JPH04178240A - Continuous casting method for stainless steel - Google Patents

Continuous casting method for stainless steel

Info

Publication number
JPH04178240A
JPH04178240A JP30661390A JP30661390A JPH04178240A JP H04178240 A JPH04178240 A JP H04178240A JP 30661390 A JP30661390 A JP 30661390A JP 30661390 A JP30661390 A JP 30661390A JP H04178240 A JPH04178240 A JP H04178240A
Authority
JP
Japan
Prior art keywords
mold
casting mold
wave form
powder
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30661390A
Other languages
Japanese (ja)
Inventor
Takashi Mori
孝志 森
Kaoru Uchino
内野 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30661390A priority Critical patent/JPH04178240A/en
Publication of JPH04178240A publication Critical patent/JPH04178240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce surface defects of stainless steel ingot by supplying heat to a meniscus part of molten metal in a casting mold from a heating part installed on the inner surface of the casting mold and making oscillation of the casting mold into non-sinusoidal oscillation. CONSTITUTION:Heat is supplied from the heating part 15 installed on the inner surface of the casting mold 10 to the meniscus part of molten metal II in the casting mold to give non-sinusoidal oscillation to the casting mold. The wave form of this non-sinusoidal oscillation is normally called a bias sinusoidal wave form. When the normal bias sinusoidal wave form is compared with a sinusoidal oscillation wave form, it is the same in an amplitude, a number of oscillation, and in a displacement wave form of one cycle, a sinusoidal wave form displacement having a short cycle continues from a top dead center to a bottom dead center, then, a sinusoidal wave form displacement having a long cycle connected with the bottom dead center continues from bottom dead center to the top dead center. In this way, inflow of powder into the casting mold, clearances of the ingot is secure sufficiently, a trap ratio of floated non-metal inclusion to molten powder is improved to reduce surface defects of the stainless billet and ingot.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はステンレス鋼の連続鋳造方法、詳しくは表面性
状の改善の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a continuous casting method for stainless steel, and more particularly to a method for improving surface properties.

〔従来の技術と課題〕コ ステンレス鋼の連続鋳造スラブは、通常の炭素鋼スラブ
の連続鋳造スラブに比較して、スケールとなって表面か
ら剥離する量か少ないのでオシレージタンマークが製品
に残る虞か大きい。
[Conventional technology and issues] Continuously cast stainless steel slabs have a smaller amount of scale that peels off from the surface than ordinary continuous cast carbon steel slabs, so oscillation marks remain on the product. There's a big fear.

オシレーションマーク深さを小さくするには、鋳型振動
は振幅を小さく、振動数を大きくする所謂ショートスト
ローク・ハイサイクルの操業条件とする必要がある。オ
ル−ジョンマーク深さに影響する操業因子として、湯面
変動があるか、これを低減するには鋳型内の溶湯の流動
を低減するすることが最も効果的である。しかし、こう
することにより、湯面近傍のパウダー、溶湯に対して流
入溶湯からの熱供給か不足する傾向になる。したかって
、パウダーの溶融量か減少する。これにともなって溶融
されたパウダーの鋳型内面と鋳片との間に流入する量か
減少し、流入したパウダーの厚さが薄くなって鋳片から
の抜熱量が多くなる。つまり、鋳片が冷却し易くなる。
In order to reduce the depth of the oscillation mark, it is necessary to set the mold vibration to a so-called short-stroke, high-cycle operating condition in which the amplitude is small and the frequency is large. Fluctuations in the melt level are an operational factor that affects the depth of the fusion mark, and the most effective way to reduce this is to reduce the flow of the molten metal in the mold. However, by doing this, there is a tendency that the heat supply from the inflowing molten metal to the powder and molten metal near the molten metal surface is insufficient. Therefore, the amount of melted powder decreases. As a result, the amount of molten powder that flows between the inner surface of the mold and the slab decreases, the thickness of the powder that flows in becomes thinner, and the amount of heat removed from the slab increases. In other words, it becomes easier to cool the slab.

湯面近傍に生じる凝固シェルは鋳型振動により、内面に
曲げられて所謂、爪となってオシレーションマークの原
因となることはよく知られているが、上記のように抜熱
量が多く、冷却し易くなっていると、前記型が発達して
大きくなる。このように、従来の、所謂ショートストロ
ーク・ハイサイクルの操業条件は、オシレーションマー
クを小さくする操業を目的にしなから、結果としては目
的とは逆にオシレーションマークを大きくする虞がある
It is well known that the solidified shell that forms near the molten metal surface bends inward due to mold vibration, forming so-called claws and causing oscillation marks. If it becomes easy, the mold develops and becomes larger. As described above, the conventional so-called short stroke/high cycle operating conditions are not aimed at reducing the oscillation mark, and may end up increasing the oscillation mark, contrary to the intended purpose.

本発明はかかる事情に鑑みてなされたもので、湯面変動
を少なくするとともにオシレーションマークを低減し、
表面疵を減少させることの出来るステンレス鋼の連続鋳
造方法を提供しようするものである。
The present invention was made in view of the above circumstances, and aims to reduce fluctuations in the hot water level and reduce oscillation marks.
It is an object of the present invention to provide a continuous casting method for stainless steel that can reduce surface flaws.

[課題を解決するための手段と作用〕]本発明のステン
レス鋼の連続鋳造方法は、鋳型内面に設けた発熱部から
鋳型内溶湯のメニスカス部に熱供給し、鋳型の振動を非
サイン振動とすること、を特徴とする。
[Means and effects for solving the problems]] The continuous casting method for stainless steel of the present invention supplies heat from a heat generating part provided on the inner surface of the mold to the meniscus of the molten metal in the mold, and converts vibrations of the mold into non-sine vibrations. It is characterized by:

上記非サイン振動の波形は、通常偏倚正弦波形と呼ばれ
ているものである。通常偏倚正弦波形をサイン振動波形
と比較すると、振幅、振動数は同じで、−周期の変位波
形は、上死点から下死点までを短い周期をもつサイン波
形変位が続き、ついで下死点から上死点までを下死点で
接続された長い周期をもつサイン波形変位とする。
The waveform of the non-sine vibration is usually called a biased sine waveform. When comparing a normal deviation sine waveform with a sine vibration waveform, the amplitude and frequency are the same, and the displacement waveform with a - period is a sine waveform displacement with a short period from top dead center to bottom dead center, followed by a sine waveform displacement with a short period from top dead center to bottom dead center. Let the displacement from to the top dead center be a sine waveform displacement with a long period connected at the bottom dead center.

[実施例コ 添付の図面を参照しながら、本発明の実施例について説
明する。第1図は本発明の方法を実施する連続鋳造の鋳
型付近の縦断面図である。図中、10は鋳型でここに溶
湯11が図示しない取鍋から注入される。注入された溶
湯は、鋳型内面で冷却されて凝固シェル12を形成する
。凝固シェル12はピンチロール(図示せず)による鋳
片の引抜きとともに降下して、鋳型下の冷却ゾーンでさ
らに冷却されて次第に成長し、遂に中心部まで凝固して
溶湯部がなくなり完全凝固にいたる。15は鋳型上部に
設けた発熱部で、これによりメニスカス付近の溶湯およ
びパウダーに熱か供給される。
[Embodiments] Examples of the present invention will be described with reference to the attached drawings. FIG. 1 is a longitudinal sectional view of the vicinity of a mold for continuous casting in which the method of the present invention is carried out. In the figure, numeral 10 denotes a mold into which molten metal 11 is poured from a ladle (not shown). The injected molten metal is cooled on the inner surface of the mold to form a solidified shell 12. The solidified shell 12 descends as the slab is pulled out by pinch rolls (not shown), is further cooled in a cooling zone under the mold, gradually grows, and finally solidifies to the center, where the molten metal part disappears and reaches complete solidification. . Reference numeral 15 denotes a heat generating part provided at the upper part of the mold, which supplies heat to the molten metal and powder near the meniscus.

上方から鋳型内に供給された連続鋳造用の、<ウダーは
、溶湯に接した部分から熱せられて溶融する。溶融した
パウダーは溶湯表面の空気酸化を防止するとともに、鋳
型と鋳片の間に流入して、鋳片の引き抜き、鋳型の振動
に伴う両者の間の摩擦を低減する潤滑剤の役目を果たす
。第1図で、13は粉体パウダー、14は溶融パウダー
である。この間に半溶融状態のパウダーか存在するが、
簡明のため省略しである。
The powder for continuous casting that is supplied into the mold from above is heated and melted from the part that comes into contact with the molten metal. The molten powder prevents air oxidation on the surface of the molten metal, and also acts as a lubricant that flows between the mold and the slab and reduces the friction between them that occurs when the slab is pulled out and the mold vibrates. In FIG. 1, 13 is powder powder, and 14 is molten powder. During this time, there is a semi-molten powder,
It is omitted for brevity.

第2図(a)は鋳型の振動を表すもので、横軸、縦軸は
それぞれ、時間、振幅をとり、サイン振動21および偏
倚波形である非サイン振動22を示すグラフである。第
2図(b)は第2図(a)と同じ時間軸で、鋳型の振動
速度V、をサイン振動23および偏倚波形である非サイ
ン振動24について示した。また、同図には鋳片の引抜
き速度をVC(一定値)で示しである。時間軸に示した
Tは周期を示す。安定な鋳造のためにはメニスカス直下
の脆弱な凝固シェルに圧縮力をかけなから鋳片を引き抜
くことが必要で、鋳片に圧縮力をかけるにはある程度ネ
ガティブストリップを振動条件として確保することが必
要である。前記ネガティブストリップは第2図(b)で
、鋳型が振動により鋳型が鋳片の引抜き速度Vcより早
い速度で下がる時間内で生じる。同図で、j+、isは
それぞれサイン振動、非サイン振動におけるネガティブ
ストリップ時間を示す。また、第2図(b)で、Vcと
グラフ23.24とで囲まれた面積はそれぞれサイン振
動、非サイン振動のネガティブトリップ量(長さ)を表
す。
FIG. 2(a) is a graph showing the vibration of the mold, with time and amplitude taken on the horizontal and vertical axes, respectively, and showing a sine vibration 21 and a non-sine vibration 22 which is a biased waveform. FIG. 2(b) shows the vibration velocity V of the mold for a sine vibration 23 and a non-sine vibration 24 which is a biased waveform, on the same time axis as FIG. 2(a). Further, in the same figure, the drawing speed of the slab is shown in VC (constant value). T shown on the time axis indicates a period. For stable casting, it is necessary to pull out the slab without applying compressive force to the fragile solidified shell directly below the meniscus, and in order to apply compressive force to the slab, it is necessary to ensure a certain degree of negative strip as a vibration condition. is necessary. Said negative strip occurs in FIG. 2(b) during the time when the mold is lowered by vibration at a rate faster than the drawing speed Vc of the slab. In the figure, j+ and is indicate negative strip times in sine vibration and non-sine vibration, respectively. Further, in FIG. 2(b), the areas surrounded by Vc and graphs 23 and 24 represent the negative trip amount (length) of sine vibration and non-sine vibration, respectively.

鋳型の振動を偏倚波形とすることにより、第2図(b)
に示されている通り、周期、振幅が同一の振動条件下で
はサイン振動に比してネガティブストリップ時間が減少
し、凝固シェルの先端部の爪の成長が抑制される。前記
風は鋳型の振動にともなって生じるもので、これが小さ
い場合は、オシレーションマーク深さは浅くなる。また
、パウダーの流入量と正相関のあるポジティブストリッ
プ時間は増加し、流入量も多くなる。
By making the vibration of the mold a biased waveform, as shown in Fig. 2(b)
As shown in Figure 2, under vibration conditions with the same period and amplitude, the negative strip time is reduced compared to the sine vibration, and the growth of the nail at the tip of the solidified shell is suppressed. The wind is generated due to the vibration of the mold, and if the wind is small, the depth of the oscillation mark will be shallow. In addition, the positive strip time, which has a positive correlation with the powder inflow amount, increases, and the inflow amount also increases.

また、上記偏倚波形の鋳型振動により、ポジティブスト
リップ時間が増加し、これと正相関のあるパウダーの流
入量が増加する。一方、シェル先端部への圧縮量(上記
ネガティブトリップ量に対応する)もサイン波形に比べ
て大きく、凝固シェルを強化するとともに、溶融パウダ
ー14の鋳型、鋳片間の間隙への流入が促進される。こ
の流入量が増加してパウダーの消費量か増加することは
、鋳片引き抜きの摩擦力を減少させると同時に、鋳型、
鋳片間の間隙のパウダー層が厚くなって鋳片からの抜熱
量か減少し、鋳型表面近傍の凝固シェルによる爪の成長
を抑制する。かくして、鋳型振動のショートストローク
、ハイサイクルにともなう溶融パウダー14の流入量減
少の傾向を緩和する。
Moreover, the mold vibration of the biased waveform increases the positive stripping time, and the inflow amount of powder, which is positively correlated with this, increases. On the other hand, the amount of compression to the tip of the shell (corresponding to the above-mentioned negative trip amount) is also larger than that of the sine waveform, which strengthens the solidified shell and promotes the flow of molten powder 14 into the mold and the gap between the slab. Ru. This increase in the amount of powder consumed increases the amount of powder consumed, which reduces the frictional force for drawing out the slab and at the same time increases the amount of powder consumed by the mold.
The powder layer in the gap between the slabs becomes thicker, reducing the amount of heat removed from the slabs, and suppressing the growth of claws due to the solidified shell near the mold surface. In this way, the tendency for the inflow amount of the molten powder 14 to decrease due to short strokes and high cycles of mold vibration is alleviated.

また、湯面変動を抑えるため、鋳型内の溶湯の流動を最
小限にしているが、このため鋳型自溶湯表面付近への熱
供給は不足気味になる。さらに、鋳型に接するメニスカ
ス付近では鋳型によって冷却されるので、鋳型内面にス
ラグリムと称する突起物が付着し、パウダーの鋳型、鋳
片間の間隙への流入を妨げる虞かある。また、上記熱の
供給不足によって、溶融パウダーの流動性を低減して前
記間隙への流入か円滑に行われない虞かあり、さらに鋳
型内の溶湯中の非金属介在物か浮上して溶融パウダー1
4にトラップされることが期待されているが、このトラ
ップ率が低下することも考えられる。
Furthermore, in order to suppress fluctuations in the molten metal level, the flow of the molten metal within the mold is minimized, but this results in insufficient heat supply to the vicinity of the surface of the self-molten metal in the mold. Furthermore, since the area near the meniscus in contact with the mold is cooled by the mold, protrusions called slag rim may adhere to the inner surface of the mold, which may prevent powder from flowing into the mold and the gap between the slab. Furthermore, due to the insufficient supply of heat, there is a risk that the fluidity of the molten powder may be reduced and the flow of the molten powder into the gap may not be carried out smoothly.Furthermore, non-metallic inclusions in the molten metal in the mold may float to the surface and cause the molten powder to flow into the gap. 1
4 is expected to be trapped, but it is possible that this trap rate will decrease.

鋳型の上部に発熱部15を設け、メニスカス付近の溶湯
およびパウダーに熱を供給するこによって、溶融パウダ
ーの流動性を高めて、上記スラグリムの発生を防止し、
パウダーの鋳型、鋳片間の間隙への流入を促進を図り、
上記トラップ率の低下を防止している。
A heat generating part 15 is provided in the upper part of the mold to supply heat to the molten metal and powder near the meniscus, thereby increasing the fluidity of the molten powder and preventing the generation of slag rim.
We aim to promote the flow of powder into the mold and the gaps between slabs,
This prevents the trap rate from decreasing.

前記パウダーの初晶出温度は1000°C以上、120
0°C未満、塩基度は1.1以上、12未満が望ましい
。この範囲外になると、溶融パウダーが鋳型、鋳片間で
凝固するときに形成されるパウダーの固体フィルムが減
少し、鋳片表面の抜熱速度か大きくなり、鋳片表面の割
れ発生の虞かある。
The initial crystallization temperature of the powder is 1000°C or higher, 120°C
It is desirable that the temperature is less than 0°C and the basicity is 1.1 or more and less than 12. Outside this range, the solid film of powder that is formed when the molten powder solidifies between the mold and the slab will decrease, the heat removal rate from the slab surface will increase, and there is a risk of cracking on the slab surface. be.

[発明の効果] 本発明のステンレス鋼の連続鋳造方法によれば、鋳型内
溶湯のメニスカス部に熱供給を行い、鋳型振動を非サイ
ン振動とするので、鋳型、鋳片の間隙へのパウダーの流
入量が充分確保され、また、浮上した非金属介在物の溶
融パウダーへのトラップ率が向上して、ステンレス鋼鋳
片の表面欠陥が低減される。
[Effects of the Invention] According to the method for continuous casting of stainless steel of the present invention, heat is supplied to the meniscus of the molten metal in the mold and the mold vibration is made into non-sine vibration, so that the powder does not flow into the gap between the mold and the slab. A sufficient amount of inflow is ensured, and the trapping rate of floating nonmetallic inclusions into the molten powder is improved, reducing surface defects in the stainless steel slab.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施に用いられる鋳型付近のの縦断
面図、第2図は鋳型の振動を示すグラフ図である。 lO・・・−型、11・・・溶湯、12・・・凝固シェ
ル、13・・・溶融パウダー、14・・・粉体パウダー
、15・・・発熱部。
FIG. 1 is a longitudinal cross-sectional view of the vicinity of a mold used in the practice of the present invention, and FIG. 2 is a graph showing vibrations of the mold. lO...-type, 11... Molten metal, 12... Solidified shell, 13... Molten powder, 14... Powder powder, 15... Exothermic part.

Claims (1)

【特許請求の範囲】[Claims] 鋳型内面に設けた発熱部から鋳型内溶湯のメニスカス部
に熱供給し、鋳型の振動を非サイン振動とすること、を
特徴とするステンレス鋼の連続鋳造方法。
A continuous casting method for stainless steel characterized by supplying heat from a heat generating part provided on the inner surface of the mold to a meniscus of molten metal in the mold, and making the vibration of the mold non-sine vibration.
JP30661390A 1990-11-13 1990-11-13 Continuous casting method for stainless steel Pending JPH04178240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30661390A JPH04178240A (en) 1990-11-13 1990-11-13 Continuous casting method for stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30661390A JPH04178240A (en) 1990-11-13 1990-11-13 Continuous casting method for stainless steel

Publications (1)

Publication Number Publication Date
JPH04178240A true JPH04178240A (en) 1992-06-25

Family

ID=17959190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30661390A Pending JPH04178240A (en) 1990-11-13 1990-11-13 Continuous casting method for stainless steel

Country Status (1)

Country Link
JP (1) JPH04178240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341641C (en) * 2003-07-31 2007-10-10 任廷志 Variable speed gear with nonsinusoidal vibration in continuous casting crystallizer
CN110116193A (en) * 2019-05-06 2019-08-13 中南大学 A kind of round mold and continuous casting installation for casting, continuous cast round billets oscillation mark suppressing method
CN110125346A (en) * 2019-05-06 2019-08-16 江西理工大学 A kind of plate slab crystallizer and continuous casting installation for casting, continuous casting steel billet oscillation mark suppressing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341641C (en) * 2003-07-31 2007-10-10 任廷志 Variable speed gear with nonsinusoidal vibration in continuous casting crystallizer
CN110116193A (en) * 2019-05-06 2019-08-13 中南大学 A kind of round mold and continuous casting installation for casting, continuous cast round billets oscillation mark suppressing method
CN110125346A (en) * 2019-05-06 2019-08-16 江西理工大学 A kind of plate slab crystallizer and continuous casting installation for casting, continuous casting steel billet oscillation mark suppressing method

Similar Documents

Publication Publication Date Title
US5176197A (en) Continuous caster mold and continuous casting process
JPH04178240A (en) Continuous casting method for stainless steel
US4482003A (en) Method for continuous casting of steel
EP0743115B1 (en) Method and apparatus for continuous casting of steel materials
DE3669449D1 (en) CONTINUOUS CASTING METHOD.
JPS6123559A (en) Oscillating method of mold for continuous casting of steel
JPH0243574B2 (en)
JP2000033461A (en) Continuous casting mold
JPH0399762A (en) Continuous casting method
JPH0479744B2 (en)
JP3101069B2 (en) Continuous casting method
JPS61162256A (en) Improvement of surface characteristic of continuous casting steel ingot
JPH0243575B2 (en)
JPS5952014B2 (en) Continuous casting method for medium-coal range steel slabs
JPH04319056A (en) Method for continuously casting steel cast slab
JP3128676B2 (en) Continuous casting of steel
JP2002205147A (en) Method for continuously casting steel
JPH08187562A (en) Method for continuously casting steel
JPS606248A (en) Oscillating method of continuous casting mold
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JPH01150435A (en) Vertical mold for continuous casting
JP2005211924A (en) Method for continuously casting steel
JPS6153143B2 (en)
JP2024004032A (en) Continuous casting method
JPH04322842A (en) Mold for continuously casting molten metal