JPS626897B2 - - Google Patents
Info
- Publication number
- JPS626897B2 JPS626897B2 JP55038617A JP3861780A JPS626897B2 JP S626897 B2 JPS626897 B2 JP S626897B2 JP 55038617 A JP55038617 A JP 55038617A JP 3861780 A JP3861780 A JP 3861780A JP S626897 B2 JPS626897 B2 JP S626897B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molten metal
- wall surface
- ingot
- lubricating oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 36
- 239000010687 lubricating oil Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 20
- 238000005266 casting Methods 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 9
- 238000009749 continuous casting Methods 0.000 claims description 6
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 239000003921 oil Substances 0.000 claims 1
- 239000002826 coolant Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 3
- 230000035900 sweating Effects 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/049—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
【発明の詳細な説明】
本発明はアルミニウム鋳塊の連続的鋳造方法に
関するものであり、更に詳しくはアルミニウムま
たはその合金溶湯からダイレクトチル方式にて連
続的に鋳造される鋳塊の表面の改善、鋳塊表層部
の組織改善を効果的に為し得る方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for aluminum ingots, and more specifically, to improve the surface of an ingot continuously cast from molten aluminum or its alloy by a direct chill method. The present invention relates to a method for effectively improving the structure of the surface layer of an ingot.
従来から、ダイレクトチル方式にて、アルミニ
ウムまたはその合金からなる丸形或は角形の鋳塊
を連続的に得る鋳造装置(所謂半連続鋳造装置と
称されているものを含む)として多数の提案が為
されており、その代表的な例は第1図に示すよう
な構造を有するものである。即ち、可動の鋳型底
(底板)8を水冷筒状鋳型1の底部に位置せし
め、該鋳型1内に金属溶湯(アルミニウム若しく
はその合金溶湯)4をノズル2、フロート3を通
じて供給する一方、漸次鋳型底8を降下させるこ
とにより、鋳型内部の流路5を流通する冷却剤
(通常は水)による鋳型内壁の冷却と、鋳型1下
端のスリツト6より流出する冷却剤による直接の
冷却に基づいて鋳型1内に形成される溶湯柱を凝
固せしめ、以て凝固させた鋳塊7を鋳型下端から
連続的に取出している。 In the past, many proposals have been made for casting equipment (including so-called semi-continuous casting equipment) that continuously produces round or square ingots made of aluminum or its alloys using a direct chill method. A typical example thereof has a structure as shown in FIG. That is, a movable mold bottom (bottom plate) 8 is positioned at the bottom of a water-cooled cylindrical mold 1, and molten metal (aluminum or its alloy molten metal) 4 is supplied into the mold 1 through a nozzle 2 and a float 3. By lowering the bottom 8, the inner wall of the mold is cooled by the coolant (usually water) flowing through the channel 5 inside the mold, and the mold is directly cooled by the coolant flowing out from the slit 6 at the lower end of the mold 1. The molten metal column formed in 1 is solidified, and the solidified ingot 7 is continuously taken out from the lower end of the mold.
従つて、鋳型1に供給された金属溶湯4は鋳型
内壁に接触するため、鋳型内壁を冷却する冷却剤
流通路(水室)5による一次冷却によつて薄い凝
固殻Sを形成することとなるが、この凝固殻Sが
形成されると、その中の金属(アルミニウム若し
くはその合金)が凝固収縮して鋳型内壁との間に
空隙を生ぜしめ、以て放熱を妨げるようになるの
で、一時的に該凝固殻Sは局部的に再溶融して低
融点化合物を浸出せしめたり、溶湯を溶出せしめ
たりする、所謂発汗現象が惹起され、またコール
ド・シヤツト(cold shut; 冷接現象)が生じ
る等、鋳塊の後の加工において問題となる表面欠
陥を発生せしめる。加えて、この一次冷却が強い
と、形成される鋳塊の表面層への合金成分の逆偏
析が大きくなり、厚い粗大結晶領域を生成せし
め、そのため塑性加工に際してはそれの表面削り
を多く行なつて逆偏析層を除去する必要も生じさ
せるのである。 Therefore, since the molten metal 4 supplied to the mold 1 comes into contact with the inner wall of the mold, it forms a thin solidified shell S through primary cooling by the coolant flow passage (water chamber) 5 that cools the inner wall of the mold. However, when this solidified shell S is formed, the metal (aluminum or its alloy) inside it solidifies and shrinks, creating a void between it and the inner wall of the mold, which impedes heat dissipation. Then, the solidified shell S is locally remelted to leach out low-melting compounds and molten metal, causing a so-called sweating phenomenon, and cold shut (cold welding phenomenon), etc. , causing surface defects that become a problem in subsequent processing of the ingot. In addition, when this primary cooling is strong, the reverse segregation of alloy components to the surface layer of the formed ingot becomes large, producing thick coarse crystal regions, which require a lot of surface grinding during plastic working. This also creates the need to remove the reverse segregation layer.
また、この連続鋳造手法を採用して角型鋳塊を
鋳造しようとする場合には、丸型鋳塊の場合より
も更に困難を伴なうこととなる。これは、一つに
は、角型では鋳塊周囲で凝固進行が異なり、鋳肌
程度に差を生じ、特にコーナー部で劣化が著しく
なることが基因しており、また角型は一般に鋳造
速度が低く(断面積が大なるため、)従来の鋳造
法では横ジワが生じ易いのであり、一方鋳造速度
を増加させると、鋳肌は良くなるが、鋳塊の収縮
が大きくなり、鋳塊形状の点で問題を生ずる等、
多くの問題点を内在している。 Further, when attempting to cast a square ingot using this continuous casting method, it is more difficult than in the case of a round ingot. One of the reasons for this is that the solidification progress is different around the ingot in square molds, resulting in differences in the degree of casting surface, and deterioration is particularly marked at the corners.Also, in square molds, the casting speed is generally In the conventional casting method, horizontal wrinkles are likely to occur due to the low surface area (because the cross-sectional area is large).On the other hand, increasing the casting speed improves the casting surface, but increases the shrinkage of the ingot and causes the ingot shape to change. This may cause problems, etc.
It contains many problems.
このため、これらの問題の解消を図ることを目
的として、従来より各種の対策が提案されてきて
いるが、いずれの対策にあつても、未だ充分に鋳
塊表面や鋳塊表層部の組織の改善などを図り得な
かつたり、また鋳造作業や鋳型構造が複雑となつ
たり、更に良好な鋳塊表面を得るための鋳造条件
が限られ、フレキシビリテイに乏しくなる等、実
用的に未だ充分に満足し得るものではなかつたの
である。 For this reason, various countermeasures have been proposed in the past with the aim of solving these problems, but none of the countermeasures has yet sufficiently improved the structure of the ingot surface and the surface layer of the ingot. It is still insufficient for practical purposes, as improvements cannot be made, the casting work and mold structure become complicated, and the casting conditions for obtaining a good ingot surface are limited, resulting in a lack of flexibility. It was not something I could be satisfied with.
ここにおいて、本発明は、かかる事情を背景に
して為されたものであつて、その要旨とするとこ
ろは、アルミニウム若しくはその合金溶湯を鋳型
に供給して連続的に冷却、凝固せしめることによ
り、ダイレクトチル方式にて所定の鋳塊を連続的
に鋳造するにあたり、鋳型内壁面に潤滑油を供給
するための手段を設ける一方、少なくとも該鋳型
の前記溶湯に接触する凝固殻から上方の内壁面
に、1〜5mmの溝ピツチ、0.3〜3mmの溝深さに
おいて、多数の溝を鋳込方向に設けて、前記潤滑
油供給手段から供給される潤滑油を該多数の溝を
介して分配し、前記凝固殻の下方部分の鋳型内壁
面にまで導くようにすると共に、該鋳型と該溶湯
との間の熱伝達を抑制しつつ、該溶湯の冷却、凝
固を進行せしめるようにしたことにあり、これに
よつて鋳型内に供給された溶湯の急激な熱変化を
緩和し、以て鋳型部で形成される鋳塊表面直下の
粗大結晶領域(Sub Surface Band)の厚さを薄
くせしめ、また発汗やコールド・シヤツト等の表
面欠陥の発生をも効果的に減少せしめ得たのであ
る。 The present invention has been made against the background of the above, and its gist is to supply molten aluminum or its alloy to a mold and continuously cool and solidify it. When continuously casting a predetermined ingot using the chill method, a means is provided for supplying lubricating oil to the inner wall surface of the mold, and at least to the inner wall surface above the solidified shell in contact with the molten metal of the mold, A large number of grooves are provided in the casting direction with a groove pitch of 1 to 5 mm and a groove depth of 0.3 to 3 mm, and the lubricating oil supplied from the lubricating oil supply means is distributed through the large number of grooves. The purpose is to guide the molten metal to the inner wall surface of the mold in the lower part of the solidified shell, and to proceed with cooling and solidification of the molten metal while suppressing heat transfer between the mold and the molten metal. This reduces the rapid thermal change of the molten metal supplied into the mold, thereby reducing the thickness of the coarse crystalline region (Sub Surface Band) directly below the surface of the ingot formed in the mold, and also reducing sweating and It was also possible to effectively reduce the occurrence of surface defects such as cold shatter.
かくの如く、本発明に従えば、内壁面に多数の
溝を有する鋳型が用いられることとなるが、この
ようにアルミニウム若しくはその合金溶湯(以
下、溶湯と略称する)と接触する鋳型内壁面に溝
を付けておくと、供給される溶湯の表面張力のた
めに、かかる溝内に溶湯は入り込まず、該溝部分
に空間(エア・ギヤツプ)が出来るようになるの
であり、そしてこのエア・ギヤツプが出来るとそ
の部分の熱伝達が低下するので、本発明では、こ
れを利用して鋳型内壁面全体としての熱伝達を抑
制せしめるようにしたのであつて、これにより鋳
型内壁面による溶湯の冷却(一次冷却)を効果的
に抑制して生成する凝固殻Sの高さや厚さを最小
限に抑え得て、鋳塊表面や鋳塊表層部の有効な改
善が達成され得たのである。 As described above, according to the present invention, a mold having a large number of grooves on the inner wall surface is used. If a groove is formed, the molten metal will not enter the groove due to the surface tension of the supplied molten metal, and a space (air gap) will be created in the groove. When this happens, the heat transfer in that area decreases, so in the present invention, this is utilized to suppress the heat transfer throughout the entire inner wall of the mold, and this allows the inner wall of the mold to cool ( The height and thickness of the solidified shell S formed by effectively suppressing the primary cooling (primary cooling) could be minimized, and effective improvement of the ingot surface and the surface layer of the ingot could be achieved.
なお、かくの如き本発明に用いられるダイレク
トチル方式の鋳型の具体的な一例が第2図a,b
に示されている。即ち、第2図aは鋳型内壁面を
示す斜視図(部分)であり、第2図bはその部分
拡大図であるが、これらの図において、鋳型10
の溶湯と接触する内壁面には、その全周に亘つ
て、鋳込方向に、換言すれば鋳塊の進行方向(第
1図において上下方向)に、多数の溝11が内壁
縦溝として所定ピツチで設けられている。また、
鋳型10の上面には潤滑油溝12が該内壁縦溝1
1に接続するように〔第2図b参照〕設けられて
おり、潤滑油溜13より内壁縦溝11(凹所)内
に潤滑油を供給するようになつている。 A specific example of the direct chill mold used in the present invention is shown in Figures 2a and b.
is shown. That is, FIG. 2a is a perspective view (part) showing the inner wall surface of the mold, and FIG. 2b is a partially enlarged view thereof.
On the inner wall surface that comes into contact with the molten metal, a large number of grooves 11 are predetermined as inner wall vertical grooves along the entire circumference in the casting direction, in other words, in the advancing direction of the ingot (vertical direction in Fig. 1). It is set up in a pitch. Also,
A lubricating oil groove 12 is formed on the upper surface of the mold 10 along the inner wall vertical groove 1.
1 [see FIG. 2b], and lubricating oil is supplied from the lubricating oil reservoir 13 into the inner wall vertical groove 11 (recess).
従つて、このような溝付鋳型10に溶湯が供給
されると、該溶湯は鋳型内壁面の溝11の山部1
1aに接触する一方、谷部(凹所)11bには入
り込まず、そこにエア・ギヤツプを形成するの
で、鋳型全体としての熱伝達が効果的に抑制され
るのであり、また供給される潤滑油が潤滑油溝1
2を通じて内壁縦溝11に確実に導かれるので、
その供給の均一な分配が行なわれ得る他、エア・
ギヤツプの形成によつてその部分を通つて潤滑油
が凝固殻の下方部分にまで導かれるので、該潤滑
油による潤滑効果を有効に利用し得て鋳塊表面の
更なる改善が達成され得るのである。 Therefore, when molten metal is supplied to such a grooved mold 10, the molten metal flows into the peaks 1 of the grooves 11 on the inner wall surface of the mold.
1a, but does not enter the valley (recess) 11b, forming an air gap there, so that heat transfer to the mold as a whole is effectively suppressed, and the supplied lubricating oil is lubricant groove 1
2 to the inner wall vertical groove 11,
In addition to uniform distribution of the supply, air
As the lubricating oil is guided through the gap to the lower part of the solidified shell by forming the gap, the lubricating effect of the lubricating oil can be effectively utilized and further improvement of the ingot surface can be achieved. be.
また、第3図には、本発明の他の方法に用いら
れる鋳型の内壁面が部分的な斜視図として示され
ているが、そこではシート状の断熱材(例えば、
Fiber Fraxという商品名で市販されているもの
等)15が、多数の溝11の設けられている鋳型
内壁面上部を全周に亘つて所定幅で覆つている。
この断熱材15は、上方から供給される溶湯に対
して、該鋳塊内壁面を所定長さで被覆して、供給
された溶湯が該鋳型内壁面に直接に接触すること
により急激に冷却されるのを抑制するものである
が、本発明に従つて該鋳型1の内壁面には多数の
内壁縦溝11が設けられているので、該断熱材1
5とその下方の鋳型内壁面との間での急激な熱変
化が溝11部分に生じるエア・ギヤツプにより緩
和され、これによつて広い範囲の鋳造条件で良好
な鋳塊が得られるのである。特に、従来の断熱材
のみを使用した鋳造手法ではよく観察された、断
熱材下端で形成される横ジワは、溝付鋳型を用い
る本発明によつて悉く消失せしめられ得ることと
なつたのである。なお、図において、13は潤滑
油の供給溜であり、潤滑油はかかる供給溜13よ
り供給路14を通じて各内壁縦溝11に均一に分
散せしめられる。また、16は断熱材15を鋳型
内壁面上部に取り付けるための固定金具である
が、その他接着剤などにて鋳型10に貼付するよ
うにしても何等差支えない。 FIG. 3 also shows a partial perspective view of the inner wall surface of a mold used in another method of the present invention, in which a sheet of heat insulating material (e.g.
Fiber Frax (commercially available under the trade name Fiber Frax, etc.) 15 covers the entire circumference of the upper part of the inner wall surface of the mold where a large number of grooves 11 are provided with a predetermined width.
This heat insulating material 15 covers the inner wall surface of the ingot over a predetermined length against the molten metal supplied from above, so that the supplied molten metal is rapidly cooled by directly contacting the inner wall surface of the mold. However, according to the present invention, a large number of inner wall vertical grooves 11 are provided on the inner wall surface of the mold 1, so that the heat insulating material 1
5 and the inner wall surface of the mold below it is alleviated by the air gap created in the groove 11 portion, thereby making it possible to obtain a good ingot under a wide range of casting conditions. In particular, the horizontal wrinkles formed at the bottom edge of the insulation material, which were often observed in conventional casting methods using only insulation materials, can be completely eliminated by the present invention, which uses a grooved mold. . In the figure, reference numeral 13 denotes a lubricating oil supply reservoir, and the lubricating oil is uniformly distributed from the supply reservoir 13 into each inner wall vertical groove 11 through a supply passage 14. Further, 16 is a fixing fitting for attaching the heat insulating material 15 to the upper part of the inner wall surface of the mold, but it may be attached to the mold 10 with other adhesives or the like.
なお、このように溶湯に接触する鋳型内壁面に
形成される多数条の溝11は、その溶湯と接触す
る部分が平面あるいは曲面となるならばどのよう
な形状でも良いが、好ましくは突出部の形状が第
4図に示す如き台形あるいはS字形で、、鋳型の
内面に対する溝11への進入角:θが鋭角となる
ようにされ、これは加工の面からも容易で望まし
いものである。また、溝の大きさは溶湯の種類、
鋳型の大きさ、形状などによつて適宜決定される
こととなるが、一般に溝ピツチPが1〜5mm、溝
の深さhが0.3〜3mmの範囲内のものを採用する
必要がある。けだし、溝ピツチPが5mmを越えた
り、溝深さhが0.3mmよりも小さくなつたりする
と、本発明で意図する冷却緩和の効果を充分に期
待し得なくなるからであり、また溝ピツチが1mm
よりも小さくなると、充分な溝深さの溝を形成す
ることが困難となる切削加工上の問題を生じ、更
には溝深さが3mmを越えるようになると、熱伝達
の抑制効果が大きくなり過ぎる問題を生じるから
である。また、溝幅としては、上記溝ピツチPの
範囲で上記溝深さhの溝が形成されるように、目
的とする冷却緩和効果やアルミニウム溶湯の表面
張力などを勘案して、適宜に決定されることとな
る。けだし、溝幅が余りにも広くなり過ぎると、
溝内に溶湯が侵入して、充分な冷却緩和効果を奏
し得なくなるばかりか、溝部への食込みによつて
鋳造不能となる等の問題を生ずるからである。更
に、溝11は、ここでは鋳込方向(上下方向)の
鋳型内壁面全長に設けられているが、溶湯と接触
する部分にだけ設けるようにして鋳型内壁面の下
部には溝11が存在しないようにしても良く、ま
た溝11の大きさを鋳込方向に向つて(上から下
へ)漸次小さくしたり、溝部を設けた部材の嵌込
み式にして鋳型内壁面を構成するようにしても、
何等差支えない。 Note that the multiple grooves 11 formed on the inner wall surface of the mold that come into contact with the molten metal may have any shape as long as the part that comes into contact with the molten metal is a flat or curved surface, but it is preferable that the grooves 11 be formed in the shape of a protrusion. The shape is trapezoidal or S-shaped as shown in FIG. 4, and the entrance angle θ of the groove 11 to the inner surface of the mold is an acute angle, which is easy and desirable from the viewpoint of processing. Also, the size of the groove depends on the type of molten metal.
Although this will be determined appropriately depending on the size and shape of the mold, it is generally necessary to adopt a groove pitch P of 1 to 5 mm and a groove depth h of 0.3 to 3 mm. However, if the groove pitch P exceeds 5 mm or the groove depth h becomes smaller than 0.3 mm, the effect of cooling relaxation intended by the present invention cannot be fully expected.
If the groove depth is smaller than 3mm, it will be difficult to form a groove with sufficient depth, which will cause cutting problems.Furthermore, if the groove depth exceeds 3mm, the effect of suppressing heat transfer will be too large. This is because it causes problems. In addition, the groove width is appropriately determined in consideration of the desired cooling relaxation effect, the surface tension of the molten aluminum, etc., so that the groove with the groove depth h is formed within the range of the groove pitch P. The Rukoto. If the groove width becomes too wide,
This is because the molten metal enters into the grooves, which not only makes it impossible to achieve a sufficient cooling relaxation effect, but also causes problems such as encroachment into the grooves, making it impossible to cast. Furthermore, although the grooves 11 are provided here over the entire length of the mold inner wall surface in the casting direction (vertical direction), the grooves 11 are not present in the lower part of the mold inner wall surface as they are provided only in the portion that comes into contact with the molten metal. Alternatively, the size of the groove 11 may be made gradually smaller in the casting direction (from top to bottom), or the inner wall surface of the mold may be constructed by fitting a member provided with the groove. too,
It doesn't make any difference.
また、第5図a,bには、本発明手法が有利に
適用され得る更なる実施例が示されている。即
ち、特公昭52―50011号公報、特開昭51―67226号
公報などに開示された、鋳型長辺部の曲率を変化
させ得られる角型鋳塊(スラブ)の底部形状の改
良を目的とした鋳型に対して本発明が適用されて
いる。図において、17は断熱材シート、18は
溝付鋳型、19は断熱材固定金具であつて、上下
方向の縦溝18aを有する長辺18は、鋳込初
期、適当な手段によつて矢印で示す外側へそれぞ
れ引張られることとなるが、このような操作の必
要な鋳型において、本発明に従う溝18aは断熱
材17から溝18a付鋳型面への溶湯柱の接触に
対して緩和な熱変化と為して、鋳塊形状、鋳塊表
面が良好で、組織的にも優れた角型鋳塊を与える
のである。 Also shown in FIGS. 5a and 5b is a further embodiment in which the method according to the invention can be advantageously applied. In other words, the aim is to improve the bottom shape of a square ingot (slab) obtained by changing the curvature of the long side of the mold, as disclosed in Japanese Patent Publication No. 52-50011, Japanese Patent Application Laid-Open No. 51-67226, etc. The present invention is applied to molds that have been used. In the figure, 17 is a heat insulating material sheet, 18 is a grooved mold, 19 is a heat insulating material fixing fitting, and the long side 18 having vertical grooves 18a in the vertical direction is marked with an arrow by an appropriate means at the initial stage of casting. However, in a mold that requires such an operation, the grooves 18a according to the present invention cause a gentle thermal change in response to the contact of the molten metal column from the heat insulating material 17 to the mold surface with the grooves 18a. As a result, a rectangular ingot with good ingot shape, good ingot surface, and excellent texture can be obtained.
なお、本発明には、以上例示した具体的構成の
ほか、当業者の知識に基づいて種々なる変更、改
良などを加え得るものである。例えば、上例にあ
つては、鋳型内壁面に潤滑油を供給する方式が示
されているが、潤滑油の供給は本発明の目的を達
成する上において有効なものであり、特に、本発
明にあつては、潤滑油を使用した方がより良好な
鋳塊が得られるのである。けだし、本発明に従う
溝の存在によつて、潤滑油によるより有効な潤滑
作用を発揮せしめ得るからである。また、溶湯の
鋳型内壁面による一次冷却に続いて加えられる二
次冷却は、従来と同様に第1図の如き鋳型内に流
通せしめられる冷却剤の鋳型下部からの噴出方式
の他、鋳型下部開口部周囲に配された冷却剤噴出
パイプから冷却剤を噴出せしめて冷却を行なう方
式であつても何等差支えない。 In addition to the specific configurations exemplified above, the present invention may be modified in various ways based on the knowledge of those skilled in the art. For example, in the above example, a method of supplying lubricating oil to the inner wall surface of the mold is shown, but supplying lubricating oil is effective in achieving the object of the present invention, and in particular, the present invention In these cases, better quality ingots can be obtained by using lubricating oil. However, the presence of the grooves according to the present invention allows the lubricating oil to exert a more effective lubricating action. In addition, the secondary cooling that is applied subsequent to the primary cooling of the molten metal by the inner wall surface of the mold can be performed by the conventional method in which coolant is flowed through the mold from the bottom of the mold as shown in Figure 1, or by the injection method from the bottom of the mold. There is no problem even if the cooling is carried out by jetting out the coolant from a coolant jetting pipe arranged around the part.
このように、本発明は、溝付鋳型を用いてアル
ミニウム若しくはその合金溶湯をダイレクトチル
方式にて連続的に鋳造するようにしたものであ
り、これによつて鋳型内壁面に存在する溝部にエ
ア・ギヤツプを形成せしめ、以て鋳型内壁面の熱
伝達を抑制せしめることにより、鋳型部で形成さ
れる鋳塊表面直下の粗大結晶領域の幅を低減する
他、発汗、コールド・シヤツト等の表面欠陥の発
生を低下せしめて、鋳塊表面の面削量の低減など
を達成し、その歩留向上を図つたのであり、また
横ジワのない良好な鋳塊表面が得られる他、潤滑
油を使用する場合にあつては、潤滑油の均一分
配、浸透による効率的な最大限の潤滑効果を発揮
せしめ、更には特に鋳型長辺部の曲率が変化させ
られる鋳型より鋳塊形状、鋳塊表面の良好な、組
織的にも優れた鋳塊(スラブ)が好適に得られる
こととなつたのである。このようにアルミニウム
またはその合金において従来から認められていた
鋳塊表面並びに鋳塊表層部の組織の問題が悉く解
消され得たところに、本発明の大きな工業的意義
が存するのである。 As described above, the present invention uses a grooved mold to continuously cast aluminum or its alloy molten metal by a direct chill method.・By forming a gap and thereby suppressing heat transfer on the inner wall surface of the mold, it not only reduces the width of the coarse crystal region directly below the surface of the ingot formed in the mold section, but also reduces surface defects such as sweating and cold shatter. By reducing the amount of surface cutting on the ingot surface, we were able to improve the yield.In addition, we were able to obtain a good ingot surface without horizontal wrinkles and use lubricating oil. In this case, it is necessary to maximize the efficient lubrication effect through uniform distribution and penetration of lubricating oil, and to improve the shape of the ingot and the surface of the ingot, especially when the curvature of the long side of the mold is changed. As a result, an ingot (slab) with good texture and excellent structure can be obtained. The great industrial significance of the present invention lies in the fact that all the problems of the structure of the ingot surface and the surface layer of the ingot, which have been conventionally recognized in aluminum or its alloys, can be solved.
第1図は連続鋳造装置の代表的な例を示す縦断
面図、第2図a,bはそれぞれ本発明にて用いら
れる溝付鋳型の斜視説明図及びその丸印部の拡大
平面図、第3図は本発明の適用される別の例に用
いられる溝付鋳型の斜視説明図、第4図は鋳型内
壁面に形成される溝の二,三の例を示す断面図、
第5図aは本発明の適用される更に別の例に係る
鋳型の平面図、第5図bはそこで用いられる溝付
鋳型の斜視説明図である。
1:鋳型、4:溶湯、5:冷却剤流路、7:鋳
塊、10,18:溝付鋳型、11,18a:内壁
縦溝、12:潤滑油溝、13:潤滑油溜、15,
17:断熱材シート。
FIG. 1 is a vertical sectional view showing a typical example of a continuous casting apparatus, FIGS. 3 is a perspective explanatory view of a grooved mold used in another example to which the present invention is applied, and FIG. 4 is a sectional view showing two and three examples of grooves formed on the inner wall surface of the mold.
FIG. 5a is a plan view of a mold according to still another example to which the present invention is applied, and FIG. 5b is a perspective explanatory view of a grooved mold used therein. 1: Mold, 4: Molten metal, 5: Coolant channel, 7: Ingot, 10, 18: Grooved mold, 11, 18a: Inner wall vertical groove, 12: Lubricating oil groove, 13: Lubricating oil reservoir, 15,
17: Heat insulation sheet.
Claims (1)
供給して連続的に冷却、凝固せしめることによ
り、ダイレクトチル方式にて所定の鋳塊を連続的
に鋳造するにあたり、鋳型内壁面に潤滑油を供給
するための手段を設ける一方、少なくとも該鋳型
の前記溶湯に接触する凝固殻から上方の内壁面
に、1〜5mmの溝ピツチ、0.3〜3mmの溝深さに
おいて、多数の溝を鋳込方向に設けて、前記潤滑
油供給手段から供給される潤滑油を該多数の溝を
介して分配し、前記凝固殻の下方部分の鋳型内壁
面にまで導くようにすると共に、該鋳型と該溶湯
との間の熱伝達を抑制しつつ、該溶湯の冷却、凝
固を進行せしめるようにしたことを特徴とするア
ルミニウム鋳塊の連続的鋳造方法。 2 前記鋳型が、長辺部の曲率が変化せしめられ
る矩形鋳型である特許請求の範囲第1項記載の方
法。 3 アルミニウム若しくはその合金溶湯を鋳型に
供給して連続的に冷却、凝固せしめることによ
り、ダイレクトチル方式にて所定の鋳塊を連続的
に鋳造するにあたり、鋳型内壁面に潤滑油を供給
するための手段を設ける一方、少なくとも該鋳型
の前記溶湯に接触する凝固殻から上方の内壁面
に、1〜5mmの溝ピツチ、0.3〜3mmの溝深さに
おいて、多数の溝を鋳込方向に設けて、前記潤滑
油供給手段から供給される潤滑油を該多数の溝を
介して分配し、前記凝固殻の下方部分の鋳型内壁
面にまで導くようにすると共に、該鋳型と該溶湯
との間の熱伝達を抑制しつつ、該溶湯の冷却、凝
固を進行せしめるように為し、更に前記溝の設け
られた鋳型内壁面を、前記溶湯の供給側の所定の
長さ部分において断熱材にて覆い、該鋳型内壁面
に該溶湯が直接に接触せしめられるに先立つて、
該断熱材を介して両者が間接的に接触するように
したことを特徴とするアルミニウム鋳塊の連続的
鋳造方法。 4 前記鋳型が、長辺部の曲率が変化せしめられ
る矩形鋳型である特許請求の範囲第3項記載の方
法。[Claims] 1. By supplying molten aluminum or its alloy to a mold and letting it cool and solidify continuously, the inner wall surface of the mold can be lubricated when a predetermined ingot is continuously cast using the direct chill method. While providing means for supplying oil, a large number of grooves are cast at least on the inner wall surface of the mold above the solidified shell in contact with the molten metal, with a groove pitch of 1 to 5 mm and a groove depth of 0.3 to 3 mm. The lubricating oil supplied from the lubricating oil supplying means is distributed through the plurality of grooves and guided to the inner wall surface of the mold in the lower part of the solidified shell, and A continuous casting method for an aluminum ingot, characterized in that cooling and solidification of the molten metal proceed while suppressing heat transfer between the molten metal and the molten metal. 2. The method according to claim 1, wherein the mold is a rectangular mold whose long sides have a varying curvature. 3. A method for supplying lubricating oil to the inner wall surface of the mold when continuously casting a specified ingot using the direct chill method by supplying molten aluminum or its alloy to the mold and letting it cool and solidify continuously. a plurality of grooves are provided in the casting direction at least on the inner wall surface of the mold above the solidified shell in contact with the molten metal, with a groove pitch of 1 to 5 mm and a groove depth of 0.3 to 3 mm; The lubricating oil supplied from the lubricating oil supply means is distributed through the plurality of grooves and guided to the inner wall surface of the mold in the lower part of the solidified shell, and the heat generated between the mold and the molten metal is cooling and solidifying the molten metal while suppressing transmission, and further covering the inner wall surface of the mold where the groove is provided with a heat insulating material at a predetermined length portion on the supply side of the molten metal, Before the molten metal is brought into direct contact with the inner wall surface of the mold,
A continuous casting method for an aluminum ingot, characterized in that the two are brought into indirect contact via the heat insulating material. 4. The method according to claim 3, wherein the mold is a rectangular mold whose long sides have a varying curvature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3861780A JPS56136258A (en) | 1980-03-26 | 1980-03-26 | Continuous casting method of molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3861780A JPS56136258A (en) | 1980-03-26 | 1980-03-26 | Continuous casting method of molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56136258A JPS56136258A (en) | 1981-10-24 |
JPS626897B2 true JPS626897B2 (en) | 1987-02-14 |
Family
ID=12530203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3861780A Granted JPS56136258A (en) | 1980-03-26 | 1980-03-26 | Continuous casting method of molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56136258A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62130699U (en) * | 1986-02-10 | 1987-08-18 | ||
JPS62201179A (en) * | 1986-02-28 | 1987-09-04 | 株式会社 タカラ | Register toy |
JPS63189675U (en) * | 1987-05-29 | 1988-12-06 | ||
JPS644673U (en) * | 1987-06-29 | 1989-01-12 | ||
JPH0634699U (en) * | 1992-10-12 | 1994-05-10 | 株式会社タカラ | Register toys |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58125342A (en) * | 1982-01-19 | 1983-07-26 | Showa Alum Ind Kk | Semi-continuous casting method of aluminum or aluminum alloy |
JPS59179254A (en) * | 1983-03-31 | 1984-10-11 | Sumitomo Light Metal Ind Ltd | Production of square cast ingot of al alloy for rolling having good etchability |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4923740A (en) * | 1972-06-05 | 1974-03-02 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55165647U (en) * | 1979-05-11 | 1980-11-28 |
-
1980
- 1980-03-26 JP JP3861780A patent/JPS56136258A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4923740A (en) * | 1972-06-05 | 1974-03-02 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62130699U (en) * | 1986-02-10 | 1987-08-18 | ||
JPS62201179A (en) * | 1986-02-28 | 1987-09-04 | 株式会社 タカラ | Register toy |
JPS63189675U (en) * | 1987-05-29 | 1988-12-06 | ||
JPS644673U (en) * | 1987-06-29 | 1989-01-12 | ||
JPH0634699U (en) * | 1992-10-12 | 1994-05-10 | 株式会社タカラ | Register toys |
Also Published As
Publication number | Publication date |
---|---|
JPS56136258A (en) | 1981-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0154146B2 (en) | ||
JPS626897B2 (en) | ||
US3326270A (en) | Continuous casting of metals | |
US6315030B1 (en) | High speed continuous casting device and relative method | |
US3794106A (en) | Plant for producing a metal band from a melt | |
US4911226A (en) | Method and apparatus for continuously casting strip steel | |
JP3930761B2 (en) | Tube type continuous casting mold | |
US4558730A (en) | Method of and apparatus for continuously or semi-continuously casting metal ingots | |
JPH09276994A (en) | Mold for continuous casting | |
JP4836303B2 (en) | Continuous casting mold | |
CA1130981A (en) | Continuous cast steel bar and the method to produce same | |
JPS5937140B2 (en) | Hot-top casting equipment | |
JPH09220645A (en) | Method for lubricating wall of metallic mold for continuous casting and mold therefor | |
JPH01228645A (en) | Method for preventing longitudinal crack on solidified shell surface in continuous casting mold | |
JPS626898B2 (en) | ||
US3726332A (en) | Semi-continuous casting method utilizing a thermoinsulating sheet material | |
JPH03453A (en) | Continuous casting mold for restraining corner crack in casting billet | |
JPS58184049A (en) | Continuous casting method of steel in curbed type | |
JPH0539807Y2 (en) | ||
JPS5861951A (en) | Mold for continuous casting | |
JP3643460B2 (en) | Continuous casting mold and continuous casting method | |
JPH0688104B2 (en) | Water-cooled mold for semi-continuous casting | |
KR20040097142A (en) | Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus | |
JPH08206786A (en) | Mold for continuous casting | |
KR200169961Y1 (en) | Twin roll type sheet casting apparatus |