JPH08206786A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH08206786A
JPH08206786A JP3622895A JP3622895A JPH08206786A JP H08206786 A JPH08206786 A JP H08206786A JP 3622895 A JP3622895 A JP 3622895A JP 3622895 A JP3622895 A JP 3622895A JP H08206786 A JPH08206786 A JP H08206786A
Authority
JP
Japan
Prior art keywords
mold
continuous casting
groove
meniscus
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3622895A
Other languages
Japanese (ja)
Inventor
Noriaki Tsujino
憲明 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Metal Products Co Ltd
Original Assignee
Shinko Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Metal Products Co Ltd filed Critical Shinko Metal Products Co Ltd
Priority to JP3622895A priority Critical patent/JPH08206786A/en
Publication of JPH08206786A publication Critical patent/JPH08206786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To reduce the generation of the diamond-shaped deformation and the corner cracking by mitigating the heat transfer in the highly heat transfer zone of inverse triangular or inverse trapezoidal shape around the maximum heat transfer zone immediately below the meniscus to unify the development of the solidified shell of a side part and a corner part at the arbitrary section. CONSTITUTION: In a mold 1 to be used for the continuous casting of the steel billet or bloom, transverse grooves 13 of 1-10mm in width, and 0.05-1.0mm in depth are arranged in the inner surface of the mold 1 so that the pitch of the grooves may be small in the vicinity of the meniscus and the coarser as the grooves are located the more downward, and the length of the grooves is large in the vicinity of the meniscus and the smaller as the grooves are located the more downward, i.e., the grooves are arranged in the inverse triangular or inverse trapezoidal shape as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造用鋳型に係り、
特に鋳型中央部に配設された1個の溶鋼吐出ノズルを通
して溶鋼が鋳型内に注入される断面が正方形あるいは長
方形のブルームあるいはビレット連続鋳造用鋳型におい
て、ブルームあるいはビレットの菱形変形あるいはコー
ナー縦割れを防止し鋳造速度の増大を可能とした連続鋳
造用鋳型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold,
Especially in the case of bloom or billet continuous casting molds with a square or rectangular cross section in which molten steel is injected into the mold through a single molten steel discharge nozzle arranged in the center of the mold, rhombic deformation of the bloom or billet or vertical corner cracks The present invention relates to a mold for continuous casting, which is capable of preventing the increase of casting speed.

【0002】[0002]

【従来の技術】連続鋳造用鋳型(以下、単に鋳型という
場合もある)を用いてブルーム、ビレットを製造する場
合、これらの菱型変形の原因は溶鋼温度の高すぎ、鋳型
への注入流のセンタリング不良、鋳型の変形、鋳型テー
パ不良、鋳型内各面の冷却の不均一、潤滑の不均一、フ
ットロールのアライメント不良、及び鋳型を出てからの
スプレー冷却の不均一等各種の要因が考えられるが、最
も影響の大きいのは鋳型内での冷却の不均一である。鋳
型内での冷却不均一が発生する要因としては、鋳型の変
形、鋳型4面各面に対する潤滑油、冷却水の分配不均一
といった鋳片外部からの要因に加え、鋳片内部での辺部
とコーナー部での凝固シェル発達の不均一が菱形変形を
助長し且つそのコーナー部に割れを発生させる重大な要
因となっている。即ち、図3に示すように溶鋼1は鋳型
2の内部において鋳型壁面から冷却され凝固していくが
同時に温度降下により収縮する。一方凝固シェル4は内
面側から溶鋼1の静圧を受けているため外に膨らみ、バ
ルジングを起こすがコーナー部分はバルジングに対する
抵抗力が辺中央部に比べ高いため中央部のみが鋳型2と
接触し、コーナー部及びコーナー付近は鋳型2との間に
空隙5が発生した状態となる。鋳型2と凝固シェル4の
間の熱伝達は接触部Pで高く、空隙部Qで低いため接触
部P即ち、辺部はコーナー部よりも冷却され、辺部のシ
ェル厚がコーナー部シェル厚よりも厚いという凝固不均
一が発生する。4つのコーナー部の凝固遅れが均一でな
い場合、凝固シェル4は徐々に菱形に変形し下方に行く
に従い助長されていく。また、バルジング変形時コーナ
ー部及びコーナー付近の凝固先端に働く引張応力によ
り、図4(B)に示すようにコーナー半径が比較的小さ
い場合はコーナー部の付近に割れ6が発生し、図4
(A)に示すようにコーナー半径が比較的大きい場合は
コーナー部に割れ7が発生する。図5に示すように、凝
固シェル4に菱形変形が起こると鈍角コーナー8におい
て引張応力がより大きくなるため割れ9も大きくなり、
ブレークアウトの原因となる。また、鋳型2の上部のメ
ニスカス付近では未だ凝固シェル4の厚さも薄くシェル
温度も高いためシェル強度が低く溶鋼静圧によるバルジ
ングで平面部の広い範囲で凝固シェル4と鋳型2が高面
圧で接するが、下方に行くに従いシェル厚が増し、シェ
ル温度が下がるためシェル強度が増しバルジングに対す
る抵抗力も増すため凝固シェル4と鋳型2の高面圧での
接触域もだんだんと面中央部のみに収斂して来る。即
ち、高面圧で接している区域は鋳型2の各面にメニスカ
ス近辺を底辺とした逆三角形状となる。このことは従来
の鋳型2を長時間使用していると図6(B)に示す如く
鋳型外表面の黒色変色域(高温度域)10が逆三角形状
又は逆台形状となっていることからも判る。逆三角形の
内側でも面圧の強弱によって熱伝達の度合いが異なり図
6(A)に示すように等温線(=等熱伝達線)11とな
る。従来、これら凝固不均一による菱形変形の発生及び
バルジングによるコーナー割れ発生防止のため種々の試
みがなされている。その1例として特開平2−703
57号公報においては、メニスカス近傍に格子状の溝を
設けその上をめっきで覆って格子状の空間を形成し辺部
を緩冷却するもの、又は特開平4−319044号公
報においては、メニスカス近傍の断面をクラウン型とし
下部に行くほど正方形(あるいは長方形)に近づけて空
隙の発生及びコーナー部あるいはコーナー近傍の引張応
力発生を防止したものがある。
2. Description of the Related Art When a bloom or billet is produced by using a continuous casting mold (hereinafter, also simply referred to as a mold), the causes of these rhomboidal deformations are that the molten steel temperature is too high and the injection flow into the mold is Various factors such as poor centering, mold deformation, poor mold taper, uneven cooling of each surface inside the mold, uneven lubrication, poor foot roll alignment, and uneven spray cooling after leaving the mold are considered. However, the most influential factor is the uneven cooling in the mold. The factors that cause non-uniform cooling in the mold include factors from the outside of the cast such as deformation of the mold, non-uniform distribution of lubricating oil on the four sides of the mold, and non-uniform distribution of cooling water, as well as side parts inside the cast. The uneven development of the solidified shell at the corners promotes rhombic deformation and is a significant factor causing cracks at the corners. That is, as shown in FIG. 3, the molten steel 1 is cooled from the wall surface of the mold and solidifies inside the mold 2, but at the same time, it contracts due to a temperature drop. On the other hand, the solidified shell 4 bulges outward due to the static pressure of the molten steel 1 from the inner surface side, causing bulging, but the corner portion has a higher resistance to bulging than the central portion of the side, so only the central portion contacts the mold 2. In the corner portion and the vicinity of the corner, a gap 5 is generated between the corner portion and the mold 2. Since the heat transfer between the mold 2 and the solidified shell 4 is high at the contact portion P and low at the void portion Q, the contact portion P, that is, the side portion is cooled more than the corner portion, and the shell thickness of the side portion is smaller than that of the corner portion shell thickness. Thickening causes uneven solidification. When the delay of solidification at the four corners is not uniform, the solidified shell 4 is gradually deformed into a rhombus and is promoted as it goes downward. Further, due to the tensile stress acting on the solidified tip at the corner portion and near the corner during bulging deformation, cracks 6 occur near the corner portion when the corner radius is relatively small as shown in FIG.
When the corner radius is relatively large as shown in (A), cracks 7 occur at the corners. As shown in FIG. 5, when rhombus deformation occurs in the solidified shell 4, the tensile stress at the obtuse corner 8 becomes larger and the crack 9 also becomes larger.
It causes a breakout. Further, in the vicinity of the meniscus above the mold 2, since the solidified shell 4 is still thin and the shell temperature is high, the shell strength is low and the solidified shell 4 and the mold 2 have a high surface pressure over a wide flat area due to bulging due to the static pressure of molten steel. Although they come into contact with each other, the shell thickness increases as it goes downward, the shell temperature decreases, the shell strength increases, and the resistance to bulging increases, so that the contact area between the solidified shell 4 and the mold 2 at high surface pressure gradually converges only in the center part of the surface. Will come. That is, the area in contact with the high surface pressure has an inverted triangular shape with each surface of the mold 2 having a base near the meniscus. This is because, when the conventional mold 2 is used for a long time, the black discoloration area (high temperature area) 10 on the outer surface of the mold has an inverted triangular shape or an inverted trapezoidal shape as shown in FIG. 6 (B). I also understand. Even inside the inverted triangle, the degree of heat transfer differs depending on the strength of the surface pressure, and an isothermal line (= isothermal transfer line) 11 is obtained as shown in FIG. 6 (A). Heretofore, various attempts have been made to prevent the occurrence of rhomboidal deformation due to uneven solidification and the occurrence of corner cracks due to bulging. As one example thereof, Japanese Patent Laid-Open No. 2-703
In Japanese Patent Laid-Open No. 57-57904, a groove in the shape of a lattice is provided in the vicinity of the meniscus to cover it with plating to form a space in the shape of a lattice and the side portion is gently cooled. There is a crown type cross section of which the shape is made closer to a square (or a rectangle) toward the lower side to prevent generation of voids and generation of tensile stress at or near corners.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記
に示す方法ではメニスカス位置近傍のみの均一な格子状
空隙のため格子状空隙を設けた範囲内での抜熱抵抗増加
の度合いが均一であって前述した逆三角形状又は逆台形
状の伝熱勾配を解消するには至らない。また、上記に
示す方法では凝固シェルを強制的にクラウン型から正方
形あるいは長方形に絞り込んでゆくため摩擦力、引抜力
が増大し、菱形変形やコーナー縦割れは減少しても摩擦
過大によるコーナー横割れの増大、スティッキングの増
大を招き、スティッキングを防止するには引抜力を大幅
にアップし強制的に引抜く必要があり多額の設備改善を
要するという問題がある。本発明は、このような問題を
解決するためになされたもので、メニスカス直下約5c
mの最高伝熱区域を中心とした逆三角形状又は逆台形状
の高伝熱域(凝固鋳片と鋳型とが溶鋼静圧により高圧で
接触する区域)の熱伝導を緩和し任意の断面での辺部と
コーナー部の凝固シェルの発達を均一化することにより
菱形変形及びコーナー割れの発生を軽減するものであ
る。
However, in the method described above, since the uniform lattice-like voids are provided only near the position of the meniscus, the degree of increase in heat removal resistance is uniform within the range where the lattice-like voids are provided. It is not possible to eliminate the inverse triangular or inverted trapezoidal heat transfer gradient. Further, in the method shown above, the solidified shell is forcibly narrowed down from the crown shape into a square or a rectangle, so that the frictional force and the pulling force increase, and the rhombus deformation and the corner vertical cracking decrease, but the corner lateral cracking due to excessive friction also occurs. There is a problem in that a large amount of equipment improvement is required because it is necessary to drastically increase the pulling force and forcibly pull out to prevent sticking. The present invention has been made to solve such a problem, and it is provided about 5c directly under the meniscus.
In an arbitrary cross section, the heat conduction in the inverted triangular or inverted trapezoidal high heat transfer area (where the solidified slab and the mold contact at high pressure due to the static pressure of molten steel) centering on the maximum heat transfer area of m By uniforming the development of the solidified shells on the sides and the corners, the occurrence of rhombus deformation and corner cracks is reduced.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する請求
項1記載の連続鋳造用鋳型は、鋼ビレット又はブルーム
の連続鋳造に用いる鋳型において、上記鋳型の内面に幅
1〜10mm、深さ0.05〜1.0mmの横溝を、そ
のピッチがメニスカス付近は密で下方に行くほど粗にな
って、且つメニスカス付近は横方向に長く、下方に行く
ほど短く全体として逆三角形状又は逆台形状に配設して
いる。請求項2記載の連続鋳造用鋳型は、請求項1記載
の連続鋳造用鋳型において、上記横溝の1本1本が鋳型
面中央部において最も溝幅が広く、コーナー部に近づく
ほど狭くなっている。請求項3記載の連続鋳造用鋳型
は、請求項1又は2記載の連続鋳造用鋳型において、上
記横溝の断面形状は滑らかなU字状で溝底まで頂上部と
同じめっきが施工されている。また、請求項4記載の連
続鋳造用鋳型は、請求項1〜3記載の連続鋳造用鋳型に
おいて、上記逆三角形状又は逆台形状の溝配設区域の長
さを鋳造速度、鋳型内面テーパの度合いに応じ100〜
500mmの範囲で変化させたものを使用している。
A mold for continuous casting according to claim 1, which achieves the above object, is a mold used for continuous casting of steel billet or bloom, wherein the inner surface of the mold has a width of 1 to 10 mm and a depth of 0. A horizontal groove with a pitch of 0.05 to 1.0 mm is dense near the meniscus and becomes coarser as it goes downward, and becomes longer in the lateral direction near the meniscus and shorter as it goes downward and is generally triangular or inverted trapezoidal in shape. It is installed in. The continuous casting mold according to claim 2 is the continuous casting mold according to claim 1, wherein each of the lateral grooves has the widest groove width in the center of the mold surface and becomes narrower toward the corner. . A continuous casting mold according to a third aspect is the continuous casting mold according to the first or second aspect, wherein the transverse groove has a smooth U-shaped cross-section and is plated up to the groove bottom with the same plating. Further, the continuous casting mold according to claim 4 is the continuous casting mold according to any one of claims 1 to 3, wherein the length of the inverted triangular or inverted trapezoidal groove disposition area is set to the casting speed and the mold inner surface taper. 100 ~ depending on the degree
The one changed in the range of 500 mm is used.

【0005】[0005]

【作用】請求項1〜4記載の連続鋳造用鋳型の作用につ
いて以下に説明する。図2に示すように、鋳型2aの内
面に逆三角形状又は逆台形状の横溝13を配設すること
により、鋳造中、横溝13部分に空隙が発生しそれが断
熱効果を発生する。なお、一部の横溝13部分は空隙と
ならず潤滑剤が充満する部分もあるが、潤滑剤も熱伝導
率は鋳型2aの構成材及び鋳型内面に形成されているめ
っき14の材料に比べ極端に低く、横溝13部分が完全
に空隙の場合と作用は同じである。横溝13のピッチが
メニスカス付近は密、下方に行くほど粗になっているこ
とと、横溝13の長さがメニスカス付近は長く、下方に
行くほど短い逆三角形状又は逆台形状となっていること
から、逆三角形状又は逆台形状の高伝熱域及びその域中
でも伝熱度合いに応じた断熱(緩冷却)効果が得られ、
鋳型2a全体として均一な冷却及び均一な凝固シェル4
aの発達が得られる。その結果、菱形変形の発生が抑制
され、コーナー部あるいはコーナー近傍の割れが軽減さ
れる。ここで、横溝13の溝幅を1〜10mmとしたの
は、1mm以下ではその効果が現れず10mm以上では
溝の部分で凝固シェル4aがバルジングを起こし焼き付
き、スティッキングの原因になると共にシェルが溝底に
接触しその部分で熱伝達が起こるため効果が減少するこ
とによる。そして、上記横溝13の深さを0.05〜1
mmとしたのは、0.05mm以下ではやはりシェルの
溝内へのバルジングにより溝底が直接接触すること、1
mm以上では効果の向上が期待できず溝加工コストも高
くなり且つ鋳型強度面の問題も発生するためである。特
に、請求項2記載の連続鋳造用鋳型においては、横溝1
3の一本一本の幅が面中央付近に広くコーナー部に近づ
くほど狭くなっていることから更に伝熱度合いに応じた
断熱(緩冷却)効果が得られ、鋳型2a全体として均一
な冷却及び均一な凝固シェル4aの発達が得られる。請
求項3記載の連続鋳造用鋳型のように、溝断面形状を滑
らかなU字状とし且つ溝底まで頂上部と同じめっき14
を施すこととしたのは溝形成コストを低減し経済的価格
とするためと、溝底に鋳型銅板を露出させないことによ
り、シェルのバルジングによる溝底部の銅板の損傷防止
及び銅が鋼中に入り込むことにより生じるスタークラッ
クの発生を防止するためである。そして、請求項4記載
の連続鋳造用鋳型のように、凝固シェルの収縮量に見合
った無段階に変化するテーパを備えた鋳型とすれば、凝
固シェル4aの収縮に伴うエアーギャップの発生が少な
く、必然的にバルジングも小さくなるためコーナー割れ
の発生を更に減少させることができる。この場合、凝固
シェルと鋳型が高圧力で接する区間が単純テーパの鋳型
2に比べ長くなるため横溝の施工区間も長くなる。溝配
設区域の長さ(逆三角形又は逆台形の高さ)を100〜
500mmとしたのは凝固シェルと鋳型の高圧接触区域
(鋳型外面黒変域)が100mm以下のもの及び500
mm以上のものは実際上殆どないことによる。
The operation of the continuous casting mold according to claims 1 to 4 will be described below. As shown in FIG. 2, by disposing the inverted triangular or inverted trapezoidal lateral groove 13 on the inner surface of the mold 2a, a void is generated in the lateral groove 13 portion during casting, which causes a heat insulating effect. It should be noted that although some of the lateral grooves 13 are not voids and have a portion filled with the lubricant, the thermal conductivity of the lubricant is extremely higher than that of the constituent material of the mold 2a and the material of the plating 14 formed on the inner surface of the mold. The operation is the same as when the lateral groove 13 is completely void. The pitch of the lateral grooves 13 is dense near the meniscus, and becomes coarser toward the lower side, and the lateral groove 13 has an inverse triangular shape or an inverted trapezoidal shape in which the lateral groove 13 is longer near the meniscus and shorter toward the lower side. Therefore, the heat-insulation (slow cooling) effect according to the degree of heat transfer in the high heat transfer area of the inverted triangle shape or the inverted trapezoid shape and in that area can be obtained.
Uniform cooling and uniform solidification shell 4 for the entire mold 2a
The development of a is obtained. As a result, the occurrence of rhombus deformation is suppressed, and cracks at or near the corners are reduced. Here, the width of the lateral groove 13 is set to be 1 to 10 mm. When the width is 1 mm or less, the effect does not appear, and when the width is 10 mm or more, the solidified shell 4a causes bulging and seizure in the groove portion, causing sticking and causing the shell to groove. This is because the effect is diminished because heat transfer occurs at the part that contacts the bottom. The depth of the lateral groove 13 is 0.05 to 1
mm is 0.05 mm or less because the groove bottom is in direct contact with the shell due to bulging into the groove.
This is because if the thickness is equal to or larger than mm, the effect cannot be expected to be improved, the groove processing cost becomes high, and the problem of mold strength occurs. Particularly, in the continuous casting mold according to claim 2, the lateral groove 1
Since the width of each of the 3 is wide near the center of the surface and becomes narrower toward the corners, a further heat insulating (slow cooling) effect according to the degree of heat transfer can be obtained, and uniform cooling of the entire mold 2a and A uniform solidified shell 4a development is obtained. The continuous casting mold according to claim 3, wherein the groove has a U-shaped cross-section and has the same plating as the top up to the groove bottom.
In order to reduce the cost of forming the groove and to make it economically priced, the mold copper plate is not exposed at the groove bottom to prevent damage to the copper plate at the groove bottom due to bulging of the shell and copper gets into the steel. This is to prevent the occurrence of star cracks. When the continuous casting mold according to claim 4 is provided with a taper that continuously changes corresponding to the shrinkage amount of the solidified shell, the air gap caused by the shrinkage of the solidified shell 4a is reduced. Inevitably, the bulging also becomes smaller, so the occurrence of corner cracks can be further reduced. In this case, the section where the solidified shell and the mold come into contact with each other at a high pressure is longer than that of the simple taper mold 2, so that the lateral groove construction section is also longer. The length of the grooved area (height of inverted triangle or inverted trapezoid) is 100 ~
500 mm means that the high-pressure contact area between the solidified shell and the mold (black area on the outer surface of the mold) is 100 mm or less, and 500
It is because there is practically no one with a thickness of mm or more.

【0006】[0006]

【実施例】続いて、本発明を具体化した実施例について
説明する。図1(A)、(B)はそれぞれ本発明の実施
例に係る連続鋳造用鋳型2b、2cを示すが、図6
(B)に示す黒色変色域10に対応する逆三角形領域1
5、16に、上記したような複数の横溝13が逆三角形
状に鋳型各内面に形成されている。即ち、横溝13のピ
ッチはメニスカス付近は密、下方に行くほど粗になっ
て、横溝13の長さはメニスカス付近は長く、下方に行
くほど短い逆三角形状となって、その断面はほぼ図2に
示すようになっている。表1はこの鋳型2b、2cを使
用して鋳造した場合と、横溝13がないのみで他の仕様
は全く同じ従来の鋳型2を使用して鋳造した場合の菱形
変形及びコーナー割れの発生状況の違いを示したもので
ある。
EXAMPLES Next, examples embodying the present invention will be described. 1 (A) and 1 (B) respectively show continuous casting molds 2b and 2c according to an embodiment of the present invention.
Inverted triangular region 1 corresponding to the black discoloration region 10 shown in (B)
A plurality of lateral grooves 13 as described above are formed on the inner surfaces of the molds 5 and 16 in an inverted triangular shape. That is, the pitch of the lateral grooves 13 is dense in the vicinity of the meniscus, and becomes coarser toward the lower side, and the length of the lateral groove 13 is longer in the vicinity of the meniscus and shorter in the downward direction, and has an inverted triangular shape. As shown in. Table 1 shows the conditions of occurrence of rhombus deformation and corner cracks when cast using these molds 2b and 2c and when using the conventional mold 2 which has exactly the same specifications except that there is no lateral groove 13. It shows the difference.

【0007】[0007]

【表1】 [Table 1]

【0008】なお、 表1においてAは図5に示すAに
対応し、菱形変形の度合いを示す。この表1からも明ら
かなように、本発明の実施例に係る鋳型2b、2cを使
用した場合には、菱形変形、コーナー割れ、及びブレー
クアウトの回数が減少していることが判る。
In Table 1, A corresponds to A shown in FIG. 5 and shows the degree of rhombus deformation. As is clear from Table 1, when the molds 2b and 2c according to the embodiment of the present invention are used, the number of rhombic deformations, corner cracks, and breakouts is reduced.

【0009】[0009]

【発明の効果】請求項1〜4記載の連続鋳造用鋳型は以
上のように構成されているので、菱形変形及び、コーナ
ー割れの発生を少なくすることができた。これによっ
て、品質の良いビレットやブルームをより効率良く生産
できることになった。
EFFECTS OF THE INVENTION Since the continuous casting molds according to the first to fourth aspects are configured as described above, it is possible to reduce the occurrence of rhombic deformation and corner cracking. As a result, high-quality billets and blooms can be produced more efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)、(B)はそれぞれ本発明の実施例に係
る連続鋳造用鋳型の説明図である
1A and 1B are explanatory views of a continuous casting mold according to an embodiment of the present invention.

【図2】横溝を形成した鋳型の部分断面図であるFIG. 2 is a partial cross-sectional view of a mold having lateral grooves formed therein.

【図3】従来例に係る連続鋳造用鋳型の断面図である。FIG. 3 is a cross-sectional view of a continuous casting mold according to a conventional example.

【図4】(A)、(B)はコーナー割れの説明図であ
る。
4A and 4B are explanatory diagrams of corner cracks.

【図5】菱形変形した場合のコーナー割れの説明図であ
る。
FIG. 5 is an explanatory diagram of corner cracks when a diamond is deformed.

【図6】従来例の鋳型の説明図であるFIG. 6 is an illustration of a conventional mold.

【符号の説明】[Explanation of symbols]

1 溶鋼 2 連続鋳造用鋳型 2a 連続鋳造用鋳型 2b 連続鋳造用鋳型 2c 連続鋳造用鋳型 4 凝固シェル 4a 凝固シェル 5 空隙 6 割れ 7 割れ 8 鈍角コーナー 9 割れ 10 黒色変色域 11 等温線 13 横溝 14 めっき 15 逆三角形領域 16 逆三角形領域 1 molten steel 2 continuous casting mold 2a continuous casting mold 2b continuous casting mold 2c continuous casting mold 4 solidified shell 4a solidified shell 5 void 6 crack 7 crack 8 obtuse corner 9 crack 10 black discoloration area 11 isotherm 13 lateral groove 14 plating 15 inverted triangle area 16 inverted triangle area

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼ビレット又はブルームの連続鋳造に用
いる鋳型において、上記鋳型の内面に幅1〜10mm、
深さ0.05〜1.0mmの横溝を、そのピッチがメニ
スカス付近は密で下方に行くほど粗になって、且つメニ
スカス付近は横方向に長く、下方に行くほど短く全体と
して逆三角形状又は逆台形状に配設したことを特徴とす
る連続鋳造用鋳型。
1. A mold used for continuous casting of steel billets or blooms, wherein the inner surface of the mold has a width of 1 to 10 mm,
A horizontal groove having a depth of 0.05 to 1.0 mm is dense in the vicinity of the meniscus and becomes coarser in the downward direction, and becomes longer in the lateral direction in the vicinity of the meniscus, and becomes shorter in the downward direction as a whole, and has an inverted triangular shape or A continuous casting mold characterized by being arranged in an inverted trapezoidal shape.
【請求項2】 上記横溝の1本1本が鋳型面中央部にお
いて最も溝幅が広く、コーナー部に近づくほど狭くなっ
ている請求項1記載の連続鋳造用鋳型。
2. The continuous casting mold according to claim 1, wherein each of the lateral grooves has the widest groove width at the center of the mold surface and becomes narrower toward the corner.
【請求項3】 上記横溝の断面形状は滑らかなU字状で
溝底まで頂上部と同じめっきが施工されている請求項1
又は2記載の連続鋳造用鋳型。
3. The cross-sectional shape of the lateral groove is a smooth U-shape, and the same plating as the top is applied up to the groove bottom.
Or the casting mold for continuous casting according to 2.
【請求項4】 上記逆三角形状又は逆台形状の溝配設区
域の長さを鋳造速度、鋳型内面テーパの度合いに応じ1
00〜500mmの範囲で変化させたものを使用する請
求項1〜3のいずれか1項に記載の連続鋳造用鋳型。
4. The length of the inverted triangular or inverted trapezoidal groove disposition area is set to 1 depending on the casting speed and the degree of taper on the inner surface of the mold.
The casting mold for continuous casting according to any one of claims 1 to 3, wherein a casting mold that is changed in a range of 00 to 500 mm is used.
JP3622895A 1995-01-31 1995-01-31 Mold for continuous casting Pending JPH08206786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3622895A JPH08206786A (en) 1995-01-31 1995-01-31 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3622895A JPH08206786A (en) 1995-01-31 1995-01-31 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH08206786A true JPH08206786A (en) 1996-08-13

Family

ID=12463926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3622895A Pending JPH08206786A (en) 1995-01-31 1995-01-31 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH08206786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220181A (en) * 2009-07-07 2009-10-01 Nippon Steel Corp Continuous casting method for steel
US20110180231A1 (en) * 2005-03-10 2011-07-28 Sms Siemag Aktiengesellschaft Method for producing a continuous casting mold and a continuous casting mold produced by this method
ITUD20110211A1 (en) * 2011-12-23 2013-06-24 Danieli Off Mecc CRYSTALLIZER FOR CONTINUOUS CASTING

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180231A1 (en) * 2005-03-10 2011-07-28 Sms Siemag Aktiengesellschaft Method for producing a continuous casting mold and a continuous casting mold produced by this method
JP2009220181A (en) * 2009-07-07 2009-10-01 Nippon Steel Corp Continuous casting method for steel
ITUD20110211A1 (en) * 2011-12-23 2013-06-24 Danieli Off Mecc CRYSTALLIZER FOR CONTINUOUS CASTING
WO2013093605A2 (en) 2011-12-23 2013-06-27 Danieli & C. Officine Meccaniche Spa Crystallizer for continuous casting
WO2013093605A3 (en) * 2011-12-23 2014-01-03 Danieli & C. Officine Meccaniche Spa Crystallizer for continuous casting
CN104254413A (en) * 2011-12-23 2014-12-31 达涅利机械设备股份公司 Crystallizer for continuous casting
US9522423B2 (en) 2011-12-23 2016-12-20 Danieli & C. Officine Meccaniche Spa Crystallizer for continuous casting

Similar Documents

Publication Publication Date Title
US2983972A (en) Metal casting system
US20050115695A1 (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
US3520352A (en) Continuous casting mold having insulated portions
AU757475B2 (en) High speed continuous casting device and relative method
KR100253135B1 (en) Method of continuous casting of billet and casting mold therefor
CN1056106C (en) Mould for continuous casting thin sheet bloom
JPH08206786A (en) Mold for continuous casting
US3336973A (en) Continuous casting mold
JP3930761B2 (en) Tube type continuous casting mold
JP6787359B2 (en) Continuous steel casting method
KR102033639B1 (en) Mold for casting
US2018762A (en) Method and mold for eliminating ingot surface defects
JPH08206789A (en) Mold for continuous casting and its manufacture
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
KR19990008455A (en) Continuous casting mold
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JP3373313B2 (en) Mold for continuous billet casting
KR101969112B1 (en) Mold
JPS6149751A (en) Mold for continuous casting
KR100490742B1 (en) Method for decreasing crack of mold copperplate for slab casting
JPH08187551A (en) Mold for high speed billet casting
CA1217314A (en) Tapered mold liner facing
JPS6143134B2 (en)
JPH04178246A (en) Builtup casting mold
JP2024047887A (en) Continuous casting mold, manufacturing method for continuous casting mold, and continuous casting method for steel