JPH0531568A - Plasma melting/casting method - Google Patents
Plasma melting/casting methodInfo
- Publication number
- JPH0531568A JPH0531568A JP3187752A JP18775291A JPH0531568A JP H0531568 A JPH0531568 A JP H0531568A JP 3187752 A JP3187752 A JP 3187752A JP 18775291 A JP18775291 A JP 18775291A JP H0531568 A JPH0531568 A JP H0531568A
- Authority
- JP
- Japan
- Prior art keywords
- ingot
- melting
- chamber
- mold
- casting method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Plasma Technology (AREA)
- Continuous Casting (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種高清浄、高純度が
要求される金属や、溶解時の酸化防止が必要な活性金属
〔チタン(Ti)、ジルコニウム(Zr)、希土類金属およびそ
れらの合金など〕、あるいは、クロム(Cr)、ニオブ(N
b)、モリブデン(Mo)などの高融点金属のプラズマ溶解鋳
造方法に関するものである。FIELD OF THE INVENTION The present invention relates to various metals that require high cleanliness and high purity, active metals that require oxidation prevention during melting (titanium (Ti), zirconium (Zr), rare earth metals and their Alloy, etc.), or chromium (Cr), niobium (N
b) relates to a plasma melting casting method for refractory metals such as molybdenum (Mo).
【0002】[0002]
【従来の技術と発明が解決しようとする課題】上記の金
属、合金などの鋳塊を得るための溶解方法としては、従
来より真空アーク再溶解法(以下VAR法と称する)が
汎用されている。このVAR法は、予め溶解金属からな
る電極を製造し、高真空下(10-2〜10-3torr程度)で電
極と水冷るつぼ内溶湯間にアークを発生させ、アーク熱
により電極を溶解させる方法である。ところがこのVA
R法では、上述したように溶解に先立ち溶解金属からな
る電極を製造する必要があり、また電極の製造をも含め
工程が複雑で鋳塊の生産性が低いという難点があった。2. Description of the Related Art Vacuum arc remelting method (hereinafter referred to as VAR method) has been widely used as a melting method for obtaining ingots of the above metals and alloys. . In this VAR method, an electrode made of a molten metal is manufactured in advance, an arc is generated between the electrode and a molten metal in a water-cooled crucible under high vacuum (about 10 -2 to 10 -3 torr), and the electrode is melted by arc heat. Is the way. However, this VA
In the R method, as described above, it is necessary to manufacture an electrode made of a molten metal prior to melting, and the manufacturing process of the electrode is complicated and the productivity of the ingot is low.
【0003】一方、近年、真空技術の進歩および高エネ
ルギ加工技術の発達に伴いプラズマ溶解方法を利用した
プラズマ溶解鋳造方法が提案され注目されている。この
方法は、不活性ガスをプラズマアーク発生ガスとして用
い、0.01〜 1気圧程度の溶解炉内雰囲気圧下で溶解原料
にプラズマを照射して溶解し、得られた溶融金属を順次
水冷鋳型へ供給して鋳塊を得る方法である。On the other hand, in recent years, with the progress of vacuum technology and the development of high energy processing technology, a plasma melting casting method utilizing a plasma melting method has been proposed and attracted attention. This method uses an inert gas as a plasma arc generation gas, irradiates plasma to the melting raw material under an atmosphere pressure of the melting furnace of about 0.01 to 1 atmosphere to melt, and sequentially supplies the obtained molten metal to a water-cooled mold. Is a method of obtaining an ingot.
【0004】この方法では、鋳型に無底水冷鋳型を用い
ることにより鋳型内で凝固させた鋳塊を順次下方に引抜
く、所謂連続鋳造方式が使用できるので、VAR法に比
べて長尺の鋳塊が製造し易いという特徴があるが、鋳塊
を鋳型から引抜く際に、鋳型と高温の凝固シェルとの間
に摩擦力が発生し、これが原因で、鋳塊表面に欠陥が発
生し易く、後工程の前に鋳塊表面の面削りをしなければ
ならず歩留りの低下を招き易い。また高温凝固シェル部
で亀裂を生じたり、時にはその部分からブレークアウト
を起こし鋳造不能になるなどの問題を起こし兼ねない。In this method, since a bottomless water-cooled mold is used as the mold, the ingot solidified in the mold is sequentially drawn downward, that is, a so-called continuous casting method can be used. Although there is a feature that the ingot is easy to manufacture, when the ingot is pulled out from the mold, a frictional force is generated between the mold and the high temperature solidified shell, which easily causes defects on the ingot surface. However, the surface of the ingot must be chamfered before the subsequent step, and the yield is likely to be reduced. In addition, cracks may occur in the high temperature solidified shell portion, and sometimes breakout may occur from that portion, making casting impossible.
【0005】上記の問題に対して、鋼の連続鋳造では潤
滑用のフラックスを用いるなどの対策が可能であるが、
フラズマ溶解法では、溶解対象となる原料がTiやZrなど
の活性金属、Cr,Nb, Moなどの高融点金属、あるいは超
高清浄度が求められるNi基やCo基合金であるため、溶融
金属と反応する可能性のある潤滑用フラックスを利用す
ることができず、これに代わる対策が必要であった。To solve the above problems, it is possible to use a flux for lubrication in continuous casting of steel.
In the plasma melting method, the raw material to be melted is an active metal such as Ti or Zr, a high melting point metal such as Cr, Nb, Mo, or a Ni-based or Co-based alloy that requires ultra-high cleanliness. It was not possible to use the lubricating flux that could react with, and it was necessary to take alternative measures.
【0006】本発明は、上記の事情に基づいてなされた
ものであり、その目的は、良好な表面品質の活性金属、
高融点金属、あるいは超高清浄度が求められる各種金属
の鋳塊を製造し得ると同時に、ブレークアウトの懸念の
無い鋳造をなし得るプラズマ溶解鋳造法を提供すること
である。The present invention has been made based on the above circumstances, and an object thereof is to provide an active metal having a good surface quality,
It is an object of the present invention to provide a plasma melting casting method capable of producing an ingot of a high melting point metal or various metals required to have an extremely high cleanliness and at the same time capable of performing casting without fear of breakout.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係わるプラズマ溶解鋳造方法は、不活性ガ
ス雰囲気中でプラズマアークを熱源として原料を溶解す
るとともにその溶融金属を無底水冷鋳型内で凝固させ、
凝固した鋳塊を下方に引き抜きながら比較的長尺の鋳塊
を製造するプラズマ溶解鋳造方法において、溶解室と造
塊室との間のガスの流れが無底水冷鋳型の内側で起こり
得るように無底水冷鋳型を配置するとともに、溶解室の
雰囲気圧力(Pm)と造塊室の雰囲気圧力(Pc)との圧力差の
絶対値|Pc−Pm|が、0.05≦|Pc−Pm|<0.5 気圧の範
囲を満たすようにガス圧力を制御するものである。In order to achieve the above object, the plasma melting and casting method according to the present invention melts a raw material using a plasma arc as a heat source in an inert gas atmosphere, and melts the molten metal without bottom water cooling. Solidify in the mold,
In the plasma melting and casting method for producing a relatively long ingot while pulling out the solidified ingot downward, so that the gas flow between the melting chamber and the agglomeration chamber can occur inside the bottomless water-cooled mold. A bottomless water-cooled mold is placed, and the absolute value | Pc-Pm | of the pressure difference between the atmospheric pressure (Pm) in the melting chamber and the atmospheric pressure (Pc) in the agglomeration chamber is 0.05≤ | Pc-Pm | <0.5. The gas pressure is controlled so as to satisfy the atmospheric pressure range.
【0008】そして、ガス圧力の制御は、造塊室にガス
を供給するかまたは造塊室からガスを排出して行うとよ
い。The gas pressure may be controlled by supplying gas to the ingot making chamber or discharging gas from the ingot making chamber.
【0009】[0009]
【作用】以下、本発明をより詳細に説明する。従来より
行われているプラズマ溶解鋳造方法は、図2aに示すよ
うに、水冷ハースと呼ばれる水冷容器18を用いて原料9
を溶解し、この溶融金属を水冷容器18からオーバーフロ
ーする形で無底水冷鋳型3内に注入する方法と、図2b
に示すように、無底水冷鋳型3内に直接原料9を装入す
るか、あるいは無底水冷鋳型3の直上に棒状原料(図示
せず)を供給して、プラズマアークにより溶解する方法
とに大別される。The present invention will be described in more detail below. The conventional plasma melting casting method uses a water-cooled container 18 called a water-cooled hearth as shown in FIG.
2b, the molten metal is poured into the bottomless water-cooled mold 3 in a form of overflowing from the water-cooled container 18, and FIG.
As shown in FIG. 2, a raw material 9 is directly charged into the bottomless water-cooled mold 3, or a rod-shaped raw material (not shown) is supplied directly above the bottomless water-cooled mold 3 to melt by a plasma arc. Broadly divided.
【0010】いずれの方法においても、無底水冷鋳型3
内に形成される溶融金属浴11を保持するためにプラズマ
加熱を行う必要がある。また鋳塊12は、無底水冷鋳型3
内に形成される溶融金属浴11の浴面(メニスカス)がほ
ぼ一定となるように、無底水冷鋳型3内への原料9の装
入速度に応じて引抜かれる。In either method, the bottomless water-cooled mold 3 is used.
Plasma heating must be provided to hold the molten metal bath 11 formed therein. The ingot 12 is a bottomless water-cooled mold 3
The molten metal bath 11 is drawn out according to the charging speed of the raw material 9 into the bottomless water-cooled mold 3 so that the bath surface (meniscus) of the molten metal bath 11 formed therein is substantially constant.
【0011】なお、図中、19は溶解鋳造室、10は原料フ
ィーダ、8はプラズマトーチ、13は引抜き装置のロッド
を示す。In the figure, 19 is a melting and casting chamber, 10 is a raw material feeder, 8 is a plasma torch, and 13 is a rod of a drawing device.
【0012】上記プラズマ溶解鋳造方法で製造した鋳塊
の表面欠陥としては、(イ)プラズマ加熱出力が不足し
て、無底水冷鋳型内の溶融金属浴の形成が不十分なため
に発生する凹凸、(ロ)プラズマ加熱出力が過大すぎ
て、溶融金属が先に凝固した鋳塊表面を被う二重肌状欠
陥、(ハ)鋳塊を下方に引抜く際の鋳型内壁と凝固シェ
ルとの摩擦力により凝固シェルに発生する水平方向の微
小な割れ、等の欠陥がある。The surface defects of the ingot produced by the above-mentioned plasma melting casting method are (a) unevenness caused by insufficient plasma heating output and insufficient formation of a molten metal bath in a bottomless water-cooled mold. , (B) The plasma heating output is too large, and the molten metal covers the surface of the ingot that solidified first. Double crust defect, (c) the inner wall of the mold and the solidified shell when the ingot is drawn downward. There are defects such as horizontal minute cracks that occur in the solidified shell due to frictional force.
【0013】これらの欠陥の内、(イ)の欠陥は適正な
プラズマ加熱出力を選択することにより比較的容易に解
決できる。しかしながら、(ロ)と(ハ)の欠陥は、溶
融金属浴や凝固シェルと鋳型内壁との接触状況に依存す
るため、この欠陥を防止するためには、無底水冷鋳型と
非接触あるいは無底水冷鋳型との接触圧力を緩和した状
態で鋳造する必要がある。このような鋳造法として、例
えばアルミニウムの分野では、電磁気力で溶湯を保持す
る電磁界鋳造が知られている。ただ、この電磁界鋳造法
の場合の冷却法は、鋳塊表面に直接水をかける方式であ
り、大気雰囲気下で、比較的低温で溶融できるアルミニ
ウムには適用し易いが、活性で高融点なチタン、クロム
などを対象とするプラズマ溶解鋳造方法においては、直
接水を冷却に利用できないこともあり、直ちに電磁界鋳
造法を適用するには困難が多い。また、電磁気力を発生
する装置は高価でありコスト高となる。Among these defects, the defect (a) can be relatively easily resolved by selecting an appropriate plasma heating output. However, the defects (b) and (c) depend on the contact condition between the molten metal bath and the solidified shell and the inner wall of the mold. It is necessary to perform the casting while relaxing the contact pressure with the water-cooled mold. As such a casting method, for example, in the field of aluminum, electromagnetic field casting in which molten metal is held by electromagnetic force is known. However, the cooling method in the case of this electromagnetic field casting method is a method in which water is directly applied to the surface of the ingot, and it is easy to apply to aluminum that can be melted at a relatively low temperature in the air atmosphere, but it is active and has a high melting point. In the plasma melting casting method for titanium, chromium, etc., it is often difficult to immediately apply the electromagnetic field casting method because water cannot be directly used for cooling. Further, the device for generating the electromagnetic force is expensive and the cost is high.
【0014】また、他の鋳造方法として、鋳型の内壁を
ポーラスに形成しその孔より加圧気体を噴出させて、溶
湯や凝固シェルを保持する方式の鋳造法も提案されてい
る。ただ、この鋳造法は、ポーラス体の製造が難しいこ
となどの理由から実用はされていないと思われる。As another casting method, there has been proposed a casting method in which the inner wall of the mold is made porous and pressurized gas is ejected from the hole to hold the molten metal or the solidified shell. However, it seems that this casting method has not been put to practical use because of the difficulty in manufacturing the porous body.
【0015】一方、プラズマ溶解鋳造法では、高純度な
不活性ガス(アルゴン、ヘリウムなど)をプラズマガス
として使用し、溶解時の雰囲気圧力は通常1気圧前後で
あり、減圧あるいは加圧を行う場合でも0.01〜 2気圧程
度の範囲で操業が行われている。On the other hand, in the plasma melting casting method, a high-purity inert gas (argon, helium, etc.) is used as the plasma gas, and the atmospheric pressure during melting is usually around 1 atm. However, the operation is performed in the range of 0.01 to 2 atm.
【0016】そこで、本発明者等は、無底水冷鋳型と溶
湯や凝固シェルとの間の接触圧を緩和する手段として、
上記雰囲気ガスに着目し、鋳型と凝固シェルとの間に雰
囲気ガスによるガス流を形成させることを考えた。Therefore, the inventors of the present invention have proposed, as means for relaxing the contact pressure between the bottomless water-cooled mold and the molten metal or the solidified shell,
Focusing on the atmosphere gas, it was considered to form a gas flow by the atmosphere gas between the mold and the solidified shell.
【0017】すなわち、本発明は、溶解室と造塊室との
間のガスの流れが無底水冷鋳型の内側で起こり得るよう
に無底水冷鋳型を配置するとともに、溶解室の雰囲気圧
力(Pm)と造塊室の雰囲気圧力(Pc)との圧力差の絶対値|
Pc−Pm|を、0.05≦|Pc−Pm|<0.5 気圧の範囲を満た
すようにガス圧力を制御するものである。That is, according to the present invention, the bottomless water-cooled mold is arranged so that the gas flow between the melting chamber and the ingot-making chamber can occur inside the bottomless water-cooled mold, and the atmospheric pressure (Pm ) And the atmospheric pressure (Pc) in the ingot making room
The gas pressure is controlled so that Pc-Pm | satisfies the range of 0.05≤ | Pc-Pm | <0.5 atm.
【0018】上記本発明では、基本的なプラズマ溶解鋳
造方法に使用される装置自体を大幅に変更する必要がな
く、比較的容易に適用することができる。According to the present invention described above, the apparatus itself used in the basic plasma melting and casting method does not need to be significantly changed and can be applied relatively easily.
【0019】鋳型内壁と凝固シェルとの間に形成される
ガス流を直接的に制御することは困難であるが、鋳型内
壁と凝固シェルとの間隙だけをガスの通路となるよう
に、溶解室と造塊室とに仕切りを設け、溶解室と造塊室
との間のガス圧力差を制御することにより、鋳型内壁と
凝固シェルとの間に安定したガス流を形成することが可
能となる。Although it is difficult to directly control the gas flow formed between the inner wall of the mold and the solidification shell, it is difficult to directly control the gas flow so that only the gap between the inner wall of the mold and the solidification shell serves as a gas passage. It is possible to form a stable gas flow between the inner wall of the mold and the solidification shell by providing a partition between the melting chamber and the ingot making chamber and controlling the gas pressure difference between the melting chamber and the ingot making chamber. .
【0020】その溶解室と造塊室とのガス圧力差の絶対
値|Pc−Pm|は、0.05≦|Pc−Pm|<0.5 気圧の範囲内
で制御することが望ましい。その理由は、ガス圧力差が
0.05気圧未満では、ガス流が形成され難くなり、無底水
冷鋳型と溶湯や凝固シェルとの間の接触圧を緩和する効
果が期待できない。一方、ガス圧力差が 0.5気圧以上に
なると、鋳型上面付近の溶融金属が小滴となって飛散す
るようになり、実用的でなくなるためである。The absolute value | Pc-Pm | of the gas pressure difference between the melting chamber and the agglomeration chamber is preferably controlled within the range of 0.05≤ | Pc-Pm | <0.5 atm. The reason is that the gas pressure difference is
If the pressure is less than 0.05 atm, the gas flow is less likely to be formed, and the effect of relaxing the contact pressure between the bottomless water-cooled mold and the molten metal or solidified shell cannot be expected. On the other hand, when the gas pressure difference is 0.5 atm or more, the molten metal near the upper surface of the mold becomes droplets and scatters, which is not practical.
【0021】また、ガス流の方向は、造塊室から溶解室
側へ流れるようにする方がやや良好な結果が得られる。
これは溶解室から造塊室側への流れでは、溶融金属浴の
溶湯が、その下側の鋳型内壁と凝固シェルとの間隙(鋳
塊の凝固収縮により形成される)に押し込まれる可能性
が多くなるためと考えられる。In addition, a slightly better result can be obtained by making the gas flow flow from the ingot making chamber to the melting chamber.
This is because in the flow from the melting chamber to the agglomeration chamber side, the molten metal in the molten metal bath may be pushed into the gap between the inner wall of the mold and the solidification shell (formed by solidification shrinkage of the ingot). It is thought that it will increase.
【0022】[0022]
【実施例】図1は、本発明に係わるプラズマ溶解鋳造方
法に適用される装置の一例を示すもので、この図に示す
装置では、溶解室1と造塊室2とは、無底水冷鋳型3を
境にして仕切られ、溶解室1と造塊室2には、それぞれ
不活性ガスの導入管4,5と真空ポンプに接続された排
気管6,7とが設けられ、また溶解室1の鋳型の上方に
はプラズマトーチ8が設けられている。FIG. 1 shows an example of an apparatus applied to the plasma melting and casting method according to the present invention. In the apparatus shown in this figure, the melting chamber 1 and the ingot-making chamber 2 are bottomless water-cooled molds. 3, the melting chamber 1 and the ingot-making chamber 2 are provided with inert gas introduction pipes 4 and 5 and exhaust pipes 6 and 7 connected to a vacuum pump, respectively. A plasma torch 8 is provided above the mold.
【0023】上記装置によるプラズマ溶解鋳造は、溶解
室1と造塊室2内の雰囲気を所定の不活性ガス雰囲気圧
にした後、原料9を原料フィーダー10により無底水冷鋳
型3内に供給しながらプラズマトーチ8により溶解し、
無底水冷鋳型3内に溶融金属浴11を形成するとともに、
鋳型内壁により冷却されて凝固した鋳塊12を引抜き装置
のロッド13を所定の速度で引下ろすことによって無底水
冷鋳型3内より引抜いて行われる。そして、その溶解鋳
造中は、溶解室1と造塊室2内の不活性ガス雰囲気圧
は、導入管4,5と排気管6,7に設けられている弁1
4, 15, 16, 17の開度により制御される。In plasma melting and casting by the above apparatus, after the atmosphere in the melting chamber 1 and the ingot-making chamber 2 is set to a predetermined inert gas atmosphere pressure, the raw material 9 is fed into the bottomless water-cooled mold 3 by the raw material feeder 10. While melting with the plasma torch 8,
While forming the molten metal bath 11 in the bottomless water-cooled mold 3,
The ingot 12 cooled and solidified by the inner wall of the mold is drawn out from the bottomless water-cooled mold 3 by pulling down the rod 13 of the drawing device at a predetermined speed. During the melting and casting, the inert gas atmosphere pressure in the melting chamber 1 and the ingot-making chamber 2 is controlled by the valve 1 provided in the introduction pipes 4, 5 and the exhaust pipes 6, 7.
It is controlled by the opening of 4, 15, 16, 17.
【0024】次に、上述した構成の装置を用い、内径 1
20mmの無底水冷鋳型3、出力 100kWのプラズマトーチ8
およびプラズマトーチガスとしてアルゴン(Ar)を使用し
て、Ti-6Al-4V のチタン合金を、溶解のプラズマ出力70
kW、溶解速度15kg/hr、プラズマトーチガスの流量30l
/分の条件の下で、且つ溶解室1内の不活性ガス雰囲気
圧(Pm)と造塊室2内の不活性ガス雰囲気圧(Pc)との圧力
差ΔPを変えて溶解鋳造し、得られた鋳塊12の表面品質
を調査した。この調査結果を圧力差ΔPと対応させて表
1に示す。なお、この時の圧力差ΔPは、溶解室1側を
加圧した場合と、造塊室2側を加圧した場合の両者を行
った。Next, using the apparatus having the above-mentioned structure, the inner diameter 1
20mm bottomless water-cooled mold 3, 100kW plasma torch 8
And plasma power of melting Ti-6Al-4V titanium alloy, using argon (Ar) as plasma torch gas 70
kW, dissolution rate 15 kg / hr, plasma torch gas flow rate 30 l
/ Min under the condition of / min and by changing the pressure difference ΔP between the inert gas atmosphere pressure (Pm) in the melting chamber 1 and the inert gas atmosphere pressure (Pc) in the ingot making chamber 2 The surface quality of the obtained ingot 12 was investigated. The results of this investigation are shown in Table 1 in correspondence with the pressure difference ΔP. The pressure difference ΔP at this time was measured both when the melting chamber 1 side was pressurized and when the ingot forming chamber 2 side was pressurized.
【0025】また、この時の溶解室1と造塊室2との圧
力差ΔPを変える操作は、導入管4,5と排気管6,7
に設けられている弁14, 15, 16, 17の開度を制御するこ
とで行った。また、溶解初期の雰囲気圧力は1気圧とし
た。Further, the operation of changing the pressure difference ΔP between the melting chamber 1 and the ingot forming chamber 2 at this time is performed by introducing pipes 4, 5 and exhaust pipes 6, 7.
This was done by controlling the opening of valves 14, 15, 16 and 17 provided in the. The atmospheric pressure at the beginning of melting was set to 1 atm.
【0026】さらに、鋳塊の表面品質の調査は、鋳塊を
縦方向に切断し、その断面での疵深さで評価した。Further, in order to investigate the surface quality of the ingot, the ingot was cut in the longitudinal direction and the flaw depth in the cross section was evaluated.
【0027】[0027]
【表1】 [Table 1]
【0028】上記表1より明らかなように、溶解室の雰
囲気圧を高くし鋳型内のガス流を溶解室から造塊室側へ
流した場合、圧力差ΔPが 0.025気圧以下では、鋳型内
のガス流が殆ど無いため、従来のプラズマ溶解鋳造法に
より得られた鋳塊の表面性状とほぼ変わらないものであ
った。一方、圧力差ΔPが 0.6気圧以上と高くなると、
鋳型内のガス流が速くなり鋳造が不安定になり、得られ
た鋳塊の表面の疵深さが深くなる。さらに、圧力差ΔP
が 0.8気圧以上では、鋳型内のガス流が速くなるととも
に上から下に流れるため溶融金属浴の外周部の溶湯が鋳
型間に押し込まれ、二重肌状の欠陥が発生した。As is clear from Table 1 above, when the atmospheric pressure in the melting chamber is increased and the gas flow in the mold is made to flow from the melting chamber to the ingot forming side, if the pressure difference ΔP is 0.025 atm or less, Since there was almost no gas flow, the surface properties of the ingot obtained by the conventional plasma melting casting method were almost the same. On the other hand, if the pressure difference ΔP becomes higher than 0.6 atm,
The gas flow in the mold becomes fast, the casting becomes unstable, and the surface of the obtained ingot has a deep flaw. Furthermore, the pressure difference ΔP
Above 0.8 atm, the gas flow in the mold became faster and flowed from top to bottom, so the molten metal in the outer peripheral portion of the molten metal bath was pushed between the molds, resulting in double skin defects.
【0029】また、上記とは逆に、造塊室の雰囲気圧を
高くし鋳型内のガス流を造塊室から溶解室側へ流した場
合は、圧力差ΔPが 0.025気圧以下では、上記と同様に
鋳型内のガス流が殆どなく、従来のプラズマ溶解鋳造法
により得られた鋳塊の表面性状と変わらないものであっ
たが、圧力差ΔPが 0.6気圧あるいは 0.8気圧では、上
記と違い鋳型内のガス流が下から上に流れるため溶融金
属浴の鋳型間への押し込みがないため、得られた鋳塊表
面の疵深さは比較的浅く良好乃至は普通と良いものであ
った。しかし、溶融金属が鋳型間から吹き出し飛散する
現象が見られ、安定した操業ができなかった。On the contrary, when the atmosphere pressure in the ingot making chamber is increased and the gas flow in the mold is made to flow from the ingot forming chamber to the melting chamber side, if the pressure difference ΔP is 0.025 atm or less, Similarly, there was almost no gas flow in the mold, which was the same as the surface texture of the ingot obtained by the conventional plasma melting casting method, but when the pressure difference ΔP was 0.6 atm or 0.8 atm, it was different from the above. Since the gas flow in the inside flowed from bottom to top, there was no indentation of the molten metal bath between the molds, and the flaw depth on the surface of the obtained ingot was relatively shallow and was good to normal. However, a phenomenon was observed in which molten metal was blown and scattered from between the molds, and stable operation could not be performed.
【0030】圧力差ΔPが0.05〜 0.5気圧では、鋳塊表
面の疵深さが浅く良好な表面性状の鋳塊が得られた。ま
た、より好ましい表面性状の鋳塊を得るには、圧力差Δ
Pは、表1から明らかなように 0.1気圧の前後がよい。When the pressure difference ΔP was 0.05 to 0.5 atm, an ingot having a good surface quality with a shallow flaw depth on the surface of the ingot was obtained. Further, in order to obtain a more preferable ingot, the pressure difference Δ
As is clear from Table 1, P is preferably around 0.1 atm.
【0031】[0031]
【発明の効果】上述したように、本発明に係わるプラズ
マ溶解鋳造法によれば、良好な表面品質の活性金属、高
融点金属、あるいは超高清浄度が求められる各種金属の
鋳塊を製造し得、後工程での鋳塊表面の手入れ等が軽減
され、歩留りや生産性が向上できる。また、ブレークア
ウトの懸念が無く安定した鋳造が行える。As described above, according to the plasma melting casting method according to the present invention, ingots of active metal having a good surface quality, refractory metal, or various metals required to have an extremely high cleanliness are produced. In addition, the maintenance of the surface of the ingot in the subsequent steps can be reduced, and the yield and productivity can be improved. Also, stable casting can be performed without fear of breakout.
【図1】本発明に係わるプラズマ溶解鋳造方法に適用さ
れる装置の一例を示す概要図である。FIG. 1 is a schematic view showing an example of an apparatus applied to a plasma melting and casting method according to the present invention.
【図2】従来のプラズマ溶解鋳造方法に適用される装置
の概要図であって、(a)は溶解原料を水冷容器で溶解
してから鋳型へ注入する場合の例、(b)は溶解原料を
直接鋳型へ装入する場合の例である。FIG. 2 is a schematic view of an apparatus applied to a conventional plasma melting and casting method, (a) is an example in which a molten raw material is melted in a water-cooled container and then injected into a mold, and (b) is a molten raw material. It is an example in the case of directly charging into a mold.
1:溶解室 2:造塊室
3:無底水冷鋳型
4,5:不活性ガスの導入管
6,7:排気管 8:プラズマトーチ
9:溶解原料
10:原料フィーダー 11:溶融金属浴 1
2:鋳塊
13:引抜き装置のロッド 14, 15, 16, 17:弁1: melting chamber 2: ingot chamber
3: Bottomless water-cooled mold 4,5: Inert gas inlet pipe 6, 7: Exhaust pipe 8: Plasma torch
9: Melting raw material 10: Raw material feeder 11: Molten metal bath 1
2: Ingot 13: Drawing device rod 14, 15, 16, 17: Valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B22D 21/00 Z 8926−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location // B22D 21/00 Z 8926-4E
Claims (2)
熱源として原料を溶解するとともにその溶融金属を無底
水冷鋳型内で凝固させ、凝固した鋳塊を下方に引き抜き
ながら比較的長尺の鋳塊を製造するプラズマ溶解鋳造方
法において、溶解室と造塊室との間のガスの流れが無底
水冷鋳型の内側で起こり得るように無底水冷鋳型を配置
するとともに、溶解室の雰囲気圧力(Pm)と造塊室の雰囲
気圧力(Pc)との圧力差の絶対値|Pc−Pm|が、0.05≦|
Pc−Pm|<0.5 気圧の範囲を満たすようにガス圧力を制
御することを特徴とするプラズマ溶解鋳造方法。1. A relatively long ingot while melting a raw material by using a plasma arc as a heat source in an inert gas atmosphere, solidifying the molten metal in a bottomless water-cooled mold, and pulling the solidified ingot downward. In the plasma melting and casting method for producing, the bottomless water-cooled mold is arranged so that the flow of gas between the melting chamber and the ingot molding chamber may occur inside the bottomless water-cooled mold, and the atmospheric pressure (Pm ) And the atmospheric pressure (Pc) in the ingot-making chamber, the absolute value | Pc-Pm |
A plasma melting casting method characterized in that the gas pressure is controlled so as to satisfy the range of Pc-Pm | <0.5 atm.
するかまたは造塊室からガスを排出して行う請求項1記
載のプラズマ溶解鋳造方法。2. The plasma melting casting method according to claim 1, wherein the gas pressure is controlled by supplying gas to the ingot making chamber or discharging gas from the ingot making chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187752A JPH0531568A (en) | 1991-07-26 | 1991-07-26 | Plasma melting/casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187752A JPH0531568A (en) | 1991-07-26 | 1991-07-26 | Plasma melting/casting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0531568A true JPH0531568A (en) | 1993-02-09 |
Family
ID=16211585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3187752A Withdrawn JPH0531568A (en) | 1991-07-26 | 1991-07-26 | Plasma melting/casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0531568A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100659285B1 (en) * | 2005-09-12 | 2006-12-20 | 한국생산기술연구원 | Plasma arc melting method and method of fabricating small-diameter rod of high melting point active metal using the same |
KR100803731B1 (en) * | 2006-11-15 | 2008-02-15 | 주식회사 포스코 | Molten mold flux preheater and continuous casting method |
JP2013049084A (en) * | 2011-08-31 | 2013-03-14 | Kobe Steel Ltd | Method and device for continuously casting slab comprising titanium or titanium alloy |
JP2013052417A (en) * | 2011-09-05 | 2013-03-21 | Kobe Steel Ltd | Casting mold for continuous casting of ingot of titanium or titanium alloy, and continuous casting apparatus with the same |
JP2015530259A (en) * | 2012-09-28 | 2015-10-15 | エイティーアイ・プロパティーズ・インコーポレーテッド | Continuous casting of materials using pressure difference |
-
1991
- 1991-07-26 JP JP3187752A patent/JPH0531568A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100659285B1 (en) * | 2005-09-12 | 2006-12-20 | 한국생산기술연구원 | Plasma arc melting method and method of fabricating small-diameter rod of high melting point active metal using the same |
KR100803731B1 (en) * | 2006-11-15 | 2008-02-15 | 주식회사 포스코 | Molten mold flux preheater and continuous casting method |
JP2013049084A (en) * | 2011-08-31 | 2013-03-14 | Kobe Steel Ltd | Method and device for continuously casting slab comprising titanium or titanium alloy |
JP2013052417A (en) * | 2011-09-05 | 2013-03-21 | Kobe Steel Ltd | Casting mold for continuous casting of ingot of titanium or titanium alloy, and continuous casting apparatus with the same |
JP2015530259A (en) * | 2012-09-28 | 2015-10-15 | エイティーアイ・プロパティーズ・インコーポレーテッド | Continuous casting of materials using pressure difference |
US10155263B2 (en) | 2012-09-28 | 2018-12-18 | Ati Properties Llc | Continuous casting of materials using pressure differential |
US10272487B2 (en) | 2012-09-28 | 2019-04-30 | Ati Properties Llc | Continuous casting of materials using pressure differential |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1259348B1 (en) | Casting system and method for forming highly pure and fine grain metal castings | |
EP0471798B1 (en) | Induction skull melt spinning of reactive metal alloys | |
US20030106664A1 (en) | Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles | |
JP4099062B2 (en) | Treatment of molten metal by moving electrical discharge | |
JP4762409B2 (en) | Articles nucleated and cast from clean metal | |
US3344840A (en) | Methods and apparatus for producing metal ingots | |
EP3556487A1 (en) | Casting method for active metal | |
JPH0531568A (en) | Plasma melting/casting method | |
CN110484742B (en) | Method for preparing Fe-W intermediate alloy by electron beam melting and high purification | |
US7753986B2 (en) | Titanium processing with electric induction energy | |
JPS63165047A (en) | Continuous melting and casting method by electron beam | |
JP4403129B2 (en) | Vacuum arc melting method for refractory metals | |
JPS62130755A (en) | Continuous casting method by electron beam melting method | |
JPS6352983B2 (en) | ||
JPH05104208A (en) | Plasma melting and casting method | |
JP2009113061A (en) | METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY | |
JP7406074B2 (en) | Titanium ingot manufacturing method and titanium ingot manufacturing mold | |
JP7376790B2 (en) | Equipment for titanium casting | |
JPS63157739A (en) | Apparatus for producing hollow metal ingot having high melting point | |
US20220250141A1 (en) | METHOD FOR CASTING Ti-Al BASED ALLOY | |
JP7406075B2 (en) | Titanium ingot manufacturing method and titanium ingot manufacturing mold | |
WO2021192875A1 (en) | Graphite nozzle for bottom tapping and ti-al alloy casting method | |
JP2001293550A (en) | Method and apparatus for producing microcrystalline ingot | |
JP2003340560A (en) | Method and apparatus for manufacturing active metal ingot | |
JP3149556B2 (en) | Method and apparatus for producing melting stock for precision casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981008 |