JPS61162256A - Improvement of surface characteristic of continuous casting steel ingot - Google Patents

Improvement of surface characteristic of continuous casting steel ingot

Info

Publication number
JPS61162256A
JPS61162256A JP41485A JP41485A JPS61162256A JP S61162256 A JPS61162256 A JP S61162256A JP 41485 A JP41485 A JP 41485A JP 41485 A JP41485 A JP 41485A JP S61162256 A JPS61162256 A JP S61162256A
Authority
JP
Japan
Prior art keywords
mold
slab
speed
shell
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41485A
Other languages
Japanese (ja)
Other versions
JPH0356824B2 (en
Inventor
Haruo Miyano
宮野 治夫
Hideaki Mizukami
秀昭 水上
Shigetaka Uchida
内田 繁孝
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP41485A priority Critical patent/JPS61162256A/en
Publication of JPS61162256A publication Critical patent/JPS61162256A/en
Publication of JPH0356824B2 publication Critical patent/JPH0356824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the cracking of an ingot and the rupture of a shell in the stage of oscillating vertically a casting mold at a specified pitch and drawing the ingot by oscillating the mold by a nonsinusoidal waveform. CONSTITUTION:The casting mold is so oscillated vertically at the specified speed as to form the nonsinusoidal waveform in the stage of casting continuously a carbon steel, etc. having about 0.08-0.16wt.% carbon content. More specifically, the oscillating speed Vm of the mold is made higher than the drawing speed Vc of the mold to shorten the negative strip time by oscillating the mold in the nonsinusoidal waveform in which the mold is quickly lowered after rising. The relative speed difference (Vm-Vc) between the oscillating speed Vm of the mold and the drawing speed Vc of the mold is thereby decreased, by which the frictional resistance between the mold and the shell is decreased. The casting with high efficiency is thus made possible without the cracking of the ingot and the rupture of the shell and without dropping the casting speed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、炭素含有量が0.08〜0.16 wt、
%の炭素鋼またはクロム含有量が17 wt’、 %の
ステンレス鋼(SUS  430)を連続鋳造するに当
り、鋳片に横割れ等の表面疵や、鋳型内におけるシェル
の破断に基づくブレークアウト等が発生せず、しかも、
鋳造速度を落すことなく高能率で鋳造することができる
、連続鋳造鋳片の表面性状改善方法に関するものである
[Detailed Description of the Invention] [Technical Field of the Invention] This invention provides carbon content of 0.08 to 0.16 wt,
% carbon steel or stainless steel (SUS 430) with a chromium content of 17 wt'%, surface defects such as transverse cracks on the slab or breakouts due to shell breakage in the mold occur. does not occur, and
The present invention relates to a method for improving the surface properties of continuously cast slabs that can be cast with high efficiency without reducing casting speed.

〔従来技術とその問題点〕[Prior art and its problems]

炭素含有量が0.08〜0.16 wt、 % の炭素
鋼を連続鋳造するに肖り、その凝固過程における149
0℃付近の温度の鋳片に、L+δ→γ(但し、L:溶融
金属、δ:フエライト、γニオーステナイト)の包晶反
応が認められる。
This corresponds to continuous casting of carbon steel with a carbon content of 0.08 to 0.16 wt%, and 149% in the solidification process.
A peritectic reaction of L+δ→γ (L: molten metal, δ: ferrite, γ niostenite) is observed in the slab at a temperature around 0°C.

上述の反応時に、鋳片が収縮して急激にその体積が変化
するので、第10図に示すように凝固シェルの形状が不
均一になり、鋳型1とシェル2との間に空隙3が生ずる
。このような空隙3が生じた部分におけるシェル2の抜
熱は小と々るので、凝固が遅れる。従って、鋳型1内に
おけるシェル2の厚さが不均一となる結果、鋳型1とシ
ェル2との間で発生する摩擦抵抗により、シェル2の薄
い部分において、オシレーションマークを起点とする割
れが発生しやすくなる。第11図に、上記のようにして
鋳片4に生じた割れの形状を示す。
During the above reaction, the slab shrinks and its volume changes rapidly, so the shape of the solidified shell becomes uneven as shown in Figure 10, and a gap 3 is created between the mold 1 and the shell 2. . Since the heat removed from the shell 2 in the area where such voids 3 are formed is small, solidification is delayed. Therefore, as a result of the uneven thickness of the shell 2 in the mold 1, the frictional resistance generated between the mold 1 and the shell 2 causes cracks starting from the oscillation marks in the thin part of the shell 2. It becomes easier. FIG. 11 shows the shape of the crack that occurred in the slab 4 as described above.

同図において、5は鋳片4のコーナ一部に生ずるかぎ状
の割れ、6は鋳片4のコーナ一部にその厚さ方向に生ず
る割れ、7は鋳片のコーナ一部にその幅方向に生ずる割
れである。
In the figure, 5 is a hook-shaped crack that occurs in a part of the corner of the slab 4, 6 is a crack that occurs in a part of the corner of the slab 4 in the thickness direction, and 7 is a crack that occurs in a part of the corner of the slab in the width direction. This is a crack that occurs in

上述のように包晶反応によって鋳片4に生ずる割れにつ
いて、次のようなことが知られている。
The following is known about the cracks that occur in the slab 4 due to the peritectic reaction as described above.

(1)  割れの発生と、2次冷却の条件即ち冷却の強
弱とは関係がない。
(1) There is no relationship between the occurrence of cracks and the conditions of secondary cooling, that is, the strength of cooling.

(2)鋳型1の短辺は、第12図に示すようにその上端
から下端に向けて内側に傾斜しているが、このテーパT
の寸法を小にすると、短辺の内面と、短辺側のシェルと
の摩擦抵抗が減少する結果、割れが低減する。
(2) The short sides of the mold 1 are inclined inward from the upper end to the lower end as shown in FIG.
When the dimension of is made small, the frictional resistance between the inner surface of the short side and the shell on the short side is reduced, and as a result, cracking is reduced.

(3)鋳片に発生した割れの中には、鋳型内の溶鋼の表
面上に添加されたパウダーが詰っていることが認められ
るから、上記割れは鋳型1内で発生する。
(3) The cracks generated in the slab are found to be filled with powder added to the surface of the molten steel in the mold, so the cracks occur within the mold 1.

このようなことから、上記鋳片の割れを防止するだめに
は、鋳片の引抜きを0.9V分以下の低速で行なう方法
しか彦く、生産能率の低下が避けられない問題があった
For this reason, the only way to prevent cracking of the slab is to draw the slab at a low speed of 0.9 V or less, which inevitably leads to a decrease in production efficiency.

またクロム含有量が17 wt、係以下のステンレス鋼
(SUS 430)は、その高温強度お」:び絞り値が
他のオーステナイト系ステンレス鋼に比べ、融点近傍に
おいて低いため、鋳型とシェルとの間の摩擦抵抗により
シェルが破断して、ブレークアウトが発生しやすい。第
13図は、SUS 430(融点1425〜1510℃
)の引張シ強さと絞り値を示すグラフである〇 上述のようなステンレス鋼(SUS 430)(Dシェ
ル破断を防止するためには、鋳片の引抜きを0.8rr
Xfj以下の低速で行ない、極カシニルの厚さを確保し
つつ鋳造するととが必要で、このため生産能率の低下が
避けられない問題があった。
In addition, stainless steel (SUS 430) with a chromium content of 17 wt or less has a low high temperature strength, reduction of area, and reduction value near the melting point compared to other austenitic stainless steels, so there is a The shell is likely to break due to the frictional resistance, resulting in a breakout. Figure 13 shows SUS 430 (melting point 1425-1510°C).
) is a graph showing the tensile strength and reduction of area of stainless steel (SUS 430) as described above (D To prevent shell rupture, draw the slab at 0.8rr
It is necessary to perform the casting at a low speed of Xfj or lower while ensuring the thickness of the minimum thickness, which causes the problem of an unavoidable decrease in production efficiency.

〔発明の目的〕[Purpose of the invention]

従って、この発明の目的は、炭素含有量が0.08〜0
.16 wt、 % の炭素鋼またはクロム含有量が1
7wt、%のステンレス鋼(SUS 430)を連続鋳
造するに当)、鋳片のコーナ一部付近に包晶反応による
割れ、および、鋳型とシェルとの間の摩擦抵抗によるシ
ェルの破断が発生せず、しかも、鋳造速度を落すことな
く高能率で鋳造することができる、連続鋳造鋳片の表面
性状改善方法を提供することにある。
Therefore, the object of this invention is to reduce the carbon content from 0.08 to 0.
.. 16 wt, % carbon steel or chromium content 1
During continuous casting of 7 wt. First, it is an object of the present invention to provide a method for improving the surface properties of continuously cast slabs, which allows for highly efficient casting without reducing the casting speed.

〔発明の概要〕[Summary of the invention]

この発明は、鋳型を上下方向に一定のピッチで振動させ
ながら、前記鋳型から鋳片を所定速度で引抜くことによ
り連続鋳造鋳片を製造するに当り、前記鋳型をゆっくり
と上昇させた後、急速に下降させ、且つ、前記鋳型の振
動速度が前記鋳片の引抜速度よしも早いネガティブスト
リップ時間を短くすることからなる非正弦波形によって
、前記鋳型を振動させ、かくして前記鋳片の表面性状を
改善し、前記鋳片に生ずる横割れおよびプレークアウト
を低減せしめることに特徴を有するものである。
In this invention, when producing a continuously cast slab by pulling the slab from the mold at a predetermined speed while vibrating the mold vertically at a constant pitch, after the mold is slowly raised, The mold is vibrated by a non-sinusoidal waveform consisting of a rapid lowering and a shortening of the negative strip time as the vibration speed of the mold is faster than the withdrawal speed of the slab, thus changing the surface texture of the slab. The present invention is characterized in that it reduces horizontal cracks and flake-outs that occur in the slab.

〔発明の構成〕[Structure of the invention]

次に、この発明を、図面を参照しながら説明する。 Next, the present invention will be explained with reference to the drawings.

第1図はとの発明の方法の一実施態様を示す鋳型の振動
波形を示すグラフ、第2図は同じく鋳型の振動速度を示
すグラフ、第3図は従来の鋳型の振動波形を示すグラフ
、第4図は同じく鋳型の振動速度を示すグラフで、ある
。竪型連続鋳造機による鋼の連続鋳造法は、タンディツ
シュ内に収容されている溶鋼を、水冷式竪型鋳型内に供
給し、鋳型内で凝固シェルを形成させ、このようにして
周囲にシェルが形成された未凝固鋳片を、鋳型から連続
的に引抜くことからなるが、鋳型内で健全なシェルを形
成させるために、通常、鋳型を一定ピッチで上下方向に
振動させ、且つ、鋳型内の溶鋼の表面上にパウダーを添
加している。
Fig. 1 is a graph showing the vibration waveform of a mold showing an embodiment of the method of the invention, Fig. 2 is a graph showing the vibration speed of the mold, and Fig. 3 is a graph showing the vibration waveform of a conventional mold. FIG. 4 is a graph similarly showing the vibration speed of the mold. Continuous casting of steel using a vertical continuous casting machine involves feeding molten steel contained in a tundish into a water-cooled vertical mold, forming a solidified shell in the mold, and in this way, the shell is formed around the tundish. The formed unsolidified slab is continuously pulled out from the mold, but in order to form a healthy shell within the mold, the mold is usually vibrated vertically at a constant pitch and the inside of the mold is Powder is added onto the surface of molten steel.

上述した鋳型の振動は、従来第3図に示すような正弦波
形によって行なわれていた。第4図は従来の正弦波形の
際の鋳型の振動速度(Vni、)= を示すグラフであ
って、Vcは鋳片の弘抜速度を、Vm−V cは鋳型の
振動速度(上昇時の最大速度)と鋳片の引抜速度との相
対速度差を示す。この相対速度差は、鋳型と鋳片のシェ
ルとの間に摩擦抵抗が存在する場合、鋳型がシェルに及
はす引張り応力の最大値を意味する。
The vibration of the mold described above has conventionally been performed using a sine waveform as shown in FIG. Figure 4 is a graph showing the vibration velocity of the mold (Vni, )= in the case of a conventional sine waveform, where Vc is the blowing velocity of the slab, and Vm-Vc is the vibration velocity of the mold (when rising). It shows the relative speed difference between the maximum speed) and the slab drawing speed. This relative velocity difference represents the maximum tensile stress that the mold will exert on the shell if there is a frictional resistance between the mold and the shell of the slab.

との発明の方法においては、鋳型を、第1図に示すよう
な非正弦波形となるように一定ピッチで上下方向に振動
させる。即ち第2図に示すように、鋳型をゆっくりと上
昇させた後、急速に下降させる非正弦波形で振動させ、
鋳型の振動速度(、Vm、)が鋳片の引抜速度(Vc)
より速い時間即ちネガティブストリップ時間を、第4図
に示す従来の正弦波形の場合に比べて短くする。
In the method of the invention, the mold is vibrated vertically at a constant pitch so as to form a non-sinusoidal waveform as shown in FIG. That is, as shown in Fig. 2, the mold is vibrated with a non-sinusoidal waveform that slowly raises it and then quickly lowers it.
The vibration speed of the mold (,Vm,) is the drawing speed of the slab (Vc)
The faster time or negative strip time is reduced compared to the conventional sinusoidal waveform shown in FIG.

この結果、鋳型の振動速度と鋳片の引抜速度との相対速
度差(Vm −V c )は小さくなり、鋳型とシェル
との間の摩擦抵抗を減少させることができる。
As a result, the relative speed difference (Vm - V c ) between the vibration speed of the mold and the drawing speed of the slab becomes small, and the frictional resistance between the mold and the shell can be reduced.

第5図は、鋳型の振動波形の歪率と摩擦力指数との関係
を示すグラフである。第5図において振動波形の歪率(
α)は、同図中に示した正弦波形に対する非正弦波形の
偏倚量B/A X 100(%)を示す。
FIG. 5 is a graph showing the relationship between the distortion rate of the vibration waveform of the mold and the frictional force index. In Figure 5, the distortion factor of the vibration waveform (
α) indicates the amount of deviation B/A x 100 (%) of the non-sinusoidal waveform with respect to the sine waveform shown in the figure.

まだ摩擦力指数は、(Vm−V c ) / Qを示す
。ここで、Qはスラブl m2当わのパウダーの流れ込
み量(Yn・)であって、このパウダー流れ込み量は、
ポジティブストリップ時間(鋳型の振動速度が鋳片の引
抜速度よりも遅い時間)に比例するq ””atpの関
係から求めた。上式において、qはパウダー流れ込み量
(スラブICrn当り、1サイクルに流れ込むパウダー
の重量グ/ザイクル・m)、tpはポジティブストリッ
プ時間(see)、aidパウダーの溶融特性、鋳型の
振動条件および鋳片引抜速度によって定まる係数である
The frictional force index still shows (Vm-Vc)/Q. Here, Q is the amount of powder flowing in per m2 of slab (Yn・), and this amount of powder flowing in is:
It was determined from the relationship of q""atp, which is proportional to the positive strip time (the time during which the vibration speed of the mold is slower than the drawing speed of the slab). In the above equation, q is the amount of powder flowing in (weight of powder flowing in one cycle per slab ICrn, g/cycle m), tp is the positive strip time (see), the melting characteristics of the aid powder, the vibration conditions of the mold, and the slab. This is a coefficient determined by the drawing speed.

、第5図は、鋳型の振動スト、ローフが8爺、振動数が
120cpm、鋳片引抜速度が1.Q m々rnの場合
の例であって、同図から明らかなように、振動波形の歪
率が0%(正弦波形)の場合に比べ、振動波形の歪率が
犬になるに従って摩擦力指数は減少し、上記歪率が40
係になると、0%の場合に18.5−9.5 比べて摩擦力指数が48.6%(,8,5×1.00)
減少する。
, FIG. 5 shows the vibration stroke of the mold, the loaf is 8 degrees, the vibration frequency is 120 cpm, and the slab drawing speed is 1. This is an example of the case of Q m mrn, and as is clear from the figure, the friction force index increases as the distortion rate of the vibration waveform becomes smaller compared to the case where the distortion rate of the vibration waveform is 0% (sine waveform). decreases, and the above distortion rate is 40
When it comes to friction, the frictional force index is 48.6% (,8,5×1.00) compared to 18.5-9.5 in the case of 0%.
Decrease.

このような摩擦力指数の減少の70〜80係は、鋳型の
振動速度と鋳片の引抜速度との相対速度差(Vm  V
c)  が小さくなったことによるものであり、その2
0〜30係は、鋳型の振動波形を非正弦波形としたこと
によりポジティブストリップ時間(tp)が増加し、パ
ウダーの流れ込み量が増大して、鋳型とシェルとの間の
潤滑が改善されたからである。
The factor of 70 to 80 for such a decrease in the friction force index is the relative speed difference between the vibration speed of the mold and the drawing speed of the slab (Vm
c) This is due to becoming smaller, and part 2
0 to 30 is because the positive strip time (tp) is increased by making the vibration waveform of the mold a non-sinusoidal waveform, the amount of powder flowing in is increased, and the lubrication between the mold and the shell is improved. be.

〔発明の実施例〕 次に、この発明を実施例により説明する。[Embodiments of the invention] Next, the present invention will be explained with reference to examples.

鋳型を、振動ストローク8 tran 、振動数10.
0cpmの条件によって上下方向に振動させながら、炭
素含有量0.08〜0.16 wt、 % の炭素鋼を
連続鋳造し、厚さ25.0+nm、幅1,000mmの
鋳片を製造した。
The mold was subjected to a vibration stroke of 8 tran and a frequency of 10.
Carbon steel having a carbon content of 0.08 to 0.16 wt.% was continuously cast while vibrating in the vertical direction under the condition of 0 cpm to produce a slab with a thickness of 25.0+ nm and a width of 1,000 mm.

第6図は、上記鋳造を下記に示す本発明方法で行なった
場合と従来法で行なった場合の、鋳片に生じた横割れ発
生指数である。
FIG. 6 shows the index of occurrence of transverse cracks in slabs when the above casting was carried out by the method of the present invention shown below and by the conventional method.

本発明方法 鋳片引抜速度(Vc ) : 1.Om 7分鋳型の形
状二弱テーパ 鋳型の振動波形:非正弦波(α−40係)従来例1 鋳片引抜速度(Vc) : 1.Om7分鋳型の形状二
強テーパ 鋳型の振動波形:正弦波 従来例2 鋳片引抜速度(vc ) : 0.8 m 7分鋳型の
形状二強テーパ 鋳型の振動波形:正弦波 従来例3 鋳片引抜速度(Vc ) : 0.8 m7分鋳型の形
状:弱テーパ 鋳型の振動波形:正弦波 上記において、強テーパとは、第12図に示す鋳型1の
上端から下端に向けてのテーパ −BI T(、−、l−×100×T)%が、0.8%/mの場
合であり、弱テーパとは上記Tが0.65%/mの場合
である。
Invention method slab drawing speed (Vc): 1. Om 7 minutes Shape of mold Vibration waveform of slightly tapered mold: Non-sinusoidal wave (α-40 ratio) Conventional example 1 Slab drawing speed (Vc): 1. Shape of 7 minute mold Vibration waveform of double taper mold: Sine wave Conventional example 2 Slab drawing speed (vc): 0.8 m Shape of 7 minute mold Vibration waveform of double taper mold: Sine wave Conventional example 3 Slab Drawing speed (Vc): 0.8 m7 minutes Mold shape: weak taper Mold vibration waveform: sine wave In the above, strong taper refers to the taper from the upper end of mold 1 to the lower end as shown in Fig. 12 -BI This is the case where T(,-,l-×100×T)% is 0.8%/m, and the weak taper is the case where T is 0.65%/m.

第6図から明らかなように、本発明方法の場合は、鋳片
の引抜速度を1.0m/分の高速としても、鋳片の横割
れ発生指数は極めて低く、従来例3の鋳片引抜速度を0
.8m/分とし且つ弱テーパの形状の鋳型を使用した場
合とほぼ同じと外って、従来例3に比べ生産能率を約2
0係向上させることができた。
As is clear from FIG. 6, in the case of the method of the present invention, even when the slab drawing speed is high at 1.0 m/min, the horizontal crack occurrence index of the slab is extremely low, and the Set speed to 0
.. This is almost the same as when using a slightly tapered mold at 8 m/min, and the production efficiency was reduced by about 2 compared to Conventional Example 3.
I was able to improve the 0 ratio.

第7図は、鋳型の振動波形の歪率と鋳片のオシレーショ
ンマークの谷部に生ずる爪の発生頻度との関係を示すグ
ラフである。一般に炭素鋼の鋳片((生ずるオシレーシ
ョンマークには、第8図(a)に示すようなオシレーシ
ョンマークの谷部に爪が生じて偏析線を伴っている場合
と、同図(b)に示すよウナオシレーションマークの谷
部に爪が生じない偏析線のない場合とがある。このよう
外爪は、彎曲型連続鋳造機によって鋳片を鋳造する場合
の鋳片矯正時に、鋳片の上面側において引張り応力を受
け、爪または谷に沿って横割れが生ずる原因となる。
FIG. 7 is a graph showing the relationship between the distortion rate of the vibration waveform of the mold and the frequency of occurrence of claws in the valleys of the oscillation marks of the slab. In general, the oscillation marks that occur in carbon steel slabs (Fig. 8(a), where claws are formed in the valleys of the oscillation marks and are accompanied by segregation lines, and those shown in Fig. 8(b)) As shown in Figure 2, there are cases where there are no segregation lines in which no claws are formed in the valleys of the una oscillation marks.Such external claws are formed during slab straightening when casting slabs using a curved continuous casting machine. Tensile stress is applied on the top side of the plate, causing horizontal cracks to occur along the claws or valleys.

第7図から明らかなように、上述した爪の発生頻度は、
鋳型の振動波形の歪率が0%(正弦波形)の場合は40
係以上であるが、上記歪率が401)の非正弦波形の場
合は約20係になり、爪によって生ずる鋳片の横割れを
大幅に減少させることができだ。
As is clear from Figure 7, the frequency of occurrence of the above-mentioned nails is
40 when the distortion rate of the vibration waveform of the mold is 0% (sine waveform)
However, in the case of a non-sinusoidal waveform with a distortion factor of 401), it becomes about 20 factors, making it possible to significantly reduce transverse cracking of the slab caused by the claws.

次に、鋳型を、振動ストローク8脳、振動数100 c
pmの°条件によって上下方向に振動させながら、Cr
含有量が17wt、% のステンレス鋼(SUS 43
0)を連続鋳造し、厚さ250朋、幅1.500mmの
鋳片を製造した。第9図は、上記鋳造を下記に示す本発
明方法で行なった場合と従来法で行なった場合の、鋳片
に生じたブレークアウト発生指数である。
Next, the mold was shaken with a vibration stroke of 8 strokes and a frequency of 100 c.
While vibrating in the vertical direction depending on the pm ° condition,
Stainless steel (SUS 43) with a content of 17wt,%
0) was continuously cast to produce a slab with a thickness of 250 mm and a width of 1.500 mm. FIG. 9 shows the breakout occurrence index that occurred in slabs when the above casting was performed by the method of the present invention shown below and by the conventional method.

本発明方法 鋳片引抜速度(Vc):017m/分 鋳型の形状:弱テーパ 鋳型の振動波形:非正弦波(α=40%)従来例1 鋳片引抜速度(Vc ) : 0.9 m 7分鋳型の
形状:弱テーパ =11− 鋳型の振動波形:正弦波 従来例2 鋳片引抜速度(Vc ) : 0.7 m7分鋳型の形
状二弱テーパ 鋳型の振動波形:正弦波 第9図から明らかなように、本発明方法によれば、ブレ
ークアウト発生指数は、従来例2の場合に比べて約4分
の1に低減し、安定した鋳造を行なうことができた。こ
のようにブレークアウト発生指数が低減したのは、鋳型
の振動波形を非正弦波としたことにより、前述した摩擦
力指数が40係低減したことによるものと考えられる。
Method of the present invention Slab drawing speed (Vc): 017 m/min Mold shape: Slight taper Mold vibration waveform: Non-sinusoidal wave (α = 40%) Conventional example 1 Slab drawing speed (Vc): 0.9 m 7 Shape of minute mold: Weak taper = 11- Vibration waveform of mold: Sine wave Conventional example 2 Slab drawing speed (Vc): 0.7 m Shape of 7 minute mold Vibration waveform of two-weak taper mold: Sine wave From Figure 9 As is clear, according to the method of the present invention, the breakout occurrence index was reduced to about one quarter of that in Conventional Example 2, and stable casting could be performed. This reduction in the breakout occurrence index is considered to be due to the above-mentioned frictional force index being reduced by a factor of 40 by making the vibration waveform of the mold a non-sinusoidal wave.

〔発明の効果〕〔Effect of the invention〕

以」二述べたように、この発明の方法によれば、炭素含
有量が0.08〜0.16 wt、%の炭素鋼またはク
ロム含有量が17wt、% のステンレス鋼(5US4
30)を連続鋳造するに当如、鋳片の表面性状が改善さ
れて、鋳片に割れやシェルの破断が発生せず、しかも鋳
造速度を落すことなく高能率で鋳造することができる工
業上優れた効果がもたらされる。
As mentioned above, according to the method of the present invention, carbon steel with a carbon content of 0.08 to 0.16 wt.% or stainless steel with a chromium content of 17 wt.% (5US4
30), the surface properties of the slab are improved, no cracks or shell breaks occur in the slab, and it is possible to cast at high efficiency without reducing the casting speed. Excellent effects are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の一実施態様を示す鋳型の振動
波形を示すグラフ、第2図は同じく鋳型の振動速度を示
すグラフ、第3図は従来の鋳型の振動波形を示すグラフ
、第4図は同じく鋳型の振動速度を示すグラフ、第5図
は鋳型の振動波形の歪率と摩擦力指数との関係を示すグ
ラフ、第6図は炭素鋼を本発明方法で連続鋳造したとき
の鋳片に生じた横割れ発生指数を従来法の場合と比較し
て示すグラフ、第7図は鋳型振動波形の歪率と鋳片のオ
シレーションマークの谷部に生ずる爪の発生頻度との関
係を示すグラフ、第8図はオシレーションマークの形状
を示す図、第9図はステンレス鋼を本発明方法で連続鋳
造したときのブレークアウト発生指数を従来法の場合と
比較して示すグラフ、第10図は炭素鋼の連続鋳造時に
鋳型とシェルとの間に生ずる空隙を示す図、第11図は
鋳片に生ずる割れの形状を示す図、第12図は鋳型の形
状を示す図、第13図はステンレス鋼の引張り強さと絞
り値との関係を示すグラフである。 図面において、 1・・・fJa 型、2・・・シェル、3・・空隙、 
     4・鋳片、 5.6.7・・・割れ。
FIG. 1 is a graph showing the vibration waveform of a mold showing an embodiment of the method of the present invention, FIG. 2 is a graph showing the vibration speed of the mold, FIG. 3 is a graph showing the vibration waveform of a conventional mold, and FIG. Figure 4 is a graph showing the vibration speed of the mold, Figure 5 is a graph showing the relationship between the strain rate of the vibration waveform of the mold and the frictional force index, and Figure 6 is a graph showing the relationship between the strain rate of the vibration waveform of the mold and the frictional force index, and Figure 6 is a graph showing the relationship between the strain rate of the vibration waveform of the mold and the frictional force index. A graph showing the index of occurrence of transverse cracks that occur in slabs in comparison with the conventional method. Figure 7 shows the relationship between the strain rate of the mold vibration waveform and the frequency of occurrence of claws that occur in the valleys of the oscillation marks of slabs. FIG. 8 is a graph showing the shape of the oscillation mark. FIG. 9 is a graph showing the breakout occurrence index when stainless steel is continuously cast by the method of the present invention compared to the conventional method. Figure 10 is a diagram showing the gap that occurs between the mold and the shell during continuous casting of carbon steel, Figure 11 is a diagram showing the shape of cracks that occur in the slab, Figure 12 is a diagram showing the shape of the mold, and Figure 13 is a diagram showing the shape of the crack that occurs in the slab. The figure is a graph showing the relationship between the tensile strength and the aperture value of stainless steel. In the drawings, 1... fJa type, 2... shell, 3... void,
4. Slab, 5.6.7...Crack.

Claims (1)

【特許請求の範囲】[Claims] 鋳型を上下方向に一定のピッチで振動させながら、前記
鋳型から鋳片を所定速度で引抜くことにより連続鋳造鋳
片を製造するに当り、前記鋳型をゆつくりと上昇させた
後、急速に下降させ、且つ、前記鋳型の振動速度が前記
鋳片の引抜速度よりも早いネガティブストリップ時間を
短くすることからなる非正弦波形によつて、前記鋳型を
振動させ、かくして前記鋳片の表面性状を改善し、前記
鋳片に生ずる横割れおよびブレークアウトを低減せしめ
ることを特徴とする、連続鋳造鋳片の表面性状改善方法
When producing continuous cast slabs by pulling the slab from the mold at a predetermined speed while vibrating the mold vertically at a constant pitch, the mold is slowly raised and then rapidly lowered. and vibrating the mold with a non-sinusoidal waveform consisting of shortening the negative strip time in which the vibration speed of the mold is faster than the drawing speed of the slab, thus improving the surface quality of the slab. A method for improving the surface properties of continuously cast slabs, the method comprising: reducing transverse cracks and breakouts occurring in the slabs.
JP41485A 1985-01-08 1985-01-08 Improvement of surface characteristic of continuous casting steel ingot Granted JPS61162256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41485A JPS61162256A (en) 1985-01-08 1985-01-08 Improvement of surface characteristic of continuous casting steel ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41485A JPS61162256A (en) 1985-01-08 1985-01-08 Improvement of surface characteristic of continuous casting steel ingot

Publications (2)

Publication Number Publication Date
JPS61162256A true JPS61162256A (en) 1986-07-22
JPH0356824B2 JPH0356824B2 (en) 1991-08-29

Family

ID=11473135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41485A Granted JPS61162256A (en) 1985-01-08 1985-01-08 Improvement of surface characteristic of continuous casting steel ingot

Country Status (1)

Country Link
JP (1) JPS61162256A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224155A (en) * 1988-01-28 1989-09-07 Sumitomo Heavy Ind Ltd Method and apparatus for oscillating mold for continuous casting
JPH04172161A (en) * 1990-11-05 1992-06-19 Nkk Corp Method for continuously casting cast slab having beautiful surface
WO1997007910A1 (en) * 1995-08-25 1997-03-06 Sidmar N.V. Oscillating table, in particular for use in a continuous casting machine
US5823245A (en) * 1992-03-31 1998-10-20 Clecim Strand casting process
CN109807297A (en) * 2019-02-27 2019-05-28 燕山大学 Continuous cast mold non-sinusoidal vibration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583755A (en) * 1981-06-30 1983-01-10 Kawasaki Steel Corp Preventing method for cracking of side surface of continuously cast slab
JPS5838646A (en) * 1981-08-31 1983-03-07 Kawasaki Steel Corp Continuous casting method for slab of middle carbon region steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583755A (en) * 1981-06-30 1983-01-10 Kawasaki Steel Corp Preventing method for cracking of side surface of continuously cast slab
JPS5838646A (en) * 1981-08-31 1983-03-07 Kawasaki Steel Corp Continuous casting method for slab of middle carbon region steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224155A (en) * 1988-01-28 1989-09-07 Sumitomo Heavy Ind Ltd Method and apparatus for oscillating mold for continuous casting
JPH04172161A (en) * 1990-11-05 1992-06-19 Nkk Corp Method for continuously casting cast slab having beautiful surface
US5823245A (en) * 1992-03-31 1998-10-20 Clecim Strand casting process
WO1997007910A1 (en) * 1995-08-25 1997-03-06 Sidmar N.V. Oscillating table, in particular for use in a continuous casting machine
CN109807297A (en) * 2019-02-27 2019-05-28 燕山大学 Continuous cast mold non-sinusoidal vibration method

Also Published As

Publication number Publication date
JPH0356824B2 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
CN105215309A (en) A kind of method that big cross section Properties of Heavy Rail Steel center segregation of casting blank controls
US20050098298A1 (en) Treating molten metals by moving electric arc
AU2002222478A1 (en) Treating molten metals by moving electric arc
CN104001881A (en) Stainless steel producing method based on ultrasonic vibration type crystallizer
JPH07106434B2 (en) Continuous casting method for metal ribbon
JPS61162256A (en) Improvement of surface characteristic of continuous casting steel ingot
CN112743053A (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
JPH026037A (en) Method for continuously casting steel
JPS5847255B2 (en) Steel ingot making method
JPH059188B2 (en)
JP3082834B2 (en) Continuous casting method for round slabs
JPH0531568A (en) Plasma melting/casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JPH04172161A (en) Method for continuously casting cast slab having beautiful surface
JP4330518B2 (en) Continuous casting method
JP3139317B2 (en) Continuous casting mold and continuous casting method using electromagnetic force
JP2024004032A (en) Continuous casting method
JP3329305B2 (en) Continuous casting method of round billet slab
JPH06297107A (en) Continuous casting method
JPH05104208A (en) Plasma melting and casting method
JPS635859A (en) Continuous casting method for high silicon steel
JP2000015413A (en) Method for continuously casting cast slab having large cross section for thick steel plate
JPH038541A (en) Apparatus for continuously casting strip
JPS58187241A (en) Horizontal and continuous casting method of metal
JPH0857585A (en) Production of stainless steel cast slab having little edge seam flaw