JPS60261655A - Vibrating method of mold for continuous casting of steel - Google Patents

Vibrating method of mold for continuous casting of steel

Info

Publication number
JPS60261655A
JPS60261655A JP11541984A JP11541984A JPS60261655A JP S60261655 A JPS60261655 A JP S60261655A JP 11541984 A JP11541984 A JP 11541984A JP 11541984 A JP11541984 A JP 11541984A JP S60261655 A JPS60261655 A JP S60261655A
Authority
JP
Japan
Prior art keywords
mold
waveform
sinusoidal waveform
time
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11541984A
Other languages
Japanese (ja)
Other versions
JPH0243574B2 (en
Inventor
Mikio Suzuki
幹雄 鈴木
Shinobu Miyahara
忍 宮原
Shigetaka Uchida
内田 繁孝
Osamu Terada
修 寺田
Masayuki Hanmiyo
半明 正之
Tsutomu Wada
勉 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11541984A priority Critical patent/JPS60261655A/en
Publication of JPS60261655A publication Critical patent/JPS60261655A/en
Publication of JPH0243574B2 publication Critical patent/JPH0243574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the generation of breakout and to obtain a billet having an excellent surface characteristic in the stage of oscillating a casting mold and drawing out the billet by controlling oscillation waveform and waveform distortion factor by numerical equations. CONSTITUTION:The billet is drawn at a high speed from the lower part of the casting mold while said mold is oscillated vertically at the non-sinusoidal waveform expressed by equation I in a manner as to satisfy the conditions expressed by equations II and III. In equations I and II, t: time, f: the oscillation frequency (cycle/min) of the non-sinusoidal waveform, a: the amplitude mm. of the non-sinusoidal waveform, lambda: the waveform distortion (0<lambda<1) of the non-sinusoidal waveform, Vc: the casting speed mm./min of the billet. In equation III, tnon-sin: the time when the displacement of the non-sinusoidal waveform in one cycle is max., tsin: the time when the displacement of the sinusoidal waveform (Z= asin2pift) in one cycle is max.

Description

【発明の詳細な説明】 2− 〔発明の技術分野〕 この発明は、鋼の連続鋳造用鋳型の振動方法に関するも
のである。
[Detailed Description of the Invention] 2- [Technical Field of the Invention] The present invention relates to a method for vibrating a mold for continuous casting of steel.

〔従来技術とその問題点〕[Prior art and its problems]

鋼の連続鋳造法を第5図を参照しながら簡単に説明する
。第5図に示されるように、取鍋]内の溶鋼2はエアー
シールパイプ3を介してタンディツシュ4内に注入され
る。タンディツシュ4内に注入された溶鋼2は、浸漬ノ
ズル5を介して鋳型(モールド)6内に連続的に鋳込1
れる。鋳型6内に溶鋼2が鋳込まれると、溶鋼2は冷却
され、鋳型6の内面には凝固シェルフ、が形成される。
The continuous steel casting method will be briefly explained with reference to FIG. As shown in FIG. 5, the molten steel 2 in the ladle is injected into the tundish 4 via the air seal pipe 3. The molten steel 2 injected into the tundish 4 is continuously poured into a mold 6 through an immersion nozzle 5.
It will be done. When the molten steel 2 is poured into the mold 6, the molten steel 2 is cooled and a solidification shelf is formed on the inner surface of the mold 6.

このようにして形成された凝固シェルフ。は、ガイドロ
ーラ8によりガイドされてピンチロール9によって鋳型
6の下部から連続的に引き抜れる。鋳型6から引き抜れ
た未凝固の鋳片7は、スプレーノズル(図示せず)から
の冷却水により冷却され、II′ 最終的に完全に凝固
する。このようにして鋳片7が連続的に製造される。
The solidified shelf thus formed. is guided by guide rollers 8 and continuously pulled out from the lower part of mold 6 by pinch rolls 9. The unsolidified slab 7 pulled out from the mold 6 is cooled by cooling water from a spray nozzle (not shown), and is finally completely solidified. In this way, the slab 7 is continuously produced.

上述した鋼の連続鋳造法において、鋳型6の内 3− 面に凝固シェル7ユが焼付くのを防止するために、鋳型
6を」二下方向に振動させるから、鋳型6内にパウダー
(鋳型添加剤)を添加している。
In the above-mentioned continuous steel casting method, the mold 6 is vibrated downward in order to prevent the solidified shell 7 from burning on the inner surface of the mold 6. additives) are added.

前記パウダーを添加すると前記焼判きを防止できるのは
、溶融したパウダースラグが鋳型6の内面と凝固シェル
フ、との間に流入し、潤滑剤の役目をするからである。
The reason why the addition of the powder can prevent the burning is that the molten powder slag flows between the inner surface of the mold 6 and the solidification shelf and acts as a lubricant.

しかし、第6図に示されるように、パウダースラグ10
の流入が何らかの理由で減少すると、前記焼付きが生じ
て第6図に示されるように、凝固シェル’icLの上部
が破断する。このように凝固シェルフ4の一部が破断す
ると、この破断箇所Aは鋳片7の引き抜きに伴って鋳型
6の下方に移動する。
However, as shown in FIG.
If the inflow of 'icL decreases for some reason, the seizure occurs and the upper part of the solidified shell 'icL breaks off, as shown in FIG. When a part of the solidification shelf 4 is broken in this way, the broken point A moves below the mold 6 as the slab 7 is pulled out.

前記破断箇所Aに形成された凝固シェルの厚みは、他の
部分の凝固シェルの厚みより薄いので、前記破断箇所A
が鋳片引き抜に伴って鋳型6から抜は出たところで未凝
固鋳片内の溶鋼2が鋳片外部に流出する現象、所謂、ブ
レークアウトが生じる。
The thickness of the solidified shell formed at the fracture point A is thinner than the thickness of the solidified shell in other parts, so the thickness of the solidified shell formed at the fracture point A
When the molten steel 2 in the unsolidified slab is pulled out of the mold 6 as the slab is pulled out, a so-called breakout occurs, in which the molten steel 2 in the unsolidified slab flows out of the slab.

次に、従来の、鋳型6の振動方法について説明する。Next, a conventional method of vibrating the mold 6 will be explained.

4− 従来、鋳型6はその振動波形が正弦波形となるように機
械的に上下方向に振動させており、鋳型6の振幅および
振動数は、ネガティブストリップ(鋳型6の下降速度が
鋳片7の引抜き速度より大きい状態)の、下式で表わさ
れる時間比率NsR(t)が30〜40%の範囲内に維
持されるようにそれぞれ設定していた。この範囲内に時
間比率N5R(t、)を維持すると、鋳型下降時に鋳型
内の凝固シェルフeL に圧縮力が付与されて、凝固シ
ェルフが破断しにくくなる。
4- Conventionally, the mold 6 has been mechanically vibrated vertically so that its vibration waveform is a sine wave, and the amplitude and frequency of the mold 6 have been controlled by a negative strip (the descending speed of the mold 6 is equal to that of the slab 7). The time ratio NsR(t), expressed by the following formula, was set to be maintained within a range of 30 to 40%. If the time ratio N5R(t,) is maintained within this range, a compressive force is applied to the solidification shelf eL in the mold when the mold is lowered, making it difficult for the solidification shelf to break.

前記時間比率N5R(t;)は、鋳型6の1周期におけ
るネガティブストリップ時間の占める割合を示す。
The time ratio N5R(t;) indicates the ratio of the negative strip time in one cycle of the mold 6.

但し、Vc:鋳片引抜き速度(ma/m1n)、f :
@型の振動数(サイクル/m1n)、a :鋳型の振幅
(闘)。
However, Vc: slab drawing speed (ma/m1n), f:
@Frequency of mold vibration (cycles/m1n), a: Amplitude of mold (strike).

前記時間比率NSR(t、)を上記範囲内に維持するこ
5− とを条件に、製造能率を上げるために鋳片引抜き速度V
cを1m/minから1.8 m / m ]−n程度
に増加させるには、鋳型6の振動数f捷たけ振幅αを、
鋳片引抜き速度Vcに対応させて大きくする必要がある
。鋳造中に鋳型6の振幅aを変更することは技術的に難
かしいので、通常は鋳型6の振動数fを太きくしている
On the condition that the time ratio NSR (t,) is maintained within the above range, the slab drawing speed V is increased in order to increase production efficiency.
In order to increase c from 1 m/min to about 1.8 m/m ]-n, the vibration frequency f of the mold 6 and the shaking amplitude α are
It is necessary to increase it in accordance with the slab drawing speed Vc. Since it is technically difficult to change the amplitude a of the mold 6 during casting, the frequency f of the mold 6 is usually increased.

しかし、このように鋳型6の振動数fを大きくすると、
鋳型内面と凝固シェルフとの間へのパウダースラグの流
入量が減少するので、鋳型6内の凝固シェル76が破断
しやすくなる。
However, if the frequency f of the mold 6 is increased in this way,
Since the amount of powder slag flowing between the inner surface of the mold and the solidified shelf is reduced, the solidified shell 76 in the mold 6 is more likely to break.

そこで、パウダースラグの粘性または軟化点を低くする
ことが考えられるが、パウダースラグによっては鋳片7
の表面性状が悪化する。
Therefore, it is possible to lower the viscosity or softening point of the powder slag, but depending on the powder slag, the slab
surface quality deteriorates.

従って、鋳片7を前述したような高速度で引き抜く際に
、鋳型7の振動数を大きくする必要がなく、このだめに
、鋳型内面と凝固シェルフ4との間に所望のパウダース
ラグを流入させることができ、しかも、鋳型6内の凝固
シェルフ、に所望の圧縮力を付与できる、鋳型6の振動
方法が望まれている6− が、現在のところそのような方法は提案されていない。
Therefore, when the slab 7 is pulled out at a high speed as described above, there is no need to increase the vibration frequency of the mold 7, and the desired powder slag can flow between the mold inner surface and the solidification shelf 4. Although a method of vibrating the mold 6 is desired that can apply a desired compressive force to the solidification shelf within the mold 66-, such a method has not been proposed at present.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、鋳片を高速度で引き抜く際に、鋳型
の振動数を大きくする必要がなく、しかも、鋳型内の凝
固シェルに所望の圧縮力を付与することができる鋳型の
振動方法を提供することにある。
The purpose of this invention is to provide a mold vibration method that does not require increasing the vibration frequency of the mold when a slab is pulled out at high speed, and that can apply a desired compressive force to the solidified shell within the mold. It is about providing.

〔発明の概要〕[Summary of the invention]

この発明は、鋼を連続鋳造する際の鋳型の振動方法にお
いて、前記鋳型を、 z=、Σ1Zpsin2πf、t ・・4A)で表わさ
れる非正弦波形で、下記条件を満足するように上下方向
に連続的に振動させ、 −・−一1〉0 ・・・(B) ■−λ Vc ; 但し、上記(A)および(B)式において、t:時
間、 f:前記非正弦波形の振動数 7− (サイクル/m]n)、 a:前記非正弦波形の振幅(−、m )、λ:前記非正
弦波形の波形歪 (0くλ〈])、 Vo:鋳片引抜き速度(、、、/mjn)、前記波形歪
λは、下式、 で表わされ、 但し、」=記(C)式において、 tNon−sl。 :lサイクルにおける前記非正弦波
形の変位が最大 とがる時間、 ’bsin :1ザイクルにおける正弦波形(Z = 
a sj、n2rft )の変位が最大となる時間、 かくして、鉄片を高速度で前記鋳型の下部から引き抜く
ことを可kBとすることに特徴を有する。
This invention provides a mold vibration method for continuous casting of steel, in which the mold is vibrated continuously in the vertical direction with a non-sinusoidal waveform represented by z=,Σ1Zpsin2πf,t...4A) so as to satisfy the following conditions. -・-1〉0...(B) ■-λ Vc; However, in the above formulas (A) and (B), t: time, f: frequency 7 of the non-sinusoidal waveform. - (cycle/m]n), a: amplitude of the non-sinusoidal waveform (-, m), λ: waveform distortion of the non-sinusoidal waveform (0×λ〈]), Vo: slab drawing speed (,,, /mjn), the waveform distortion λ is expressed by the following formula, where, in formula (C), tNon−sl. : Time at which the displacement of the non-sinusoidal waveform in 1 cycle reaches its maximum point, 'bsin : Sine waveform in 1 cycle (Z =
The time when the displacement of a sj, n2rft ) reaches its maximum is thus characterized in that it is possible to pull out the iron piece from the lower part of the mold at a high speed in kB.

〔発明の構成〕[Structure of the invention]

本願発明者等は、上述のよう′f!、観点から、鋳片 
8− を高速度で引き抜く際に、鋳型の振動数を大きくする必
要がなく、しかも、鋳型内の凝固シェルに所望の圧縮力
を付与することができる鋳型の振動方法を得べく種々研
究を重ねた。この結果、鋳型の振動波形を従来のように
正弦波形とするかわりに、鋳型の上昇速度を遅く、下降
速度を速くできるような非正弦波形とすれば良いといっ
た知見を得た。
As stated above, the inventors of the present application 'f! , from the perspective of slab
8- We have conducted various research in order to find a mold vibration method that does not require increasing the vibration frequency of the mold and can apply the desired compressive force to the solidified shell within the mold when drawing the mold at high speed. Ta. As a result, instead of making the vibration waveform of the mold a sinusoidal waveform as in the past, it was found that it is better to use a non-sinusoidal waveform that slows down the mold's rising speed and increases its descending speed.

この発明は、上述した知見に基いてなされたものである
。以下、この発明の詳細な説明する。
This invention was made based on the above-mentioned knowledge. The present invention will be explained in detail below.

先ず、第1図に示されるように、鋳型の振動の1サイク
ル内で最大変位をとる時間が、正弦波形Aと比較してど
れだけずれているかを表わす値を、下式で表わされる波
形歪率λと定義する。
First, as shown in Figure 1, we calculate the waveform distortion expressed by the following formula as a value representing how much the time when the mold takes its maximum displacement within one cycle of vibration deviates from the sine waveform A. Define the rate λ.

但し、jNon−sin :非正弦波形(第1図中B)
の場合の前記時間、 tsin :正弦波形の場合の前記 =9一 時間、 λ :0〈λく1゜ 前記正弦波形Aは、Z = asin2πft (但し
、a:振幅(鰭、[)、f:振動数(サイクル/m1n
)、 t:時間(sec ) )で表わされ、前記非正
弦波形Bは、2−Σα4 sin 2πr41(但し、
aバ振幅(、、)、f:L=1 振動数(サイクル/n11n)、t:時間(sec )
 )で表わされる。
However, jNon-sin: non-sinusoidal waveform (B in Figure 1)
The above time in the case of tsin: the above =91 time in case of a sine waveform, λ: 0〈λ×1゜The above sine waveform A is Z = asin2πft (however, a: amplitude (fin, [), f: Frequency (cycle/m1n
), t: time (sec)), and the non-sinusoidal waveform B is expressed as 2-Σα4 sin 2πr41 (however,
a amplitude (,,), f: L=1 frequency (cycle/n11n), t: time (sec)
).

振動波形が非正弦波形となるように鋳型を上下方向に振
動させた場合の、鋳型の平均上昇速度をVup s n
型の平均下降速度を’i’down とすると、近似的
に次式が成り立つ。
When the mold is vibrated vertically so that the vibration waveform becomes a non-sinusoidal waveform, the average rising speed of the mold is Vup s n
If the average descending speed of the mold is 'i'down, then the following equation holds approximately.

(1+λ) Vup −(]−λ) ”down ’・
(3)第1図に示されるように、正弦波形Aおよび非正
弦波形Bの振動数と振幅とがそれぞれ同じであるとする
と、最大変位は両者同じ位置になることから、 lO− Vup X jean−si。=a=44)V s 1
 nX tB ln −α ―−(5)が成り立ち、 Vup X tNon−sin = Vsin X j
sjn ’・(6)となる。
(1+λ) Vup −(]−λ) “down '・
(3) As shown in Figure 1, if the frequency and amplitude of sinusoidal waveform A and non-sinusoidal waveform B are the same, the maximum displacement will be at the same position for both, so lO- Vup X jean -si. =a=44)V s 1
nX tB ln −α --(5) holds, and Vup X tNon-sin = Vsin X j
sjn'·(6).

従って、(1)および(6)式から、 Vup×(1+λ) −V 、、n=−(’i’)が成
り立ち、(3)および(7)式から、前記波形歪率λの
非正弦波形となるように鋳型を振動させた場合の鋳型の
平均上昇速度upおよび平均下降速度Vdown は、
それぞれ次式のようになる。
Therefore, from equations (1) and (6), Vup×(1+λ) −V , n=−('i') holds, and from equations (3) and (7), the non-sine waveform distortion factor λ When the mold is vibrated in a waveform, the average rising speed up and average falling speed Vdown of the mold are:
The respective formulas are as follows.

但し、f:鋳型の振動数(サイクル:/m1n)、a:
鋳型の振幅 (+I+3)。
However, f: frequency of vibration of the mold (cycle: /m1n), a:
Mold amplitude (+I+3).

非振動波形となるように鋳型を振動させたときのネガテ
ィブストリップの速度比率、即ち、鋳型下降時において
、鋳型の平均下降速度Vdown が鋳片引抜き速度V
cより速い速度と鋳片引抜き速度との比率NsRは、次
式のように表わせる。
The speed ratio of the negative strip when the mold is vibrated so as to have a non-vibration waveform, that is, when the mold is lowered, the average lowering speed of the mold Vdown is the slab withdrawal speed V
The ratio NsR between the speed faster than c and the slab drawing speed can be expressed as follows.

V’c ・・・(10) 従って、(9)および(10)式から、■−λ Vc が成り立つ。V'c...(10) Therefore, from equations (9) and (10), ■−λ Vc holds true.

本願発明者等は、前記NSRを種々変えて、即ち、鋳型
の振動条件を種々変えて鋳造を行い、鋳型の電歇を測定
した。この結果、NSRが正になると、即ち、 になると、鋳型内の凝固シェルに圧縮力が作用すること
かわかった。
The inventors of the present invention conducted castings by varying the NSR, that is, by varying the vibration conditions of the mold, and measured the electrical discharge of the mold. As a result, it was found that when NSR becomes positive, that is, when it becomes , compressive force acts on the solidified shell in the mold.

例えば、第2図(A)に、本発明法に従って、振動数f
 = 1.20 cpm 、振幅a−±3 Wa、ネガ
ティブストリップの速度比率λ−o、5.鋳片引抜き速
度vc” 1 B 、 OOyg/ ml、n 、およ
び、ネガティブストリップの速度比率NSR= 0.6
の条件で鋳造した場合の、鋳型重量の変動の結果を示し
、同(B)図に、前記λを0、前記NSRを−0,2と
した以外は、(A)図の場合と同一条件で鋳造した場合
の、鋳型重量の変動の結果を示す。
For example, in FIG. 2(A), according to the method of the present invention, the frequency f
= 1.20 cpm, amplitude a-±3 Wa, velocity ratio of negative strip λ-o, 5. Slab drawing speed vc”1B, OOyg/ml, n, and negative strip speed ratio NSR=0.6
Figure (B) shows the results of mold weight variation when casting under the conditions of (A), except that λ was set to 0 and NSR was set to -0, 2. This shows the results of mold weight variations when casting with .

第2図(A) 、 (B)から明らか斤ように、本発明
法(A)によれば、従来法(B)と異なり鋳型内の凝固
シェルに所望の圧縮力を付与することができることがわ
か、る 。
As is clear from FIGS. 2(A) and 2(B), according to the method (A) of the present invention, unlike the conventional method (B), it is possible to apply a desired compressive force to the solidified shell in the mold. Recognize .

また、(12)式において、右辺を0.2、aを10猪
、λを0.2、VCを1800yB/ min とした
場合のfは52(サイクル/min )となる。一方、
λを0、即ち、正弦波形とし、他は同一条件とした場合
のfは43(サイクル/m1n)となる。このことから
、本発明法によれば、同一条件とした場合、鋳型を=1
3− 正弦波形で振動させる場合に比べて鋳型の振動数fを小
さくすることができる。
Further, in equation (12), f is 52 (cycles/min) when the right side is 0.2, a is 10 boars, λ is 0.2, and VC is 1800 yB/min. on the other hand,
When λ is 0, that is, a sine waveform, and other conditions are the same, f is 43 (cycles/m1n). From this, according to the method of the present invention, under the same conditions, the mold is =1
3- The frequency f of the mold can be lowered compared to the case where the mold is vibrated in a sinusoidal waveform.

次に、本発明法と従来法とにより鋳、造した場合の、前
記NSRとブレークアウトの発生頻度との関係を調べた
。この結果を第3図に示す。
Next, the relationship between the NSR and the frequency of breakout occurrence was investigated when casting and producing by the method of the present invention and the conventional method. The results are shown in FIG.

第3図から明らかなように、本発明法により鋳型を振動
させながら鋳造した場合には、従来法に比べてブレーク
アウトの発生頻度が大幅に少なくなることがわかる。ま
た、前記λを大きくする程ブレークアウトの発生頻度が
少なくなることもわかる。
As is clear from FIG. 3, when casting is performed while the mold is vibrated according to the method of the present invention, the frequency of occurrence of breakouts is significantly reduced compared to the conventional method. It can also be seen that as the value of λ increases, the frequency of breakout occurrence decreases.

更に、本発明法と従来法とにより鋳造した場合の、ネガ
ティブストリップ時間TN、鴨’(第1図参照)ト、オ
シレーションマークの深さとの関係を調べた。この結果
を第4図に示す。
Furthermore, the relationship between the negative strip time TN, the oscillation mark depth (see FIG. 1), and the depth of the oscillation mark was investigated when casting by the method of the present invention and the conventional method. The results are shown in FIG.

第4図から明らかなように、本発明法によれば、従来法
に比べてオシレーションマークの深さを浅くすることが
できる。即ち、本発明によれば、表面性状の優れた鋳片
を製造することができる。
As is clear from FIG. 4, according to the method of the present invention, the depth of the oscillation mark can be made shallower than in the conventional method. That is, according to the present invention, a slab with excellent surface properties can be manufactured.

〔発明の効果〕〔Effect of the invention〕

=14− この発明によれば、鋳片を高速度で引き抜いてもブレー
クアウトが発生しにくく、しかも1表面性状が優れた鋳
片を製造することができる。
=14- According to the present invention, it is possible to produce a slab that is less likely to break out even when the slab is drawn at high speed and has excellent surface properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明法および従来法による鋳型の振動波形
を示すグラフ、第2図(A)は、本発明法により鋳型を
振動させた場合の鋳型の重量の変動を示すグラフ、同(
B)図は、従来法により鋳型を振動させた場合の鋳型の
重量の変動を示すグラフ、第3図は、NR8とブレーク
アウト発生頻度との関係を示すグラフ、第4図は、ネガ
ティブストリップ時間とオシレーションマークの深さと
の関係を示すグラフ、第5図は、連続鋳造法の概略を示
す断面図、第6図は、凝固シェルの破断状態を示す断面
図である。図面において、 ]・・・取鍋 2・・・溶鋼 λ 5パ・エアーシールパイ 4・・・タンディッシュ
プ 5・・・浸漬ノズル 6・・・鋳型 7・・・鋳片 74・・・凝固シェル 8・・・ガイドローラ 9 ・ピンチロール]0・・・
パウダースラグ 出願人 日本幀管株式会社 代理人 潮 谷 奈津夫(他2名) 第2図 (A) 曇 5R (B) 晃4図
FIG. 1 is a graph showing vibration waveforms of molds according to the method of the present invention and the conventional method. FIG.
B) Figure is a graph showing the variation in weight of the mold when the mold is vibrated by the conventional method. Figure 3 is a graph showing the relationship between NR8 and breakout frequency. Figure 4 is the graph showing the relationship between NR8 and breakout frequency. Figure 4 is the negative strip time. FIG. 5 is a cross-sectional view schematically showing the continuous casting method, and FIG. 6 is a cross-sectional view showing the broken state of the solidified shell. In the drawings, ]... Ladle 2... Molten steel λ 5 Pa air seal pie 4... Tundish dip 5... Immersion nozzle 6... Mold 7... Slab 74... Solidification Shell 8...Guide roller 9/Pinch roll] 0...
Powder slag applicant Nippon Kukkan Co., Ltd. agent Natsuo Shioya (and 2 others) Figure 2 (A) Cloud 5R (B) Akira 4 Figure

Claims (1)

【特許請求の範囲】 鋼を連続鋳造する際の鋳型の振動方法において、前記@
型を、 z=、ΣaLsin2πfz t −(A)ん=1 で表わされる非正弦波形で、下記条件を満足するように
上下方向に連続的に振動させ、 4fcL] ” −1)O・・・(B) 1−λ Vc 但し、上記(A)および(B)式において。 t:時間、 f:前記非正弦波形の振動数 (サイクル/ min )、 一1’− a:前記非正弦波形の振幅(−、m )、λ:前記非正
弦波形の波形歪 (0〈λ<])、 ■c:鋳片引抜き速度(朋/mi’n )、前記波形歪
λは、下式、 sin で表わされ、 但し、上記(C)式において、 jean−sjn ’、 ]サイクルにおける前記非正
弦波形の変位が最大 となる時間、 jsin : 1ザイクルにおける正弦波形(Z = 
as1n2πft ) の変位が最大となる時間、 かくして、鋳片を高速度で前記鋳型の下部から引き抜く
ことを可能とすることを特徴とする、鋼の連続鋳造用鋳
型の振動方法。
[Claims] In a method of vibrating a mold during continuous casting of steel, the @
The mold is vibrated continuously in the vertical direction with a non-sinusoidal waveform expressed by z=,ΣaLsin2πfzt-(A)n=1, so as to satisfy the following conditions, 4fcL] ” -1)O...( B) 1-λ Vc However, in the above formulas (A) and (B): t: time, f: frequency (cycles/min) of the non-sinusoidal waveform, -1'-a: amplitude of the non-sinusoidal waveform (-, m), λ: Waveform distortion of the non-sinusoidal waveform (0<λ<]), c: Slab drawing speed (to/mi'n), the waveform distortion λ is expressed by the following formula, sin However, in the above equation (C), jean-sjn', ] the time at which the displacement of the non-sinusoidal waveform in a cycle is maximum, jsin: the sine waveform in one cycle (Z =
A method for vibrating a mold for continuous casting of steel, characterized in that the time when the displacement of as1n2πft) is maximum.
JP11541984A 1984-06-07 1984-06-07 Vibrating method of mold for continuous casting of steel Granted JPS60261655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11541984A JPS60261655A (en) 1984-06-07 1984-06-07 Vibrating method of mold for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11541984A JPS60261655A (en) 1984-06-07 1984-06-07 Vibrating method of mold for continuous casting of steel

Publications (2)

Publication Number Publication Date
JPS60261655A true JPS60261655A (en) 1985-12-24
JPH0243574B2 JPH0243574B2 (en) 1990-09-28

Family

ID=14662102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11541984A Granted JPS60261655A (en) 1984-06-07 1984-06-07 Vibrating method of mold for continuous casting of steel

Country Status (1)

Country Link
JP (1) JPS60261655A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131628A (en) * 2008-12-04 2010-06-17 Jfe Steel Corp Method for vibrating mold for continuous casting
CN102554152A (en) * 2011-12-30 2012-07-11 新兴铸管股份有限公司 Non-sinusoidal oscillation method for mold and hydraulic system for same
CN102847894A (en) * 2012-09-11 2013-01-02 中冶南方工程技术有限公司 Waveform adjustable non-sinusoidal vibration method of continuous casting crystallizer
CN103600043A (en) * 2013-11-27 2014-02-26 东北大学 Continuous-casting crystallizer vibration simulation test unit and non-sine vibration control method thereof
CN106311995A (en) * 2016-11-09 2017-01-11 东北大学 Non-sinusoidal vibration method of continuous casting mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011932A (en) * 1973-06-06 1975-02-06
JPS5647244A (en) * 1979-09-25 1981-04-28 Nippon Kokan Kk <Nkk> Continuous casting method
JPS5747558A (en) * 1980-09-04 1982-03-18 Furukawa Electric Co Ltd:The Vertical type continuous casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011932A (en) * 1973-06-06 1975-02-06
JPS5647244A (en) * 1979-09-25 1981-04-28 Nippon Kokan Kk <Nkk> Continuous casting method
JPS5747558A (en) * 1980-09-04 1982-03-18 Furukawa Electric Co Ltd:The Vertical type continuous casting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131628A (en) * 2008-12-04 2010-06-17 Jfe Steel Corp Method for vibrating mold for continuous casting
CN102554152A (en) * 2011-12-30 2012-07-11 新兴铸管股份有限公司 Non-sinusoidal oscillation method for mold and hydraulic system for same
CN102847894A (en) * 2012-09-11 2013-01-02 中冶南方工程技术有限公司 Waveform adjustable non-sinusoidal vibration method of continuous casting crystallizer
CN102847894B (en) * 2012-09-11 2014-06-25 中冶南方工程技术有限公司 Waveform adjustable non-sinusoidal vibration method of continuous casting crystallizer
CN103600043A (en) * 2013-11-27 2014-02-26 东北大学 Continuous-casting crystallizer vibration simulation test unit and non-sine vibration control method thereof
CN106311995A (en) * 2016-11-09 2017-01-11 东北大学 Non-sinusoidal vibration method of continuous casting mold

Also Published As

Publication number Publication date
JPH0243574B2 (en) 1990-09-28

Similar Documents

Publication Publication Date Title
JPS60261655A (en) Vibrating method of mold for continuous casting of steel
JPH02290656A (en) Method for oscillating mold for vertical type continuous casting
JPS6123559A (en) Oscillating method of mold for continuous casting of steel
JPH0243575B2 (en)
JP3651447B2 (en) Operation method of continuous casting machine
JPH0479744B2 (en)
JPS61162256A (en) Improvement of surface characteristic of continuous casting steel ingot
JPH04178240A (en) Continuous casting method for stainless steel
KR100364131B1 (en) Method for oscillating mold of continuous caster
JPH08187562A (en) Method for continuously casting steel
JPS5853354A (en) Continuous casting method for steel
JP2002239701A (en) Continuous casting method
JPS61206550A (en) Continuous casting method for steel
JPS60127051A (en) Continuous casting method
JPH04319056A (en) Method for continuously casting steel cast slab
JPS59110451A (en) Continuous casting device of steel
JPH02197359A (en) Continuous casting method
JPH04172153A (en) Method and apparatus for continuous casting
JPS5855153A (en) Continuous casting method for steel
JP2002205147A (en) Method for continuously casting steel
JPS649104B2 (en)
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JPS606248A (en) Oscillating method of continuous casting mold
EP0342020A2 (en) Method and apparatus for continuous strip casting
JP3228242B2 (en) Continuous casting equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term