015]

【作用】前述のように中仕切り壁で仕切った浸漬ノズル
の流路にそれぞれ接続した別々のスライディングノズル
により各々の吐出孔への溶鋼供給量を独立に制御するの
で、左右一対の吐出孔から鋳型内に吐出される溶鋼偏流
を容易に防止することができる。
[Function] As described above, since the amount of molten steel supplied to each discharge hole is independently controlled by the separate sliding nozzles connected to the flow paths of the dipping nozzles partitioned by the partition wall, the mold can be controlled from the pair of left and right discharge holes. It is possible to easily prevent the drift of molten steel discharged into the inside.

【0016】[0016]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明の実施例に係るスラブ連鋳型4への
溶鋼供給装置を示し、また図2は図1のA−A矢視断面
を示す。タンディッシュ1は耐火物で内張りされる外側
が鉄皮で覆われており、タンディッシュ1内には取鍋か
ら溶鋼(図示せず)が注入されるようになっている。タ
ンディッシュ1の底部には近接して2個の注入ノズル6
が配設してあり、この2個の注入ノズル6の下方にそれ
ぞれ接続して、固定プレート2a、スライドプレート2
b、下プレート2cで構成されたスライディングノズル
2が設置してある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus for supplying molten steel to a continuous slab mold 4 according to an embodiment of the present invention, and FIG. 2 shows a cross section taken along the line AA of FIG. The tundish 1 is covered with a refractory material and the outside is covered with an iron skin. Molten steel (not shown) is poured into the tundish 1 from a ladle. Two injection nozzles 6 close to the bottom of the tundish 1.
Are provided, and are connected below the two injection nozzles 6, respectively, and are fixed plate 2a and slide plate 2
b, a sliding nozzle 2 composed of a lower plate 2c is installed.

【0017】浸漬ノズル3はY字型をしており、2又状
に分岐した上端部は2基のスライディングノズル2に接
続して支持されている。そして浸漬ノズル3の分岐した
上端部が合流して形成された鉛直部は、中仕切り壁15に
よって左右対称に仕切られていて2本の内孔14を有する
流路となっており、左右一対の吐出孔8に至っている。
定常状態においては、浸漬ノズル3の下部は鋳型4内の
溶鋼5中に浸漬されており、左右一対の吐出孔8は鋳型
4の短辺に向けてある。鋳型4内湯面はフラックス13で
覆われており、鋳型4内の溶鋼の酸化を防止すると共
に、鋳型4と凝固シェル9との間の潤滑性を向上させる
ようになっている。
The submerged nozzle 3 has a Y-shape, and the upper end of the bifurcated branch is connected to and supported by two sliding nozzles 2. The vertical portion formed by merging the branched upper ends of the immersion nozzle 3 is a flow path that is symmetrically partitioned by the middle partition wall 15 and has two inner holes 14. It reaches the discharge hole 8.
In the steady state, the lower part of the immersion nozzle 3 is immersed in the molten steel 5 in the mold 4, and the pair of left and right discharge holes 8 face the short side of the mold 4. The molten metal surface in the mold 4 is covered with the flux 13 to prevent the molten steel in the mold 4 from being oxidized and to improve the lubricity between the mold 4 and the solidified shell 9.

【0018】次に本発明の実施例の作用について説明す
る。取鍋(図示せず)からタンディッシュ1に溶鋼を注
入し、この溶鋼をタンディッシュ1底部に近接して設け
2個の上ノズル6にそれぞれ接続した2基のスライディ
ングノズル2、Y字型の浸漬ノズル3を介して鋳型4に
注入する。そして各々のスライディングノズル2のスラ
イドプレート2bを摺動させて、開口面積を調節するこ
とによりそれぞれ独立に溶鋼供給量を制御する。
Next, the operation of the embodiment of the present invention will be described. Molten steel is poured into the tundish 1 from a ladle (not shown), and the molten steel is provided in the vicinity of the bottom of the tundish 1 and two sliding nozzles 2 connected to two upper nozzles 6, respectively, a Y-shaped It is poured into the mold 4 through the immersion nozzle 3. Then, the slide plate 2b of each sliding nozzle 2 is slid to adjust the opening area to independently control the molten steel supply amount.

【0019】このようにして、タンディッシュ1の底部
に配設した2個の上ノズル6から供給される溶鋼5をそ
れぞれのスライディングノズル2を用いて独立して調節
することにより、Y字型の浸漬ノズル3の分岐した上端
部の内孔16を経由して中仕切壁15によって左右対称に仕
切られた2本の内孔14を流路として吐出孔8から鋳型4
内に吐出される溶鋼流の左右均一化を図り、これによっ
て溶鋼偏流を防止する。吐出孔8より注入された溶鋼5
は短辺側の凝固シェル9に衝突した後、上昇流と下降流
に分流されるが左右の吐出孔8から注入される溶鋼量が
均等になっているので上昇流および下降流は流動する間
に減速される結果、上昇流および下降流によるトラブル
は発生しない。
In this way, the molten steel 5 supplied from the two upper nozzles 6 arranged at the bottom of the tundish 1 is independently adjusted by using the respective sliding nozzles 2, whereby a Y-shaped The two inner holes 14 symmetrically partitioned by the intermediate partition wall 15 via the inner hole 16 at the upper end of the dipping nozzle 3 branched from the discharge hole 8 to the mold 4 are used as flow paths.
The molten steel flow discharged inside is made uniform on the left and right, thereby preventing molten steel drift. Molten steel 5 injected from discharge hole 8
Is collided with the solidified shell 9 on the short side and then divided into an ascending flow and a descending flow, but since the amounts of molten steel injected from the left and right discharge holes 8 are equal, the ascending and descending flows As a result of deceleration, the trouble due to the upflow and the downflow does not occur.

【0020】なお、鋳型4内に浸漬ノズル3の吐出孔8
から吐出される溶鋼偏流は鋳型4の左右の短辺4aに埋
設した熱電対(図示せず)によって検出するか、あるい
は浸漬ノズル3とその両側の鋳型短辺4a間にそれぞれ
配設した渦流式レベル計17を配設し、両レベル計17で測
定される各レベル値の偏差を求めて、溶鋼表面の隆起を
検出し、この隆起を抑制するように2個のスライディン
グノズル2の開度を独立して制御することによって浸漬
ノズル3の一対の吐出孔8から吐出される溶鋼偏流を防
止することができる。なお溶鋼偏流の検出する手段は前
記に限定するものではない。
The discharge hole 8 of the immersion nozzle 3 is placed in the mold 4.
The drift of molten steel discharged from the mold is detected by a thermocouple (not shown) embedded in the short sides 4a on the left and right of the mold 4, or a swirl flow type is provided between the immersion nozzle 3 and the mold short sides 4a on both sides thereof. A level gauge 17 is provided, the deviation of each level value measured by both level gauges 17 is calculated, the ridge on the molten steel surface is detected, and the openings of the two sliding nozzles 2 are controlled so as to suppress this ridge. By controlling independently, it is possible to prevent drift of molten steel discharged from the pair of discharge holes 8 of the immersion nozzle 3. The means for detecting molten steel drift is not limited to the above.

【0021】本発明装置を用いて前述の手順により自転
車外板用の極低炭素溶鋼を曲率半径12mの湾曲型スラブ
連鋳機によりスラブ厚み220mm 、スラブ幅1300mmのスラ
ブを連続鋳造した。本発明によれば浸漬ノズルの吐出孔
から鋳型内に吐出する溶鋼偏流を容易に解消することが
できた。その結果、図8の(a)、(b)に示すように
従来法に比較して、自転車外板用極低炭素冷延鋼板のフ
クレ欠陥指数およびフクレ以外の表面欠陥指数を鋳造速
度の如何によらず大幅に低下することができ、特に高い
鋳造速度での欠陥指数を下げるのに著しい効果が得られ
た。
Using the apparatus of the present invention, ultra-low carbon molten steel for bicycle outer plates was continuously cast by a curved slab continuous casting machine having a radius of curvature of 12 m to form a slab having a slab thickness of 220 mm and a slab width of 1300 mm. According to the present invention, it was possible to easily eliminate the molten steel drift that is discharged into the mold from the discharge hole of the immersion nozzle. As a result, as shown in FIGS. 8 (a) and 8 (b), as compared with the conventional method, the blistering defect index and the surface defect index other than blistering of the ultra-low carbon cold-rolled steel sheet for bicycle outer plates were determined by the casting speed. It was possible to significantly reduce the defect index, and a remarkable effect was obtained in reducing the defect index, especially at a high casting speed.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、浸
漬ノズルの流路を中仕切り壁で左右対称に仕切り、この
左右に仕切った浸漬ノズルの流路にそれぞれ接続した別
々のスライディングノズルにより各々の吐出孔への溶鋼
供給量を独立に制御するので、浸漬ノズルの下端部に設
けた左右一対の吐出孔から鋳型内に吐出される溶鋼偏流
を容易に抑制することができる。その結果、スラブから
圧延した鋼板の内部欠陥ならびに表面欠陥の低減が達成
できる。
As described above, according to the present invention, the flow path of the immersion nozzle is symmetrically partitioned by the partition wall, and the sliding nozzles are connected to the flow paths of the left and right partitioning immersion nozzles. Since the amount of molten steel supplied to each of the discharge holes is controlled independently, it is possible to easily suppress the molten steel drift that is discharged into the mold from the pair of left and right discharge holes provided at the lower end of the immersion nozzle. As a result, reduction of internal defects and surface defects of the steel sheet rolled from the slab can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る装置の側面断面図であ
る。
1 is a side sectional view of an apparatus according to an embodiment of the present invention.

【図2】図1のA−A矢視を示す水平断面図である。FIG. 2 is a horizontal sectional view taken along the line AA of FIG.

【図3】浸漬ノズル吐出孔に付着物がありスライディン
グノズルを全開にした場合の溶鋼注入状況を示す従来例
の側面断面図である。
FIG. 3 is a side cross-sectional view of a conventional example showing a molten steel pouring state when deposits are present in the immersion nozzle discharge hole and the sliding nozzle is fully opened.

【図4】浸漬ノズルの吐出孔に付着物がなく、スライデ
ィングノズルの開口絞りによる溶鋼注入の状況を示す従
来例の側面断面図である。
FIG. 4 is a side cross-sectional view of a conventional example showing a state of injection of molten steel by an aperture stop of a sliding nozzle without deposits in a discharge hole of a dipping nozzle.

【図5】定常時のスライディングノズルからの溶鋼注入
状況を示す従来例の側面断面図である。
FIG. 5 is a side sectional view of a conventional example showing a molten steel injection state from a sliding nozzle in a steady state.

【図6】鋳型の長辺背面に電磁攪拌装置を設置する従来
例の側面断面図である。
FIG. 6 is a side sectional view of a conventional example in which an electromagnetic stirrer is installed on the back of the long side of the mold.

【図7】鋳型の長辺背面電磁ブレーキ装置を設置する従
来側の側面断面図である。
FIG. 7 is a side cross-sectional view of a conventional side on which a long side back electromagnetic brake device of a mold is installed.

【図8】鋳造速度とフクレ欠陥指数ならびにフクレ以外
の表面欠陥指数の関係を本発明と従来の場合について比
較して示す線図である。
FIG. 8 is a diagram showing the relationship between the casting speed, the blistering defect index, and the surface buffing index other than blistering in the present invention and the conventional case.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 2 スライディングノズル 3 浸漬ノズル(本発明) 4 連鋳鋳型 5 溶鋼 6 上ノズル 7 油圧シリンダ 8 吐出孔 9 凝固シェル 10 付着物 11 溶鋼主流 12 湯面盛上り 13 フラックス 14 内孔 15 中仕切り壁 16 内孔 17 渦流式レベル計 30 浸漬ノズル(従来) 31 電磁攪拌装置 32 電磁ブレーキ装置 1 Tundish 2 Sliding Nozzle 3 Immersion Nozzle (Invention) 4 Continuous Casting Mold 5 Molten Steel 6 Upper Nozzle 7 Hydraulic Cylinder 8 Discharge Hole 9 Solidification Shell 10 Attached Material 11 Main Molten Steel Rise 13 Flux 14 Inner Hole 15 Intermediate Partition Wall 16 Inner hole 17 Eddy current level meter 30 Immersion nozzle (conventional) 31 Electromagnetic stirrer 32 Electromagnetic brake device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スラブ連鋳鋳型の中央部に左右一対の吐
出孔を有する浸漬ノズルを配置して、タンディッシュ内
の溶鋼をスライディングノズルを制御しつつ浸漬ノズル
の流路を流下させて吐出孔から鋳型内へ注入するに際
し、前記浸漬ノズルの流路を中仕切り壁で左右対称に仕
切り、この左右に仕切った浸漬ノズルの流路にそれぞれ
接続した別々のスライディングノズルにより各々の吐出
孔への溶鋼供給量を独立に制御することを特徴とするス
ラブ連鋳鋳型への溶鋼供給方法。
1. A dipping nozzle having a pair of left and right discharge holes is arranged in the center of a slab continuous casting mold, and molten steel in a tundish is caused to flow down the flow path of the dipping nozzle while controlling the sliding nozzle. When pouring into the mold from the dipping nozzle, the flow path of the immersion nozzle is symmetrically partitioned by the intermediate partition wall, and molten steel to each discharge hole is connected by separate sliding nozzles that are respectively connected to the flow paths of the dipping nozzles that are partitioned on the left and right. A method for supplying molten steel to a slab continuous casting mold, characterized in that the supply amount is independently controlled.
JP28457792A 1992-10-22 1992-10-22 Method for supplying molten steel into slab continuous casting mold Pending JPH06126409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28457792A JPH06126409A (en) 1992-10-22 1992-10-22 Method for supplying molten steel into slab continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28457792A JPH06126409A (en) 1992-10-22 1992-10-22 Method for supplying molten steel into slab continuous casting mold

Publications (1)

Publication Number Publication Date
JPH06126409A true JPH06126409A (en) 1994-05-10

Family

ID=17680270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28457792A Pending JPH06126409A (en) 1992-10-22 1992-10-22 Method for supplying molten steel into slab continuous casting mold

Country Status (1)

Country Link
JP (1) JPH06126409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047297A1 (en) * 1998-03-13 1999-09-23 Mannesmann Ag Arrangement of an immersed pouring nozzle in an ingot mould for continuous slab steel casting
CN113664195A (en) * 2021-08-18 2021-11-19 三鑫重工机械有限公司 Three-layer sliding plate mechanism applied to ladle casting
KR20220088978A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Ladle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047297A1 (en) * 1998-03-13 1999-09-23 Mannesmann Ag Arrangement of an immersed pouring nozzle in an ingot mould for continuous slab steel casting
KR20220088978A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Ladle
CN113664195A (en) * 2021-08-18 2021-11-19 三鑫重工机械有限公司 Three-layer sliding plate mechanism applied to ladle casting
CN113664195B (en) * 2021-08-18 2024-04-12 三鑫重工机械有限公司 Be applied to ladle and open three-layer slide mechanism of watering

Similar Documents

Publication Publication Date Title
US5381857A (en) Apparatus and method for continuous casting
EP0463225B1 (en) Method and apparatus for improved melt flow during continuous strip casting
JPH06126409A (en) Method for supplying molten steel into slab continuous casting mold
US5265665A (en) Continuous casting method of steel slab
JPH06134561A (en) Method for supplying molten steel into mold in slab continuous casting
JP3252769B2 (en) Flow control method of molten steel in continuous casting mold
JP4542631B2 (en) Method and apparatus for manufacturing slabs
JP3541594B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3125661B2 (en) Steel continuous casting method
JPH035052A (en) Method for controlling drift of molten steel in mold for continuous casting
JPH09192803A (en) Method for continuously casting steel
JPH04238658A (en) Immersion nozzle for continuous casting
JP2008178884A (en) Method for continuously casting steel
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JPH0289544A (en) Method for controlling molten steel flow in mold in continuous casting
JPS63295048A (en) Apparatus for controlling variation of molten surface
JPH05329591A (en) Method for preventing drift of molten steel poured in continuous casting mold
JP2901983B2 (en) Immersion nozzle for continuous casting
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPH10328794A (en) Method for removing inclusion in tundish for continuous casting
JPH02197356A (en) Method and apparatus for continuous casting
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JPH05318070A (en) Continuous casting apparatus
JPH02142652A (en) Continuous casting method
JPH0211251A (en) Method for supplying molten metal into casting mold in continuous casting