JPS6123559A - Oscillating method of mold for continuous casting of steel - Google Patents

Oscillating method of mold for continuous casting of steel

Info

Publication number
JPS6123559A
JPS6123559A JP14337084A JP14337084A JPS6123559A JP S6123559 A JPS6123559 A JP S6123559A JP 14337084 A JP14337084 A JP 14337084A JP 14337084 A JP14337084 A JP 14337084A JP S6123559 A JPS6123559 A JP S6123559A
Authority
JP
Japan
Prior art keywords
mold
waveform
amplitude
cycle
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14337084A
Other languages
Japanese (ja)
Other versions
JPH059188B2 (en
Inventor
Mikio Suzuki
幹雄 鈴木
Shinobu Miyahara
忍 宮原
Masayuki Hanmiyo
半明 正之
Shigetaka Uchida
内田 繁孝
Tatsuo Obata
小畠 達雄
Katsumi Matsumura
勝己 松村
Yoichi Ishizaka
石坂 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14337084A priority Critical patent/JPS6123559A/en
Publication of JPS6123559A publication Critical patent/JPS6123559A/en
Publication of JPH059188B2 publication Critical patent/JPH059188B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To apply desired compressive force to the solidified shell in a casting drawing speed changes without the need for increasing an oscillation frequency in the stage of drawing a billet at a high speed by specifying an oscillation waveform and the time ratio of a negative strip and determining the oscillation frequency or amplitude by the specific equation according to the drawing speed of the ingot. CONSTITUTION:The casting mold is so vertically oscillated that the oscillation waveform attains the non-sinusoidal waveform having the waveform distortion factor lambda of equation I. Here, tNon-Sin: the displacement when theabove-described non-sinusoidal waveform in one cycle of the oscillation in the above-described casting [Z=SIGMAi1<n>aiSin2pifit, a: the amplitude (mm.), f: the oscillation frequency (cycle/min), t: time (sec)] is max., tsin: the sinusoidal waveform in the above- mentioned one cycle (Z=asin2pift), 0<lambda<1. The mold is so oscillated that the time ratio NSR(t) of the negative strip in one cycle attains <=25%. The oscillation frequency (f) or amplitude (a) of the mold is calculated according to the drawing speed Vc of the ingot by equation II. Here betaNon-Sin: the constant determined by the distortion factor lambda and the ratio NSR(t).

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、鋼の連続鋳造用鋳型の振動方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for vibrating a mold for continuous casting of steel.

〔従来技術とその問題点〕[Prior art and its problems]

鋼の連続鋳造法を第8図を参照しながら簡単に説明する
。第8図に示されるように、取鍋1内の溶鋼2はエアー
シールパイプ3を介してタンディツシュ4内に注入され
る。タンディツシュ4内に注入された溶鋼2は、浸漬ノ
ズル5を介して鋳型(モールド)6内に連続的に鋳込ま
れる。鋳型6内に溶鋼2が鋳込まれると、溶鋼2は冷却
されて、鋳型6の内面には凝固シェルフ、が形成される
。このようにして形成された凝固シェルフ。は、ガイド
ローラ8によりガイドされてピンチロール9によって鋳
型6の下部から連続的に引き抜れる。鋳型6から引き抜
れた未凝固の鋳片7は、スプレーノズル(図示せず)か
らの冷却水により冷却され、最終的に完全に凝固する。
The continuous steel casting method will be briefly explained with reference to FIG. As shown in FIG. 8, the molten steel 2 in the ladle 1 is injected into the tundish 4 via the air seal pipe 3. The molten steel 2 injected into the tundish 4 is continuously cast into a mold 6 through a submerged nozzle 5. When the molten steel 2 is poured into the mold 6, the molten steel 2 is cooled and a solidified shelf is formed on the inner surface of the mold 6. The solidified shelf thus formed. is guided by guide rollers 8 and continuously pulled out from the lower part of mold 6 by pinch rolls 9. The unsolidified slab 7 pulled out from the mold 6 is cooled by cooling water from a spray nozzle (not shown), and is finally completely solidified.

このようにして鋳片7が連続的に製造される。In this way, slabs 7 are continuously produced.

上述した鋼の連続鋳造法において、鋳型6の内面に凝固
シェルフ4が焼付くのを防止するために、鋳型6を上下
方向に振動させながら、鋳型6内にパウダー(鋳型添加
剤)を添加している。
In the continuous steel casting method described above, powder (mold additive) is added into the mold 6 while the mold 6 is vibrated in the vertical direction in order to prevent the solidified shelf 4 from seizing on the inner surface of the mold 6. ing.

前記パウダーを添加すると前記焼付きを防止できるのは
、溶融したパウダースラグが鋳型6・の内    □面
と凝固シェルフ4との間に流入し、潤滑剤の段重をする
からである。
The reason why the seizure can be prevented by adding the powder is that the molten powder slag flows between the inner surface of the mold 6 and the solidification shelf 4, and acts as a layer of lubricant.

しかし、第9図に示されるように、パウダースラグ10
の流入が何らかの理由で減少すると、前記焼付きが生じ
て第9図に示されるように、凝固シェルフ、1の上部が
破断する。このように凝固シェルフ4の一部が破断する
と、この破断箇所Aは鋳片・7の引き抜きに伴って鋳型
6の下方に移動する。
However, as shown in FIG.
If the inflow of the solidification shelf 1 is reduced for some reason, the seizure occurs and the upper part of the solidification shelf 1 breaks off, as shown in FIG. When a part of the solidification shelf 4 is broken in this way, the broken point A moves below the mold 6 as the slab 7 is pulled out.

前記破断箇所Aに形成された凝固シェルの厚みは、他の
部分の凝固シェルの厚みより薄いので、前記破断箇所A
が鋳片引き抜きに伴って鋳型6から抜は出たところで未
凝固鋳片内の溶鋼2が鋳片外部に流出する現象、所謂、
ブレークアウトが生じる。
The thickness of the solidified shell formed at the fracture point A is thinner than the thickness of the solidified shell in other parts, so the thickness of the solidified shell formed at the fracture point A
A phenomenon in which the molten steel 2 in the unsolidified slab flows out of the slab when it is pulled out of the mold 6 as the slab is pulled out, the so-called phenomenon.
A breakout occurs.

次に、従来の、鋳型6の振動方法について説明する。Next, a conventional method of vibrating the mold 6 will be explained.

従来、鋳型6はその振動波形が正弦波形となるように機
械的に上下方向に振動させており、鋳型6の振幅および
振動数は、ネガティブストリップ(鋳型6の1サイクル
の振動において、鋳型6の下降速度が鋳片7の引抜き速
度よシ大きい状態)の、下式で表わされる時間比率NS
R(t)が30〜40チの範囲内に維持されるようにそ
れぞれ設定していた。この範囲内に時間比率NSR(t
)を維持すると、鋳型下降時に鋳型内の凝固シェルフ、
Lに圧縮力が付与されて、凝固シェルフが破断しにくく
なる。
Conventionally, the mold 6 is mechanically vibrated vertically so that its vibration waveform is a sine wave, and the amplitude and frequency of the mold 6 are set to the negative strip (in one cycle of vibration of the mold 6, The time ratio NS in which the descending speed is greater than the drawing speed of the slab 7) is expressed by the following formula.
Each was set so that R(t) was maintained within a range of 30 to 40 inches. Within this range, the time ratio NSR (t
), the solidification shelf inside the mold when the mold is lowered,
A compressive force is applied to L, making it difficult for the solidified shelf to break.

前記時間比率N5R(t)は、鋳型6の1サイクルにお
けるネガティブストリップ時間の占める割合を示す。
The time ratio N5R(t) indicates the proportion of negative strip time in one cycle of the mold 6.

但し、vc:  鋳片引抜き速度(朋/min )、f
 : 鋳型の振動数(サイクル/m1n)、a : 鋳
型の振幅(−a )。
However, vc: slab drawing speed (f/min), f
: Mold vibration frequency (cycles/m1n), a : Mold amplitude (-a).

前記時間比率N5R(t、)を上記範囲内に維持するこ
とを県外として、製造能率を上げるだめに鋳片引抜き速
度Vcを1m/minから1.8 m/min程度に増
加させるには、鋳型6の振動数fまたは鋳型6の振幅α
を、鋳片引抜き法度Vcに対応させて大きくする必要が
ある。鋳造中に鋳型6の振幅σを変更することは技術的
に難かしいので、通常は鋳型6の振動・数fを大きくし
ている。
In order to increase the slab drawing speed Vc from 1 m/min to about 1.8 m/min in order to increase manufacturing efficiency, it is necessary to maintain the time ratio N5R (t,) within the above range. 6 vibration frequency f or mold 6 amplitude α
It is necessary to increase it in accordance with the slab drawing process Vc. Since it is technically difficult to change the amplitude σ of the mold 6 during casting, the vibration frequency f of the mold 6 is usually increased.

しかし、このように鋳型6の振動数fを大きくすると、
鋳型内面と凝固シェルフとの間へのパウダースラグの流
入量が減少するので、鋳型6内の凝固シェルフ4が破断
しやすくなる。
However, if the frequency f of the mold 6 is increased in this way,
Since the amount of powder slag flowing between the inner surface of the mold and the solidified shelf is reduced, the solidified shelf 4 in the mold 6 is more likely to break.

そこで、粘性または軟化点が低いパウダースラグを使用
することが考えられるが、パウダースラグによっては鋳
片7の表面性状が悪化する。
Therefore, it is possible to use powder slag with low viscosity or softening point, but depending on the powder slag, the surface quality of the slab 7 may deteriorate.

従って、鋳片7を前述したような高速度で引き抜く際に
、鋳型7の振動数を大きくする必要がなく、このために
、鋳型内面と凝固シェルフ4との間に所望のパウダース
ラグを流入させることができ、しかも、鋳片引抜き速度
が変化しても、鋳型6内の凝固シェルフ、に所望の圧縮
力を付与できる、鋳型6の振動方法が望まれているが、
現在のところそのような方法は提案されていない。
Therefore, when drawing the slab 7 at a high speed as described above, there is no need to increase the vibration frequency of the mold 7, and for this purpose, the desired powder slag is allowed to flow between the mold inner surface and the solidification shelf 4. What is desired is a method of vibrating the mold 6 that is capable of applying a desired compressive force to the solidification shelf within the mold 6 even when the slab drawing speed changes.
No such method has been proposed at present.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、鋳片を高速度で引き抜く際に、鋳型
の振動数を大きくする必要がなく、且つ、鋳片引抜き速
度が変化17ても、鋳型内の凝固シェルに所望の圧縮力
を付与することができる鋼の連続鋳造用鋳型の振動方法
を提供することにある。
The purpose of this invention is to eliminate the need to increase the vibration frequency of the mold when drawing slabs at high speed, and to apply a desired compressive force to the solidified shell in the mold even when the slab drawing speed changes17. It is an object of the present invention to provide a method for vibrating a mold for continuous casting of steel, which can be used for continuous casting of steel.

形歪率λを有する非正弦波形となるように上、下方向に
振動させ、 但し、tNon−8in  :前記鋳造の振動の1サイ
クルにおける前記非 Sin 2πf、t、a:振 幅(藺)、f、振動数( サイクル/m1n)、  t :y 時間(sea) )の変位が 最大となる時間、 t8in  :前記1サイクルにおけ る正弦波形(z=α5in 2πft、α:振幅(朋)、 f:振動数(サイクツいin)+ t:時間(sec) ) 。
It is vibrated upward and downward to form a non-sinusoidal waveform having a shape distortion factor λ, where tNon-8in: the non-sinusoidal waveform in one cycle of the vibration of the casting; 2πf, t, a: amplitude (藺), f , frequency (cycles/m1n), t: time when the displacement of y time (sea) is maximum, t8in: sine waveform in the 1 cycle (z = α5in 2πft, α: amplitude (to), f: frequency (successful in) + t: time (sec)).

λ :0〈λく1 且つ、前記1サイクルにおける、下式で表わされるネガ
ティブス) l)ツブの時間比率N5R(t)が、25
%以下となるように、前記鋳型を上下方向に振動させ、 但し、vc:  鋳片引抜き速度(、/n1n)、f 
: 振動数(サイクル/m1n)、a : 振砥(闘)
、 鋳片引抜き速度Vcに応じて、下式に従って、前記鋳型
の振動数fまたは前記鋳型の振幅αを演算し、 f°α2βNon−Bid ’ vc 但し、βNon−81n : 前記波形歪率λと前記時
間比率N5R(t、)とによ って決まる定数、 かくして、鋳片を高速度で前記鋳型の下部から引き抜く
ことを可能とすることに特徴を有する。
λ: 0〈λ×1 and negatives expressed by the following formula in one cycle) l) The time ratio N5R(t) of the whelk is 25
% or less, the mold is vibrated in the vertical direction, where vc: slab withdrawal speed (,/n1n), f
: Frequency (cycle/m1n), a : Shaking (fighting)
, According to the slab drawing speed Vc, calculate the vibration frequency f of the mold or the amplitude α of the mold according to the following formula, f°α2βNon-Bid' vc where βNon-81n: the waveform distortion rate λ and the above-mentioned A constant determined by the time ratio N5R(t,), and is thus characterized in that it makes it possible to pull out the slab from the lower part of the mold at a high speed.

〔発明の構成〕[Structure of the invention]

本願発明者等は、上述のような観点から、鋳片を高速度
で引き抜く際に、鋳型の振動数を大きくする必要がなく
、且つ、鋳片引抜き速度が変化しても、鋳型内の凝固シ
ェルに所望の圧縮力を付与することができる鋳型の振動
方法を得べく種々研究を重ねた。その結果、鋳型の振動
波型を従来のように正弦波形とするかわりに、鋳型の上
昇速度を鋳型の下降速゛度に比べて遅くすることができ
、且つ、鋳型の上昇時間を鋳型の下降時間に比べて長く
とることができる非正弦波形となるように鋳型を振動さ
せれば、鋳片を高速度で引き抜く際に、鋳型の振動数を
大きくする必要がなく、且つ、鋳片引抜き速度が変化し
ても、鋳型内の凝固シェルに所望の圧縮力を付与するこ
とができるといつだ知見を得た。
From the above-mentioned viewpoints, the inventors of the present application have discovered that there is no need to increase the vibration frequency of the mold when the slab is pulled out at high speed, and that solidification within the mold does not occur even if the slab drawing speed changes. Various studies were conducted to find a method of vibration of the mold that could apply the desired compressive force to the shell. As a result, instead of making the vibration waveform of the mold a sinusoidal waveform as in the past, the rising speed of the mold can be made slower than the descending speed of the mold, and the rising time of the mold can be made slower than the descending speed of the mold. If the mold is vibrated to create a non-sinusoidal waveform that can be taken for a long time compared to the time, it is not necessary to increase the vibration frequency of the mold when drawing slabs at high speed, and it is possible to reduce the speed of pulling slabs. It was discovered that it is possible to apply a desired compressive force to the solidified shell in the mold even if the

この発明は、上述した知見に基いてなされたものである
。以下、この発明の詳細な説明する。
This invention was made based on the above-mentioned knowledge. The present invention will be explained in detail below.

先ず、この発明における非正弦波形について説明する。First, the non-sinusoidal waveform in this invention will be explained.

第1図に示されるように、鋳型の1サイクルの振動にお
いて、鋳型の変位が最大となる時間が、正弦波形Aと比
較してどれだけずれているかを表わす値を、下式で表わ
される波形歪率λと定義する。
As shown in Figure 1, in one cycle of vibration of the mold, the time at which the displacement of the mold reaches its maximum deviates from the sine waveform A by using the waveform expressed by the following formula. Define the distortion factor λ.

但し、tNon−8in :  非正弦波形(第1図中
B)の場合の前記時間、 La1n  :正弦波形の場合の前記 時間、 λ :oくλ<10 前記正弦波形Aは、Z=(ZSin2πft(但し、α
:振幅(U)、f:振動数(サイクル/m1n)、t:
時間(sea))で表わされ、前記非正弦波形Bは、Z
−Σα、、8in2πtit、 (但し、α:振幅(m
s )、fニ振動数(サイクル/m1n)、1:時間(
sec ) )で表わされる。
However, tNon-8in: the above-mentioned time in the case of a non-sinusoidal waveform (B in Fig. 1), La1n: the above-mentioned time in the case of a sine waveform, λ: λ<10. However, α
: amplitude (U), f: frequency (cycle/m1n), t:
time (sea)), and the non-sinusoidal waveform B is Z
-Σα,,8in2πtit, (where α: amplitude (m
s ), f frequency (cycles/m1n), 1: time (
sec))).

次に、上記非正弦波形の波形歪率λを変えて、そのとき
の、前記(1)式で表わされるネガティブストリップの
時間比率N5R(t)とΔFdownとの関係、および
、この条件で鋳造を行ったときの鋳片表面状態およびブ
レークアウト発生の予知による鋳片引抜き中断の有無に
ついて、波形歪率λ=0.即ち、鋳型の振動波形が正弦
波形となるように鋳型を振動させた場合の結果と合せて
第2図に示す。
Next, by changing the waveform distortion factor λ of the non-sinusoidal waveform, the relationship between the negative strip time ratio N5R(t) and ΔFdown expressed by the above equation (1) at that time, and the casting under these conditions. The waveform distortion rate λ=0. That is, FIG. 2 shows the results when the mold is vibrated so that the vibration waveform of the mold becomes a sine wave.

上記Δ−Fdownとは、鋳型下降時の鋳型にかかる荷
□イ1.2□、1□。□732.よ  )る圧縮力であ
る。
The above Δ-Fdown is the load □ 1.2□, 1□ applied to the mold when the mold is lowered. □732. This is the compressive force caused by

第2図から明らかなように、上記、ΔFdownの値が
130 Kg以上の場合には、鋳型内の凝固シェルに常
に圧縮力が付与されるので、ブレークアウトは発生せず
、且つ、鋳片表面も良好であることがわかる。
As is clear from Fig. 2, when the value of ΔFdown is 130 kg or more, compressive force is always applied to the solidified shell in the mold, so breakout does not occur and the slab surface It can be seen that the results are also good.

また、ΔFdownの値を一定値とした場合、正弦波形
に比べて非正弦波形の場合の方がネガティブストリップ
の時間比率NSR(t)を小さくできることがわかる。
Furthermore, it can be seen that when the value of ΔFdown is set to a constant value, the time ratio NSR(t) of the negative strip can be made smaller in the case of a non-sinusoidal waveform than in the case of a sine waveform.

これは、鋳型を、その振動波形が非正弦波形となるよう
に振動させれば、鋳型の振動数を小さくすることができ
、この結果、パウダースラグの流入量を増加させること
ができ、且つ、振動機械系も小型化できることを意味す
る。これらの効果が得られる前記時間比率NSR(t、
)の上限値は、25%であることが明らかとなった。
This is because if the mold is vibrated so that its vibration waveform is a non-sinusoidal waveform, the frequency of the mold can be reduced, and as a result, the amount of powder slag flowing in can be increased, and This means that the vibrating mechanical system can also be made smaller. The time ratio NSR (t,
) was found to be 25%.

上記波形歪率λの範囲は、上述したようにoくλ〈〕で
あるが、第3図がち明らかなように、λを02以上とす
れば、ブレークアウト発生率は、より少なくなる。
The range of the waveform distortion factor λ is, as described above, λ〈〈〉, but as is clear from FIG. 3, if λ is set to 02 or more, the breakout occurrence rate becomes smaller.

上述したように、鋳型を、その振動波形が非正弦波形と
なるように振動させる場合において、鋳片引抜き速度が
変化しても、ネガティブストリップの時間比率NSR(
’z)を、25チ以下の所定値に維持する方法について
説明する。
As mentioned above, when the mold is vibrated so that its vibration waveform is a non-sinusoidal waveform, even if the slab drawing speed changes, the negative strip time ratio NSR (
A method for maintaining 'z) at a predetermined value of 25 inches or less will be described.

鋳型を、その振動波形が正弦波形mと なるように振動させる場合、前記(1)式における鋳型
の振動数fと鋳型の振幅αとの積は、次式で表わされる
When the mold is vibrated so that its vibration waveform becomes a sine waveform m, the product of the mold vibration frequency f and the mold amplitude α in the above equation (1) is expressed by the following equation.

f−α=β81n ’ ”C”’ (3)但し、β5i
in : NSR(t)が一定値のときに一義的に決ま
る係数(−1/2πcos 一方、非正弦波形の場合においても、上記正弦波形にお
けるとほぼ同様な関係が成り立つ。例えば、波形歪率λ
が032である非正弦波形につい−て、ネガティブスト
リップの時間比率NSR(tJが20チのときの鋳型の
振動数fと鋳片引抜き速度Vcとの関係を、鋳型の振幅
αをパラメータにして調べだ。この結果を第4図に示す
。第4図から明らかなように、鋳型の振動数fと鋳片引
抜速度■cとは原点を通る直線関係にある。
f-α=β81n'"C"' (3) However, β5i
in: Coefficient (-1/2πcos) that is uniquely determined when NSR(t) is a constant value On the other hand, in the case of a non-sinusoidal waveform, almost the same relationship as in the above-mentioned sine waveform holds true.For example, the waveform distortion factor λ
For a non-sinusoidal waveform in which is 032, the relationship between the mold frequency f and slab withdrawal speed Vc when the negative strip time ratio NSR (tJ is 20 inches) was investigated using the mold amplitude α as a parameter. The results are shown in Fig. 4.As is clear from Fig. 4, the mold frequency f and the slab drawing speed ■c have a linear relationship passing through the origin.

次に、前記直線の傾きをαとして、前記傾きαと、鋳型
の振幅αの逆数l/aとの関係について調べた。この結
果を第5図に示す。第5図から明らかなように、前記傾
きαと前記1/aとはほぼ直線関係にあるので、非正弦
波形においても、前記(3)式が成り立ち、(3)式中
の係数βBinは、鋳型の振動波形の種類、即ち、波形
歪率λに依存していることも判明した。
Next, assuming the slope of the straight line to be α, the relationship between the slope α and the reciprocal l/a of the amplitude α of the mold was investigated. The results are shown in FIG. As is clear from FIG. 5, since the slope α and the 1/a have a nearly linear relationship, the equation (3) holds true even for non-sinusoidal waveforms, and the coefficient βBin in the equation (3) is It was also found that it depends on the type of vibration waveform of the mold, that is, the waveform distortion rate λ.

従って、非正弦波形において、鋳型の振動数fと鋳型の
振幅αとの積を、(3)式における同形式で表わすと、
次式のようになる。
Therefore, in a non-sinusoidal waveform, if the product of the mold frequency f and the mold amplitude α is expressed in the same form as in equation (3),
It becomes as follows.

f・α=βNon−8in ’ vc”・・(4)但し
、βNon−8in :波形歪率λと、ネガティブスト
リッ プの時間比率N5R (1)とによって決ま る係数。
f・α=βNon-8in'vc" (4) However, βNon-8in: a coefficient determined by the waveform distortion rate λ and the negative strip time ratio N5R (1).

次に、種々の波痛歪率λと、ネガティブストリップの時
間比率N5R(t、)とから前記係数βNon−8in
を求め、時間比率N5R(t)をパラメータとして、係
数βNon−51n と波形歪率λとの関係を調べた。
Next, the coefficient βNon-8in is determined from various wave distortion rates λ and the negative strip time ratio N5R(t,).
was determined, and the relationship between the coefficient βNon-51n and the waveform distortion rate λ was investigated using the time ratio N5R(t) as a parameter.

この結果を第6図に示す。The results are shown in FIG.

このようにして、ネガティブストリップの時間比率NS
R(t)をパラメータとした、波形歪率λと前記係数β
Non−8in との関係が求められたら、第6図から
、鋳片引抜き速度が変化する前の波形歪率λと時間比率
N5R(t、)とに対応する前記係数βNon−8in
を求める。このようにして、前記係数βNon−8in
が求められたら、前記(4)式に、前記係数βNon−
8in %そのときの鋳型の振動数fまたは鋳型の振幅
α、および、鋳片引抜き速度vcを代入して、鋳型の振
動数fまたは鋳型の振幅αを演算する。このようK L
、−C41;iえ、。□58.え、ヨ。□    )a
に基いて、鋳型を振動させれば、鋳片引抜き速度Vcが
変化しても、ネガティブストリップの時間比率NSR(
t)を25%以下の所定値に維持することができる。な
お、通常は、鋳片引抜き速度が変化する前の鋳型の振幅
αを前記(4)式に代入して、鋳型の振動数fを演算す
る。
In this way, the negative strip time ratio NS
The waveform distortion rate λ and the coefficient β with R(t) as a parameter
Once the relationship with Non-8in is determined, from FIG.
seek. In this way, the coefficient βNon-8in
Once obtained, the coefficient βNon− is added to the equation (4) above.
8in% The mold vibration frequency f or mold amplitude α is calculated by substituting the mold vibration frequency f or mold amplitude α and the slab withdrawal speed vc at that time. Like this KL
,-C41;i. □58. Eh, yo. □ )a
Based on this, if the mold is vibrated, even if the slab withdrawal speed Vc changes, the negative strip time ratio NSR (
t) can be maintained at a predetermined value of 25% or less. Note that normally, the vibration frequency f of the mold is calculated by substituting the amplitude α of the mold before the slab drawing speed changes into the above equation (4).

波形歪率λ−027、ネガティブストリップの時間比率
NSR(t、) = 15チ、振幅α=30藺の条件で
鋳型を振動させながら鋳造を行ったときの時間と、鋳型
の振動数fおよび鋳片引抜き速度vcの変更例を、第7
図に示す。
The time when casting was performed while vibrating the mold under the conditions of waveform distortion rate λ-027, negative strip time ratio NSR (t, ) = 15 cm, and amplitude α = 30 cm, the mold vibration frequency f, and the casting time. An example of changing the single pull-out speed vc is shown in the seventh
As shown in the figure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、鋳片引抜き速
度が変化しても、鋳型内の凝固シェルに所望の圧縮力を
常に付与することができ、且つ、前記圧縮力を一定とし
た場合に、ネガティブストリップの時間比率N5B(t
、)を、正弦波形の場合に比べて小さくする、ことがで
きるので、鋳型の振動数を小さくすることができる。従
って、パウダースラグを十分に凝固シェルと鋳型との間
に流入させることができるので、鋳片を鋳型から高速度
で引き抜いても、ブレークアウトは生じず、且つ、表面
性状が優れた鋳片を鋳造することができる。
As explained above, according to the present invention, even if the slab drawing speed changes, a desired compressive force can always be applied to the solidified shell in the mold, and when the compressive force is kept constant. , the negative strip time ratio N5B(t
, ) can be made smaller than in the case of a sinusoidal waveform, so the vibration frequency of the mold can be made small. Therefore, powder slag can be sufficiently flowed between the solidified shell and the mold, so even when the slab is pulled out from the mold at high speed, breakout does not occur, and the slab with excellent surface quality can be obtained. Can be cast.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法および従来法による鋳型の−、振動
波形を示すグラフ、第2図は、N5R(t)とΔFdo
wnとの関係を示すグラフ、第3図は、λ”とブレーク
アウト発生率との関係を示すグラフ、第4図は、aをパ
ラメータとした、VCとfとの関係を示すグラフ、第5
図は、1/αとαとの関係を示すグラフ、第6図は、N
5R(t)をパラメータとした、λとβNon−8in
 との関係を示すグラフ、第7図は、時間と、Vcおよ
びfとの関係を示すグラフ、第8図は、連続鋳造法の概
略を示す断面図、第9図は、ブレークアウトの発生原因
の説明図である。図面において、 l・・・取鍋       2・・・溶鋼3・・・エア
ーシールパイ 4・・・タンデイッ7ユ゛プ 5・・・浸漬ノズル    6・・・鋳型7・・・鋳片
       7゜・・・凝固ソエル8・・・ガイドロ
ーラ   9・・・ビンチロール10・・パウダースラ
FIG. 1 is a graph showing vibration waveforms of molds according to the present invention and the conventional method, and FIG. 2 is a graph showing N5R(t) and ΔFdo.
FIG. 3 is a graph showing the relationship between λ'' and breakout occurrence rate. FIG. 4 is a graph showing the relationship between VC and f with a as a parameter.
The figure is a graph showing the relationship between 1/α and α, and Figure 6 is a graph showing the relationship between 1/α and α.
λ and βNon-8in with 5R(t) as a parameter
FIG. 7 is a graph showing the relationship between time and Vc and f. FIG. 8 is a sectional view showing an outline of the continuous casting method. FIG. 9 is a graph showing the cause of breakout. FIG. In the drawing, l... Ladle 2... Molten steel 3... Air seal pie 4... Tundip 7 Up 5... Immersion nozzle 6... Mold 7... Slab 7°. ...Coagulation soil 8...Guide roller 9...Vinch roll 10...Powder slag

Claims (1)

【特許請求の範囲】 鋳型を、その振動波形が、下式で表わされる波形歪率λ
を有する非正弦波形となるように上下方向に振動させ、 λ=(t_N_o_n_−_S_i_n−t_S_i_
n)/t_S_i_n但し、t_N_o_n_−_S_
i_n:前記鋳造の振動の1サイクルにおける前記非 正弦波形(Z=Σ^n_i_=_1a_iSin2πf
_it、a:振幅(mm) f:振動数(サイクル/min)、 t:時間(sec))の変位 が最大となる時間、 t_S_i_n:前記1サイクルにおけ る正弦波形(Z=aSin2π ft、a:振幅(mm)、 f:振動数(サイクル/ min)、t:時間(sec))、 λ:0<λ<1、 且つ、前記1サイクルにおける、下式で表わされるネガ
ティブストリップの時間比率NSR(t)が、25%以
下となるように、前記鋳型を上下方向に振動させ、 NSR(t)={1−(1/π)cos^−^1(−(
V_c)/(2πfa))}×100(%)但し、V_
c:鋳片引抜き速度(mm/min)、f:振動数(サ
イクル/min)、 a:振幅(mm)、 鋳片引抜き速度V_cに応じて、下式に従つて、前記鋳
型の振動数fまたは前記鋳型の振幅aを演算し、 f・a=β_N_o_n_−_S_i_n・V_c但し
、β_N_o_n_−_S_i_n:前記波形歪率λと
前記時間比率NSR(t)とによ つて決まる定数、 かくして、鋳片を高速度で前記鋳型の下部から引き抜く
ことを可能とすることを特徴とする、鋼の連続鋳造用鋳
型の振動方法。
[Claims] The mold has a vibration waveform having a waveform distortion factor λ expressed by the following formula.
It is vibrated in the vertical direction so as to have a non-sinusoidal waveform with λ=(t_N_o_n_−_S_i_n−t_S_i_
n)/t_S_i_nHowever, t_N_o_n_-_S_
i_n: the non-sinusoidal waveform in one cycle of vibration of the casting (Z=Σ^n_i_=_1a_iSin2πf
_it, a: amplitude (mm) f: frequency (cycle/min), t: time (sec)) maximum displacement, t_S_i_n: sine waveform in the above one cycle (Z=aSin2π ft, a: amplitude (mm), f: vibration frequency (cycles/min), t: time (sec)), λ: 0<λ<1, and the time ratio NSR (t ) is 25% or less, the mold is vibrated in the vertical direction, and NSR(t)={1-(1/π)cos^-^1(-(
V_c)/(2πfa))}×100(%) However, V_
c: Slab drawing speed (mm/min), f: Vibration frequency (cycles/min), a: Amplitude (mm), According to the slab drawing speed V_c, the vibration frequency f of the mold according to the following formula. Or calculate the amplitude a of the mold, f・a=β_N_o_n_−_S_i_n·V_c, where β_N_o_n_−_S_i_n: a constant determined by the waveform distortion rate λ and the time ratio NSR(t). A method for vibrating a mold for continuous casting of steel, characterized in that it is possible to withdraw from the lower part of the mold at high speed.
JP14337084A 1984-07-12 1984-07-12 Oscillating method of mold for continuous casting of steel Granted JPS6123559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14337084A JPS6123559A (en) 1984-07-12 1984-07-12 Oscillating method of mold for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14337084A JPS6123559A (en) 1984-07-12 1984-07-12 Oscillating method of mold for continuous casting of steel

Publications (2)

Publication Number Publication Date
JPS6123559A true JPS6123559A (en) 1986-02-01
JPH059188B2 JPH059188B2 (en) 1993-02-04

Family

ID=15337202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14337084A Granted JPS6123559A (en) 1984-07-12 1984-07-12 Oscillating method of mold for continuous casting of steel

Country Status (1)

Country Link
JP (1) JPS6123559A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224155A (en) * 1988-01-28 1989-09-07 Sumitomo Heavy Ind Ltd Method and apparatus for oscillating mold for continuous casting
CN104249133A (en) * 2013-06-26 2014-12-31 宝山钢铁股份有限公司 Hydraulic vibration method for continuous casting mold
CN108746518A (en) * 2018-05-31 2018-11-06 燕山大学 A kind of wobble crank formula continuous cast mold non-sinusoidal vibration method
CN109974832A (en) * 2019-04-03 2019-07-05 浙江华章科技有限公司 A kind of algorithm of high-speed shaking system amplitude
CN111644586A (en) * 2020-06-11 2020-09-11 中冶南方连铸技术工程有限责任公司 Method for determining optimal vibration parameters of crystallizer
CN114918392A (en) * 2022-04-29 2022-08-19 重庆钢铁股份有限公司 Vibration control method for square billet continuous casting crystallizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926420A (en) * 1972-07-04 1974-03-08
JPS5011932A (en) * 1973-06-06 1975-02-06
JPS5647244A (en) * 1979-09-25 1981-04-28 Nippon Kokan Kk <Nkk> Continuous casting method
JPS5747558A (en) * 1980-09-04 1982-03-18 Furukawa Electric Co Ltd:The Vertical type continuous casting method
JPS57115948A (en) * 1981-01-09 1982-07-19 Nippon Steel Corp Continuous casting method
JPS5838646A (en) * 1981-08-31 1983-03-07 Kawasaki Steel Corp Continuous casting method for slab of middle carbon region steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926420A (en) * 1972-07-04 1974-03-08
JPS5011932A (en) * 1973-06-06 1975-02-06
JPS5647244A (en) * 1979-09-25 1981-04-28 Nippon Kokan Kk <Nkk> Continuous casting method
JPS5747558A (en) * 1980-09-04 1982-03-18 Furukawa Electric Co Ltd:The Vertical type continuous casting method
JPS57115948A (en) * 1981-01-09 1982-07-19 Nippon Steel Corp Continuous casting method
JPS5838646A (en) * 1981-08-31 1983-03-07 Kawasaki Steel Corp Continuous casting method for slab of middle carbon region steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224155A (en) * 1988-01-28 1989-09-07 Sumitomo Heavy Ind Ltd Method and apparatus for oscillating mold for continuous casting
CN104249133A (en) * 2013-06-26 2014-12-31 宝山钢铁股份有限公司 Hydraulic vibration method for continuous casting mold
CN108746518A (en) * 2018-05-31 2018-11-06 燕山大学 A kind of wobble crank formula continuous cast mold non-sinusoidal vibration method
CN109974832A (en) * 2019-04-03 2019-07-05 浙江华章科技有限公司 A kind of algorithm of high-speed shaking system amplitude
CN111644586A (en) * 2020-06-11 2020-09-11 中冶南方连铸技术工程有限责任公司 Method for determining optimal vibration parameters of crystallizer
CN111644586B (en) * 2020-06-11 2021-06-29 中冶南方连铸技术工程有限责任公司 Method for determining optimal vibration parameters of crystallizer
CN114918392A (en) * 2022-04-29 2022-08-19 重庆钢铁股份有限公司 Vibration control method for square billet continuous casting crystallizer

Also Published As

Publication number Publication date
JPH059188B2 (en) 1993-02-04

Similar Documents

Publication Publication Date Title
JPS6123559A (en) Oscillating method of mold for continuous casting of steel
JPH07106434B2 (en) Continuous casting method for metal ribbon
JPS60261655A (en) Vibrating method of mold for continuous casting of steel
JPH0243575B2 (en)
JPH105956A (en) Continuous casting method of steel
JPH0479744B2 (en)
JPH0399762A (en) Continuous casting method
JPH04178240A (en) Continuous casting method for stainless steel
JPS61162256A (en) Improvement of surface characteristic of continuous casting steel ingot
JPH08187562A (en) Method for continuously casting steel
JPH04319056A (en) Method for continuously casting steel cast slab
JP2002239701A (en) Continuous casting method
JPS61206550A (en) Continuous casting method for steel
JP2825988B2 (en) Method of preventing longitudinal cracks in continuous casting of thin cast slab
JPS60127051A (en) Continuous casting method
JPS5853354A (en) Continuous casting method for steel
JPS6330160A (en) Continuous casting method for molten metal
JPS606248A (en) Oscillating method of continuous casting mold
JPH04172153A (en) Method and apparatus for continuous casting
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JP3228242B2 (en) Continuous casting equipment
JPH01293960A (en) Method for continuously casting molten metal
JPS5855153A (en) Continuous casting method for steel
JPH01266945A (en) Continuous casting method
JPS63137548A (en) Method and apparatus for casting steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees