JPS63157739A - Apparatus for producing hollow metal ingot having high melting point - Google Patents

Apparatus for producing hollow metal ingot having high melting point

Info

Publication number
JPS63157739A
JPS63157739A JP30320386A JP30320386A JPS63157739A JP S63157739 A JPS63157739 A JP S63157739A JP 30320386 A JP30320386 A JP 30320386A JP 30320386 A JP30320386 A JP 30320386A JP S63157739 A JPS63157739 A JP S63157739A
Authority
JP
Japan
Prior art keywords
metal
water
electron beam
melting point
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30320386A
Other languages
Japanese (ja)
Inventor
Kenichiro Suzuki
健一郎 鈴木
Kiyohiko Nohara
清彦 野原
Yasuhiro Kakio
垣生 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30320386A priority Critical patent/JPS63157739A/en
Publication of JPS63157739A publication Critical patent/JPS63157739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a hollow metal ingot metal ingot having high melting point under high yield and low cost by melting the metal having high melting point by energy beam under high vacuum pouring into annular casting and drawing while vibrating the mold and rotating the ingot. CONSTITUTION:Under high vacuum, the metallic raw material having high melting point, such as Ti, etc., is supplied into the watercooling copper hearth 4 from a hopper 3 through a guide 3 and gladually melted by applying electron beam from an electron beam gun 1. The molten metal obtd. in this way, is overflowed, and poured into the annular casting space formed by a water-cooled copper mold 5 and a water-cooled copper core 6. Further, the molten metal pool in the above space is periodically applied by the electron beam from the electron beam gun 1, to prevent rapid solidification and hold the molten metal pool. While vibrating the above mold 5 and the core 6, the hollow ingot 7 formed by cooling and solidifying, is drawn downward, while rotating as centering an axis by drawing device 8.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は高融点金属の中空鋳塊の製造装置に係り、詳し
くは、高融点金属ならびに超合金のパイプの製造を可能
とする高融点金属の中空鋳塊の製造装置に係る。
[Detailed Description of the Invention] <Object of the Invention> Industrial Field of Application The present invention relates to an apparatus for manufacturing hollow ingots of refractory metals, and more specifically, it is capable of manufacturing pipes of refractory metals and superalloys. This relates to a manufacturing device for hollow ingots of high melting point metal.

従  来  の  技  術 高融点金属や超合金の加工性は一般に不良であり、純度
の影響が大きい。このため、パイプ製造プロセスについ
ての工夫のほか、加工性を維持改善するための純度向上
について多くの改善が試みられている。具体例を挙げる
と、1)Ti:  通常法による薄板製造後、成形しT
rG溶接あるいは丸インゴッ[・の熱間押出し法 2)2r:  丸鋳片の中心を孔ぐり加工後、熱間押出
し 3)MOlW: 粉末を焼結、鍛造後熱間押出し4)N
b、■a:  丸鋳片を熱間押出し5)超合金: 同 
  上 すなわち、丸断面の出発原料を用いる際に、通常の鋼の
シームレスパイプの製造に一般に用いられるマンドレル
ミルなどの穿孔機によって素管を製造することはこれら
の素材では困1!Itな口とが自明である。更に、素材
の純度を向上するため、真空下でのアーク溶解や電子ビ
ーム溶解が行なわれるが、とくに、Ti、Zrでは純度
向上は実質的に期待できず、むしろ、加工性を確保する
ため素材の加工温度を上昇させるので素材の汚染が起る
ことすら懸忠される。従って、パイプ製品と素材の重量
比率、すなわち、製品小止りはかなり低いが、その主な
原因は加工性の悪さと加工温度の増大による酸化などの
汚染によるものである。
Conventional technology The processability of high-melting point metals and superalloys is generally poor and is largely affected by purity. For this reason, in addition to devising the pipe manufacturing process, many attempts have been made to improve purity in order to maintain and improve workability. To give a specific example, 1) Ti: After manufacturing a thin plate by the usual method, forming T
rG welding or hot extrusion of round ingots 2) 2r: Hot extrusion after drilling the center of a round slab 3) MOLW: Hot extrusion after sintering and forging the powder 4) N
b, ■a: Hot extrusion of round slab 5) Superalloy: Same
In other words, when starting materials with a round cross section are used, it is difficult to manufacture raw pipes using a punching machine such as a mandrel mill, which is generally used to manufacture ordinary steel seamless pipes! It's self-evident that it's a mouthful. Furthermore, in order to improve the purity of the material, arc melting or electron beam melting is performed under vacuum, but in particular, with Ti and Zr, it is virtually impossible to expect any improvement in purity. It is even feared that contamination of the material may occur as the processing temperature increases. Therefore, the weight ratio of the pipe product to the material, that is, the product stagnation, is quite low, but this is mainly due to poor workability and contamination such as oxidation due to increased processing temperature.

このような現状のため、抜本的なパイプ製造方法、すな
わち、製造多山りが高く、製造コストが低く、製造プロ
セスの簡単な製造法が、とくに高融点金属や超合金につ
いて渇望されている。
Due to this current situation, there is a strong desire for a radical method of manufacturing pipes, that is, a manufacturing method that involves high manufacturing volume, low manufacturing costs, and a simple manufacturing process, especially for high-melting point metals and superalloys.

なお、鋼管の製造方法については潤滑剤を供給する中子
(特開昭56−141944号)や耐火剤を表面コーテ
ィングした中子(特開昭56−134048号)を用い
る方法があるが、何れも鋳型内に流入した溶融金属のカ
ロ熱方法が明示されておらず、本発明が開示しようとす
る高融点金属に適用しうるものではない。
Regarding the manufacturing method of steel pipes, there are methods using a core supplied with a lubricant (Japanese Patent Application Laid-Open No. 56-141944) or a core whose surface is coated with a fireproofing agent (Japanese Patent Application Laid-open No. 134048-1982), but none of them However, the method for heating the molten metal that has flowed into the mold is not clearly disclosed, and it cannot be applied to the high melting point metal that the present invention is intended to disclose.

発明が解決しようとする問題点 本発明はこれらの問題点を解決することを目的とし、具
体的には、製品小止りが高く、製造コストが低く、かつ
、製造プロセスの簡単な高融点金属の中空鋳塊の製造装
置を提供することを目的とする。
Problems to be Solved by the Invention The present invention aims to solve these problems.Specifically, the present invention aims to solve these problems. The purpose of the present invention is to provide a hollow ingot manufacturing device.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 本発明は、高真空下において、高融点金属をエネルギー
ビームによって逐次溶解する装置と、前記溶解装置から
溢流し水冷鋳型と中子との間に形成される環状空間に形
成される該金属の溶融池を周期的に照射するエネルギー
ビームの駆動装置と、水冷鋳型および中子を振動させる
装置ならびに該金属の中空鋳塊を軸を中心として回転さ
せると同時に下方に引き抜く装置とから構成されること
を¥を黴とする。
<Structure of the Invention> Means for Solving the Problems and Their Effects The present invention provides an apparatus for successively melting a high melting point metal using an energy beam under a high vacuum, and a water-cooled mold and a core that overflow from the melting apparatus. an energy beam drive device that periodically irradiates the molten pool of the metal formed in the annular space formed between the two, a device that vibrates the water-cooled mold and the core, and a hollow ingot of the metal centered on the axis. It consists of a device that rotates it and pulls it out downward at the same time.

以下、図面によって本発明の手段たる構成ならびに作用
を説明すると、次の通りである。
Hereinafter, the structure and operation of the means of the present invention will be explained with reference to the drawings.

第1図は実施例に使用した本発明に係る中空鋳塊の製造
装置を示す説明図であり、第2図は鋳型内の同心円状溶
融金底表面を走査する電子ビームスキャンニングの一例
を示す説明図である。
FIG. 1 is an explanatory diagram showing a hollow ingot manufacturing apparatus according to the present invention used in Examples, and FIG. 2 shows an example of electron beam scanning that scans the concentric bottom surface of molten metal in a mold. It is an explanatory diagram.

本発明者等は高融点金属や超合金を主成分とするパイプ
の製造について検討した結果、穿孔工程が緑大の難点で
あること、穿孔工程を回避するには加工前の素材の状態
で次工程のパイプの肉厚や径を調整する加工に適した形
状の中空素材を製造することが好ましいとの結論に達し
、これを実現すべく、該金属および合金の溶解、vI造
装置の設計、製作ならびに溶解、鋳造試験を実施した結
果1本発明に到達したものである。
As a result of studying the manufacture of pipes whose main components are high-melting-point metals and superalloys, the inventors found that the drilling process is a difficult point, and that in order to avoid the drilling process, it is necessary to We came to the conclusion that it is preferable to manufacture a hollow material with a shape suitable for processing to adjust the wall thickness and diameter of the pipe in the process, and in order to realize this, we melted the metal and alloy, designed the VI manufacturing equipment, The present invention was achieved as a result of manufacturing, melting, and casting tests.

すなわち、粒状乃至棒状の原料金属を水冷銅ハース内で
電子ビームにより溶解し、これから溢流する溶融金属を
水冷銅製鋳型と内側の水冷銅製中子との間の環状空間に
導き形成された中空鋳片を軸を中心として回転させると
同時に、下方に引き扱くことを特長とする装置である。
In other words, granular or rod-shaped raw metal is melted with an electron beam in a water-cooled copper hearth, and the overflowing molten metal is guided into the annular space between the water-cooled copper mold and the inner water-cooled copper core to form a hollow casting. This device is characterized by rotating the piece around an axis and simultaneously pulling it downward.

この際に電子ビームは原料金属を加熱する一方、水冷銅
ハース中に保持された該溶融金属ならびに水冷銅鋳型と
中子間で中空断面形状を形成する該溶融金属の溶融池を
加熱できるよう適宜制御しうるよう設計された。なお、
中空断面形状を呈する溶融金属の溶融池を加熱する電子
ビームの径と位置の制御についてはとくに留怠する必要
がある。すなわち、電子ビームの径!f過大であったり
、位冒制御が不安定な場合には、電子ビームの一部が水
冷銅鋳型や水冷銅中子を加熱し、加熱効率が低下するば
かりでなく、銅を衝撃加熱して焼損する危険性がある。
At this time, the electron beam heats the raw metal, while heating the molten metal held in the water-cooled copper hearth as well as the molten pool of the molten metal that forms a hollow cross-sectional shape between the water-cooled copper mold and the core. Designed to be controlled. In addition,
Particular care must be taken to control the diameter and position of the electron beam that heats the molten pool of molten metal that has a hollow cross-sectional shape. In other words, the diameter of the electron beam! If f is too large or the displacement control is unstable, a part of the electron beam will heat the water-cooled copper mold or water-cooled copper core, which will not only reduce heating efficiency but also cause impact heating of the copper. There is a risk of burnout.

従って、中空インゴットの肉厚は電子ビームの径に比べ
て十分に大きいことが必要である。また、溶融金属がら
金属の凝固シェルを通して放出される熱量は中空部のな
い丸ビレットに比べて敢然面積が増加するので、これを
考慮して中空インゴットの断面形状を決定することが重
要となる。更に、溶融池最深部の位置が水冷銅鋳型最下
端よりも深くなると、溶融池の静圧により凝固シェルに
圧力がかかり、凝固シェルの変形や割れ、更にはブレー
クアラ1〜が起る危険性がある。従って、このような観
点から水冷銅製鋳型の長さを決定し、さらに溶融池の最
大深さを鋳型最下端より上部に設定することが必要であ
る。
Therefore, the thickness of the hollow ingot needs to be sufficiently larger than the diameter of the electron beam. In addition, the amount of heat released from molten metal through the solidified metal shell increases the area compared to a round billet without a hollow part, so it is important to take this into consideration when determining the cross-sectional shape of the hollow ingot. Furthermore, if the deepest part of the molten pool is deeper than the bottom end of the water-cooled copper mold, the static pressure of the molten pool will apply pressure to the solidified shell, leading to deformation and cracking of the solidified shell, and furthermore, the risk of breakage 1~ occurring. There is. Therefore, it is necessary to determine the length of the water-cooled copper mold from this point of view, and to set the maximum depth of the molten pool above the lowest end of the mold.

実  施  例 以下、実施例により詳しく説明する。Example Hereinafter, this will be explained in detail with reference to Examples.

第1図に示す最大出力240にWの電子ビーム炉により
Tiおよびzrパイプを製造した。
Ti and ZR pipes were manufactured using an electron beam furnace with a maximum output of 240 W as shown in FIG.

水冷銅製鋳型5の形状は外径300mm、内径200m
mで上下のテーパーは1%(2,5mm/250m+n
)とし、鋳型内側の銅肉厚20mmのところに縦型の水
路(スリット)を形成し、流速10n/ secで水冷
した。
The water-cooled copper mold 5 has an outer diameter of 300 mm and an inner diameter of 200 m.
m and the upper and lower tapers are 1% (2.5mm/250m+n
), a vertical water channel (slit) was formed inside the mold at a 20 mm thick copper wall, and water cooling was performed at a flow rate of 10 n/sec.

一方、水冷銅製中子Gの形状は外径120mm、lさ2
00mmとし、中子外側の銅肉厚15m1llのところ
にも同様に縦型の水路(スリット)を形成し、流速8 
m /’ S e Cで水冷した。冷却水の給水方向は
何れも上向きである。
On the other hand, the water-cooled copper core G has an outer diameter of 120 mm and a length of 2
00mm, and a vertical waterway (slit) was similarly formed at the copper wall thickness of 15ml on the outside of the core, and the flow rate was 8.
Water-cooled at m/' S e C. The direction in which the cooling water is supplied is all upward.

Tiおよびlrの原料は、何れもスポンジで20〜50
mmφの形状のものを1.8kg/minの速度で供給
し、2cm/m1na′)速度で下部より中空インゴッ
ト・を引き扱いた。Tiおよび2rのスポンジは、何れ
の場合も横型の水冷銅製ハース4(有効寸法150mm
Wx50mm[lx350mmL)の端部にホッパー2
から供給され、端部から100mm以内の間で完全溶解
し、該ハースの他端に設けられた流出口(50mmWx
30mmDx20mmljがら過熱度80〜200℃で
オーバーフローして中空インコツl−製造用の鋳型と中
子の間の空間に滴下流入する。
Both Ti and lr raw materials are 20 to 50% sponge.
A hollow ingot having a diameter of mmφ was supplied at a rate of 1.8 kg/min, and a hollow ingot was handled from the bottom at a rate of 2 cm/m1na'. In both cases, the Ti and 2r sponges were placed in a horizontal water-cooled copper hearth 4 (effective dimension 150 mm).
Hopper 2 at the end of Wx50mm [lx350mmL]
The hearth is supplied from
The 30 mm D x 20 mm lj overflows at a superheating degree of 80 to 200° C. and drips into the space between the mold and the core for producing hollow ingots.

この場合、流入した金属は比較的速やかに凝固するので
、中空インゴットを1.5ppmで回転させて円周方向
の供給量を均一化し、また、中子と凝固シェルの締付力
により中子と固着することを防止する。
In this case, the metal that has flowed in solidifies relatively quickly, so the hollow ingot is rotated at 1.5 ppm to equalize the supply amount in the circumferential direction, and the clamping force between the core and solidified shell is used to stabilize the core. Prevent sticking.

また、中空インゴットを形成する同心円状の溶融金属は
鋳型を照0・jシない範囲内で偏向、周回するように設
定された電子ビーム(−例を第2図に示す)により過熱
度80〜300℃となるように加熱され、流入金属滴の
凝固を防ぎ、同心円状の溶融池の深さが一定となり、周
方向の偏りがないように配慮する。なお、溶融池の過熱
度は中空インゴットの表面品質と溶融池の深さから適正
値に設定される。
In addition, the concentric molten metal that forms the hollow ingot is heated to a degree of superheating of 80 to 80° by an electron beam (an example is shown in Figure 2) that is deflected and orbited within a range that does not illuminate the mold. It is heated to 300° C. to prevent solidification of incoming metal droplets, and care is taken to ensure that the depth of the concentric molten pool is constant and there is no deviation in the circumferential direction. The degree of superheating of the molten pool is set to an appropriate value based on the surface quality of the hollow ingot and the depth of the molten pool.

以上のような原料の溶解や溶融池の維持には2本の電子
銃を用いたが、その加速電圧は30にV、電流は3.1
〜4.2八であり、電子ビームの径は20mm、エネル
ギー密度は10’ W/C12である。この電子ビーム
はTiスポンジの溶解部に1本の電子銃出力の70%、
水冷銅ハース内の溶融池の加熱に30?6の時間率配分
となるよう走査される。また、他の1本の電子銃の出力
は水冷銅ハースからのメルト流出部に30%、同心円状
の溶融池の保温に70%の時間率配分となるよう走査し
た。この場合、水冷銅ハースがら流入するTiメルトの
温度は1820°C1同心円状溶融池表面温度の最大値
は1835℃であった。なお、真空喰は溶解開始前で2
X10−4Torr、開始後の定常期で8x10−3T
orrであった。2rの場合にはスポンジ供給速度2.
2kBmin、引き抜き速flu1.7cm/minと
して中空インゴットを製造した。この場合、水冷銅ハー
スから流入するZrメルトの温度は1950℃、中空イ
ンゴット部の溶融池表面で1970℃であった。
Two electron guns were used to melt the raw materials and maintain the molten pool as described above, and the accelerating voltage was 30V and the current was 3.1V.
~4.28, the diameter of the electron beam is 20 mm, and the energy density is 10' W/C12. This electron beam is applied to the melting part of the Ti sponge by 70% of the output of one electron gun.
Scanning is performed to provide a time rate distribution of 30 to 6 for heating the molten pool in the water-cooled copper hearth. In addition, the output of the other electron gun was scanned so that 30% of the time was distributed to the melt outlet from the water-cooled copper hearth, and 70% was distributed to the heat retention of the concentric molten pool. In this case, the temperature of the Ti melt flowing into the water-cooled copper hearth was 1820°C, and the maximum value of the surface temperature of the concentric molten pool was 1835°C. In addition, the vacuum eater is 2
X10-4Torr, 8x10-3T in stationary phase after start
It was orr. In the case of 2r, the sponge feeding speed is 2.
A hollow ingot was produced at a drawing speed of 2 kBmin and a drawing speed flu of 1.7 cm/min. In this case, the temperature of the Zr melt flowing from the water-cooled copper hearth was 1950°C, and the temperature at the surface of the molten pool in the hollow ingot was 1970°C.

なお、中空インゴットの長さは1.0mとしたが、実際
には、インゴット下部の引き央き金具との嵌合部で32
mm、トップ部は電子ビームの出力を除々に低下させて
収縮孔の生成を防1トシたが、この引けの分25mmが
あるため、 Tiの場合 良さ925mm、外径195mm、内径1
18mmZrの場合 良さ9351T1m、外径19G
IIIIIl、内R118mmとなった。
The length of the hollow ingot was set to 1.0 m, but in reality, the length of the hollow ingot was 32 m at the fitting part with the center fitting at the bottom of the ingot.
For the top part, the output of the electron beam was gradually reduced to prevent the formation of shrinkage holes, but since this shrinkage was 25 mm, in the case of Ti, the thickness was 925 mm, the outer diameter was 195 mm, and the inner diameter was 1 mm.
For 18mm Zr: Goodness 9351T1m, outer diameter 19G
IIIIIIl, inner radius was 118mm.

また、中空インゴット表面の凹凸は無視できないが、外
径側での凹凸はTiの場合最大1.Lnm、Zrの場合
最大0,9mmであり、内径側ではTiの場合最大0.
7mm 、−Zrの場合最大0.7mmの範囲に入って
おり、次工程の中空インゴットの冷間圧延には支障がな
かった。
In addition, although the unevenness on the surface of the hollow ingot cannot be ignored, the unevenness on the outer diameter side is at most 1. In the case of Lnm and Zr, the maximum is 0.9 mm, and on the inner diameter side, the maximum is 0.9 mm in the case of Ti.
7 mm, in the case of -Zr, it was within the maximum range of 0.7 mm, and there was no problem in cold rolling of the hollow ingot in the next step.

なお、水冷銅製鋳型と中子に対して周波数4500Hz
、最大j辰幅0.03mmの振動をうえたところ、前述
の凹凸はTiの場合外径側0.7mm、内径側0.4m
m、lrの場合外径側0.5mm、内径側Q、4mmと
署しく減少することが判明した。
In addition, the frequency for the water-cooled copper mold and core is 4500Hz.
When subjected to vibration with a maximum width of 0.03 mm, the above-mentioned unevenness was 0.7 mm on the outer diameter side and 0.4 m on the inner diameter side in the case of Ti.
It was found that in the case of m and lr, there is a significant decrease at 0.5 mm on the outer diameter side and 4 mm on the inner diameter side.

〈発明の効果〉 以上説明したように、本発明は、高真空下において、高
融点金属をエネルギービームによって逐次溶解する装置
と、前記溶解装置から溢流し水冷鋳型と中子との間に形
成される環状空間に形成される該金属の溶融池をl!1
11目的に照射するエネルギービームの駆動H置と、水
冷鋳型および中子を振動させる装置ならびに該金属の中
空!77塊を軸を中心として回転させると同時に下方に
引き1友く装置とから構成されることを特徴とする高融
点金属の中空鋳塊の製造装置であって、本発明は新しい
高融点金属製パイプの製造装置を開示するものであり、
その効果は現行プロセスのプロセスを簡素化し、所要設
備投資を削減する上で顕著である。
<Effects of the Invention> As explained above, the present invention provides a device for sequentially melting a high-melting point metal using an energy beam under a high vacuum, and a device that overflows from the melting device and is formed between a water-cooled mold and a core. The molten pool of the metal formed in the annular space is l! 1
11 A driving position for the energy beam that irradiates the object, a device that vibrates the water-cooled mold and the core, and the hollow space of the metal! 77 A device for producing a hollow ingot of a refractory metal, which is characterized by comprising a device that rotates an ingot around an axis and simultaneously pulls the ingot downward. Discloses a pipe manufacturing device,
The effect is significant in simplifying the current process and reducing the required capital investment.

すなわち、孔ぐり加工設備および熱間押出し設備が不要
となること、とくに、設備費の膨大な後者の設備削減は
パイプ製造コストの削減に寄与するところが著しく大き
い点で格段に注目に値すると考える。
In other words, the elimination of the need for drilling equipment and hot extrusion equipment, especially the latter, which requires enormous equipment costs, is considered to be particularly noteworthy in that it significantly contributes to reducing pipe manufacturing costs.

なお、本発明は中空インゴットの長さの延長や、中空イ
ンゴット製造の連続化へと発展させることが容易である
ことは言うまでもない。
It goes without saying that the present invention can be easily developed to extend the length of hollow ingots and to continuously produce hollow ingots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に使用した本発明に係る中空鋳塊の製造
装置を示す説明図、第2図は鋳型内の同心円状溶融金属
表面を走査する電子ビームスキャンニングの一例を示す
説明図である。 符号1・・・・・・電子ビーム銃 1′・・・・・・電子ビーム銃 2・・・・・・ホッパー 3・・・・・・ガイド 4・・・・・・水冷銅ハース 5・・・・・・水冷銅鋳型 6・・・・・・水冷銅中子 7・・・・・・中空インゴット 8・・・・・・引き扱き装置 第1図 第2図
FIG. 1 is an explanatory diagram showing a hollow ingot manufacturing apparatus according to the present invention used in Examples, and FIG. 2 is an explanatory diagram showing an example of electron beam scanning that scans the concentric molten metal surface in a mold. be. Code 1...Electron beam gun 1'...Electron beam gun 2...Hopper 3...Guide 4...Water-cooled copper hearth 5. ... Water-cooled copper mold 6 ... Water-cooled copper core 7 ... Hollow ingot 8 ... Handling device Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 高真空下において、高融点金属をエネルギービームによ
って逐次溶解する装置と、前記溶解装置から溢流し水冷
鋳型と中子との間に形成される環状空間に形成される該
金属の溶融池を周期的に照射するエネルギービームの駆
動装置と、水冷鋳型および中子を振動させる装置ならび
に該金属の中空鋳塊を軸を中心として回転させると同時
に下方に引き抜く装置とから構成されることを特徴とす
る高融点金属の中空鋳塊の製造装置。
A device for sequentially melting a high-melting point metal using an energy beam under a high vacuum, and a molten pool of the metal overflowing from the melting device and formed in an annular space formed between a water-cooled mold and a core periodically. A device for driving an energy beam to irradiate the metal, a device for vibrating the water-cooled mold and the core, and a device for rotating the metal hollow ingot around an axis and pulling it downward at the same time. Equipment for manufacturing hollow ingots of melting point metal.
JP30320386A 1986-12-19 1986-12-19 Apparatus for producing hollow metal ingot having high melting point Pending JPS63157739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30320386A JPS63157739A (en) 1986-12-19 1986-12-19 Apparatus for producing hollow metal ingot having high melting point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30320386A JPS63157739A (en) 1986-12-19 1986-12-19 Apparatus for producing hollow metal ingot having high melting point

Publications (1)

Publication Number Publication Date
JPS63157739A true JPS63157739A (en) 1988-06-30

Family

ID=17918122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30320386A Pending JPS63157739A (en) 1986-12-19 1986-12-19 Apparatus for producing hollow metal ingot having high melting point

Country Status (1)

Country Link
JP (1) JPS63157739A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454424A (en) * 1991-12-18 1995-10-03 Nobuyuki Mori Method of and apparatus for casting crystalline silicon ingot by electron bean melting
JP2009172665A (en) * 2008-01-28 2009-08-06 Toho Titanium Co Ltd Method for producing high melting point metal ingot
JP2011527946A (en) * 2009-03-27 2011-11-10 テイタニウム メタルス コーポレイシヨン Method and apparatus for semi-continuous casting of hollow ingot
US9682421B2 (en) 2012-12-28 2017-06-20 Kobe Steel, Ltd. Titanium continuous casting device
CN110545935A (en) * 2017-04-20 2019-12-06 英特科熔铸技术有限公司 Method and device for producing ingots made of metal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454424A (en) * 1991-12-18 1995-10-03 Nobuyuki Mori Method of and apparatus for casting crystalline silicon ingot by electron bean melting
JP2009172665A (en) * 2008-01-28 2009-08-06 Toho Titanium Co Ltd Method for producing high melting point metal ingot
JP2011527946A (en) * 2009-03-27 2011-11-10 テイタニウム メタルス コーポレイシヨン Method and apparatus for semi-continuous casting of hollow ingot
JP2012106289A (en) * 2009-03-27 2012-06-07 Titanium Metals Corp Hollow ingot product
US9682421B2 (en) 2012-12-28 2017-06-20 Kobe Steel, Ltd. Titanium continuous casting device
CN110545935A (en) * 2017-04-20 2019-12-06 英特科熔铸技术有限公司 Method and device for producing ingots made of metal
CN110545935B (en) * 2017-04-20 2022-02-11 英特科熔铸技术有限公司 Method and device for producing ingots made of metal

Similar Documents

Publication Publication Date Title
US3206808A (en) Composite-ingot casting system
US4211270A (en) Method for continuous casting of metallic strands at exceptionally high speeds
JP3949208B2 (en) Metal remelting method and apparatus used for manufacturing continuous casting
RU2729246C1 (en) Casting method for active metal
JPS63157739A (en) Apparatus for producing hollow metal ingot having high melting point
US4736789A (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using an oscillating mold assembly
EP3192593A1 (en) Method for continuously casting slab containing titanium or titanium alloy
JPS62130755A (en) Continuous casting method by electron beam melting method
EP2835191A1 (en) Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
US4177058A (en) Method for producing a non-split metal workpiece formed as a cast hollow billet with a bottom part
CN1047546C (en) As-continuously cast beam blank an method for casting continuously cast beam blank
US4307770A (en) Mold assembly and method for continuous casting of metallic strands at exceptionally high speeds
JPH0531568A (en) Plasma melting/casting method
JP7406074B2 (en) Titanium ingot manufacturing method and titanium ingot manufacturing mold
JP7376790B2 (en) Equipment for titanium casting
JP7406075B2 (en) Titanium ingot manufacturing method and titanium ingot manufacturing mold
JP7406073B2 (en) Manufacturing method for titanium ingots
JP3249870B2 (en) Continuous casting method of semi-solid Al alloy
JP4392284B2 (en) Vertical casting machine for aluminum
JPH0531571A (en) Method and apparatus for manufacturing casting
US20050067129A1 (en) Method for the production of hollow ingots of a metallic material or of a plurality of metallic materials
SU954155A1 (en) Method of continuous horisontal casting of iron tube blanks
RU2205724C1 (en) Method of continuous or semicontinuous casting of tubular blanks of copper and its alloys
EP0042995A1 (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using oscillating mold assembly
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting