JPS6143134B2 - - Google Patents

Info

Publication number
JPS6143134B2
JPS6143134B2 JP18278980A JP18278980A JPS6143134B2 JP S6143134 B2 JPS6143134 B2 JP S6143134B2 JP 18278980 A JP18278980 A JP 18278980A JP 18278980 A JP18278980 A JP 18278980A JP S6143134 B2 JPS6143134 B2 JP S6143134B2
Authority
JP
Japan
Prior art keywords
mold
slab
copper plate
corner
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18278980A
Other languages
Japanese (ja)
Other versions
JPS57106449A (en
Inventor
Shinji Kojima
Takashi Oomori
Mizuo Maeda
Nobumoto Takashiba
Hisakazu Mizota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18278980A priority Critical patent/JPS57106449A/en
Publication of JPS57106449A publication Critical patent/JPS57106449A/en
Publication of JPS6143134B2 publication Critical patent/JPS6143134B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶融金属の連続鋳造用鋳型、とくにス
ラブ連鋳用組立鋳型に関し、特に鋳型内において
均一な凝固殻層の形成が可能なようにした鋳型の
提案を目的とするものである。 溶融金属から直接凝固鋳片を製造する連続鋳造
機では、凝固鋳片の形状および表面凝固層は冷却
機能を有する鋳型内で形成される。従つて、鋳型
内での初期凝固は、均一な凝固層の形成、表面性
状の優れた凝固殻を得る点で極めて重要である。
しかし乍ら、一般に溶融金属は凝固の過程および
凝固殻の温度降下の影響で熱収縮が生じるため、
鋳型内の全域で凝固殻表面から冷却用銅板によつ
て均等に抜熱を行なうことは困難であり、特に凝
固殻の4隅の部分(以下コーナー部と称す)での
不均一抜熱即ち不均一な凝固殻の厚みの形成が生
じ易く、良質な鋳片表面性状を得る点で問題とな
る。 現状では、鋳型を構成する銅板の面は平板状で
あつて、凝固殻の形成に伴う凝固収縮に対して
は、平板状の面を鋳造速度、鋳片断面に相応して
全体的に傾斜した構造を採用している実状であ
る。しかし乍ら、凝固殻の熱収縮には方向性があ
り、特に鋳片断面コーナー部では、凝固殻表面と
鋳型銅板との接触状況が他の部分と異なつた状態
となり、凝固殻の形成は不均一になり易い。 添付図面の第1図は従来のスラブ連続鋳造機用
鋳型の短辺傾斜要領の一例を示したものであつ
て、図中θは平板状銅板の傾斜角を示す。第2図
は溶鋼の連続鋳造において、第1図に示した鋳型
短辺銅板内に熱伝対を装着し、短辺中央部と短辺
コーナー部とで銅板の熱流束を測定し、銅板と凝
固殻表面との接触状況を調査した際の測定結果の
一例を示したものである。また測定時の操業条件
は次の通りであつた。 鋳片断面 215×925mm 溶鋼温度 1562℃ 鋳造速度 1.25m/min 短辺傾斜量 θ=0.5% 第2図に示す測定結果から明らかなように、平
板状の鋳型銅板では中央部とコーナー部とでは明
らかな抜熱の差があることがわかる。特に鋳型下
部ではコーナー部の抜熱は低下し凝固殻層の発達
が遅れる。第3図はコーナー部の凝固層の不均一
性について、ブレークアウトに至つた鋳片の残存
凝固殻を調査した際の断面形状と鋳型銅板との関
係を示した一例である。図示したように上記抜熱
の差異、特にコーナー部での差異は鋳片と鋳型銅
板との間に発生する空隙に起因するものであつ
て、このように鋳片断面コーナー部に不均一な凝
固層が形成されると、凝固層断面内の温度分布の
変化が急激となり、熱応力の発生と共にコーナー
部で凝固表面割れが発生する。これは単に鋳片の
表面性状を害するだけでなく、甚しい場合は凝固
殻そのものの破断が発生し、鋳型の他端を通過し
た後に発生するブレークアウトの原因ともなつて
いる。 なお、上述したコーナー部の抜熱大を考慮して
他の辺部よりも傾斜を大きくした構造のものが、
ブルームやビレツト用のブロツク鋳型の例では既
に提案されているが、本考案のように幅変更も可
能なスラブ用組立鋳型については、各コーナー接
合部(摺動部)を液密状態に維持する必要から複
雑な構造になり未だ具体化されていないのが実情
である。要するに、辺部とコーナー部との先細り
傾斜を異なるものにするが困難だつたからであ
る。 本発明は従来鋳型の上記問題点を解消して、均
一な凝固殻層を形成させるために、鋳型内面にお
けるコーナー部の傾斜角度を、中央部の傾斜角度
に較べて大きくするために、鋳型短辺面にその両
側端が中央部(辺部)に凹みを設けかつその凹み
深さの程度を工夫することにより、スラブ連鋳用
組立鋳型の場合についても実現形成し、もつて表
面性状の優れた鋳片を製造し得るに至つた連続鋳
造用の鋳型を提供するものである。 本発明は溶融金属の連続鋳造用鋳型の短辺側内
面側壁の形状に関するものであつて、鋳型内面の
上端と下端とを結ぶ直線で示される鋳型内面の傾
斜角度θについて、鋳型内面のコーナー部および
その近傍所定域の傾斜角度θを鋳型内面側壁中
央部域の傾斜角度θと比較してθ>θにな
るように、鋳型内部側壁面に傾斜角度をつけるこ
とによつてコーナー部凝固殻層の発達を促進する
ものであつて、それぞれの傾斜角度θ,θ
溶融金属の特性、鋳片断面形状、鋳造速度などの
鋳造条件によつて決められるものである。 本発明は鋳型内に形成される鋳片凝固殻層の生
長と共に起る熱収縮の中、鋳型内の抜熱の不均一
現象に関係するものは、鋳片断面内の凝固殻幅方
向の成分であるとの知見に基づいてなされたもの
であつて、鋳型短辺側の内壁面において、中央部
とコーナー部近傍とで鋳造方向の傾斜角度を予め
違えておくこと、即ち従来の平板状の面に対し、
内部側壁面を鋳造方向には直線でかつ幅方向には
曲面を持つた形状で形成し、コーナー部の銅板部
分の傾斜量を増大させて、鋳片凝固殻表面との密
着性を向上させることによりコーナー部の凝固遅
れを解消し、相対的な抜熱の不均一現象をなく
し、均等な凝固殻層を得るようにしたものであ
る。 次に本発明を具体的な実施態様に基づいて図面
により説明する。第4,5,6図は本発明による
鋳造短辺銅板の表面形状に関する実施例を示す。
第4図は横断面図を示したもので、図中短辺銅板
はコーナー部位を後退させて凸状とした構成例で
ある。短辺銅板の任意位置での縦断面は直線で形
成されているが、第4図のA−A視図である第5
図が示すように、短辺上端と短辺下端とを結ぶ直
線はコーナー部近傍の方が勾配が大きく、即ち図
中でθ>θとしてメニスカス近傍で出来た凝
固殻の熱収縮に追随し易いように形成されてい
る。なお第6図は第5図におけるB−B視図の短
辺内面形状を示すが、コーナー部と他部平担部と
は曲線状とした形状で構成し、かつ第5図に示す
ように、鋳型下端すなわち鋳型の鋳片出口で、鋳
片短辺の断面形状が平坦になるように、鋳型下端
を一致させた形状として短辺銅板を形成してい
る。同じ理由で第7,8図に示すように鋳型上端
で平坦とし、鋳型下端で銅板が凹面になるように
形成することも出来る。 なお図中Xは鋳型内面の両短辺間の中央部にお
ける長さであり、Yは同じくコーナー部における
長さであつて、第5図の場合は鋳型上端で中央部
がコーナー部に較べてZだけ突出し、下端では一
致していることを示し、第7図では鋳型上端で中
央部とコーナー部とは一致して平坦であり、下端
で中央部がコーナー部に比してZだけ後退した場
合であつて、何れもコーナー部の勾配が中央部の
勾配より大きいことを示している。 要するに、本発明の構成の特徴は、一対の長
辺・短辺とからなるスラブ用組立鋳型につき、鋳
型各辺部よりも大きな傾斜とする各コーナー部の
傾斜を、長辺に接する短辺の両端に凹みを設ける
とともにその凹み深さを鋳片引抜き方向に向うに
したがい次第に小さくするか、該短辺の両端部を
除く辺部に対して凹みを設けるとともにその凹み
深さを鋳片引抜き方向に向うにしたがい次第に大
きくすることにより実現形成した点にある。 第4,5,6図および第1,8図の実施例に基
づく鋳型短辺銅板内に熱伝対を装着し、溶鋼の連
続鋳造において短辺中央部とコーナー部とで銅板
の熱流束を測定して、銅板と凝固殻表面との接触
状況を調査した測定結果を、それぞれ第9図およ
び第10図に示す。なお測定時の操業条件は次の
通りであつた。
The present invention relates to a mold for continuous casting of molten metal, particularly an assembly mold for continuous casting of slabs, and more particularly, an object of the present invention is to propose a mold that can form a uniform solidified shell layer within the mold. In a continuous casting machine that directly produces solidified slabs from molten metal, the shape of the solidified slabs and the surface solidified layer are formed in a mold with a cooling function. Therefore, initial solidification within the mold is extremely important in forming a uniform solidified layer and obtaining a solidified shell with excellent surface properties.
However, in general, molten metal undergoes thermal contraction due to the solidification process and the effect of temperature drop in the solidified shell.
It is difficult to remove heat evenly from the surface of the solidified shell using the cooling copper plate over the entire area inside the mold, and it is especially difficult to remove heat unevenly from the four corners of the solidified shell (hereinafter referred to as "corner parts"). Formation of uniform solidified shell thickness tends to occur, which poses a problem in obtaining good quality slab surface properties. Currently, the surface of the copper plate that makes up the mold is flat, and in order to prevent solidification shrinkage caused by the formation of a solidified shell, the flat surface is tilted as a whole according to the casting speed and the cross section of the slab. This is the actual situation where the structure is adopted. However, the thermal contraction of the solidified shell is directional, and the contact between the surface of the solidified shell and the mold copper plate is different from that in other parts, especially at the corners of the slab cross section, and the solidified shell is not formed. It tends to be uniform. FIG. 1 of the accompanying drawings shows an example of the short side inclination of a conventional mold for a continuous slab casting machine, and in the figure θ indicates the inclination angle of the flat copper plate. Figure 2 shows that during continuous casting of molten steel, a thermocouple is installed inside the copper plate on the short side of the mold shown in Figure 1, and the heat flux of the copper plate is measured at the center of the short side and at the corner of the short side. This figure shows an example of the measurement results when investigating the contact situation with the solidified shell surface. The operating conditions at the time of measurement were as follows. Slab cross section 215×925mm Molten steel temperature 1562℃ Casting speed 1.25m/min Short side inclination θ=0.5% As is clear from the measurement results shown in Figure 2, in a flat molded copper plate, there is a difference between the central part and the corner part. It can be seen that there is a clear difference in heat removal. Particularly in the lower part of the mold, the heat removal at the corners is reduced and the development of the solidified shell layer is delayed. FIG. 3 is an example showing the relationship between the cross-sectional shape and the mold copper plate when investigating the residual solidified shell of a slab that has broken out, regarding the non-uniformity of the solidified layer at the corner. As shown in the figure, the above-mentioned difference in heat removal, especially at the corners, is due to the voids that occur between the slab and the mold copper plate, and is caused by uneven solidification at the corners of the slab cross section. Once the layer is formed, the temperature distribution within the cross section of the solidified layer changes rapidly, generating thermal stress and causing surface cracks at the corners. This not only impairs the surface properties of the slab, but in severe cases can cause the solidified shell itself to break, causing breakouts that occur after passing through the other end of the mold. In addition, considering the large amount of heat dissipated from the corner portions mentioned above, the structure has a larger slope than the other side portions.
Examples of block molds for blooms and billets have already been proposed, but for slab assembly molds that can change width as in the present invention, each corner joint (sliding part) is maintained in a liquid-tight state. The reality is that the structure has become complicated due to necessity and has not yet been concretely implemented. In short, it was difficult to make the tapered slopes of the side portions and corner portions different. In order to solve the above-mentioned problems of conventional molds and form a uniform solidified shell layer, the present invention aims to shorten the length of the mold by making the angle of inclination of the corner part on the inner surface of the mold larger than the angle of inclination of the central part. By creating recesses in the center (sides) at both ends of the sides, and by adjusting the depth of the recesses, this can also be achieved in the case of assembled molds for continuous slab casting, resulting in excellent surface properties. The purpose of the present invention is to provide a mold for continuous casting that can produce cast slabs. The present invention relates to the shape of the inner side wall on the shorter side of a mold for continuous casting of molten metal, and the angle of inclination θ of the inner surface of the mold, which is indicated by a straight line connecting the upper and lower ends of the inner surface of the mold, is determined at the corner of the inner surface of the mold. By comparing the inclination angle θ 2 of a predetermined area near the inclination angle θ 2 with the inclination angle θ 1 of the central area of the inner side wall of the mold, the angle of inclination is given to the inner side wall surface of the mold so that θ 2 > θ 1 . It promotes the development of a partially solidified shell layer, and the respective inclination angles θ 1 and θ 2 are determined by casting conditions such as the characteristics of the molten metal, the cross-sectional shape of the slab, and the casting speed. In the heat shrinkage that occurs with the growth of the solidified slab layer formed in the mold, the present invention relates to the non-uniform phenomenon of heat removal within the mold. This was done based on the knowledge that the inclination angle of the casting direction is different in advance between the center part and the vicinity of the corner part on the inner wall surface on the short side of the mold, that is, the conventional flat plate-like Against the surface,
The internal side wall surface is formed in a shape that is straight in the casting direction and curved in the width direction, and the amount of inclination of the copper plate part at the corner is increased to improve the adhesion with the surface of the solidified slab shell. This eliminates the delay in solidification at the corners, eliminates the relative unevenness of heat removal, and obtains a uniform solidified shell layer. Next, the present invention will be explained with reference to the drawings based on specific embodiments. FIGS. 4, 5, and 6 show examples of the surface shape of a cast short-side copper plate according to the present invention.
FIG. 4 shows a cross-sectional view, and the short side copper plate in the figure is an example of a structure in which the corner portions are set back to have a convex shape. The longitudinal section of the short-side copper plate at any position is formed by a straight line, but as shown in Fig.
As the figure shows, the slope of the straight line connecting the upper end of the short side and the lower end of the short side is greater near the corner, that is, in the figure, θ 2 > θ 1 , which follows the thermal contraction of the solidified shell formed near the meniscus. It is designed to be easy to use. Note that FIG. 6 shows the inner surface shape of the short side in the B-B view in FIG. The short side copper plate is formed in such a shape that the lower end of the mold is aligned so that the cross-sectional shape of the short side of the slab is flat at the lower end of the mold, that is, at the slab outlet of the mold. For the same reason, as shown in FIGS. 7 and 8, the upper end of the mold may be flat, and the lower end of the mold may have a concave copper plate. In the figure, X is the length at the center between both short sides of the inner surface of the mold, and Y is the length at the corner. It shows that the center part and the corner part are flat at the upper end of the mold, and the center part is retracted by Z compared to the corner part at the bottom end of the mold. In both cases, the slope of the corner portion is greater than the slope of the center portion. In short, the feature of the configuration of the present invention is that, for an assembled mold for slabs consisting of a pair of long sides and short sides, each corner has a slope larger than each side of the mold, and the slope of each corner is larger than that of the short side that is in contact with the long side. Either a recess is provided at both ends and the depth of the recess is gradually reduced in the direction of drawing the slab, or a recess is provided on the side excluding both ends of the short side and the depth of the recess is adjusted in the direction of drawing the slab. This is achieved by gradually increasing the size of the area. A thermocouple is installed in the copper plate on the short side of the mold based on the embodiments shown in Figures 4, 5, 6 and 1, 8, and the heat flux of the copper plate is controlled at the center of the short side and at the corner during continuous casting of molten steel. The measurement results of the contact situation between the copper plate and the surface of the solidified shell are shown in FIGS. 9 and 10, respectively. The operating conditions at the time of measurement were as follows.

【表】 何れの場合も、鋳型短辺の中央部とコーナー部
との熱流束の差が少なくなつたのみならず、鋳型
下部での熱流束も従来の鋳型形状の場合(第2図
参照)に較べて著しく改善されている。 上記実施例では、鋳片のコーナー部に発生する
縦割れなどの表面欠陥が見られず、鋳片の表面性
状、表層下内面性状は至つて良好であつた。 以上説明したように、本発明の鋳型の使用によ
つて、鋳片の凝固殻層を均一に発達させることが
出来て、鋳片コーナー部に発生する縦割れの欠陥
を防止できるばかりでなく、鋳型を離れた後に発
生するブレークアウトの原因の除去にも貢献する
大きな効果がある。
[Table] In both cases, not only was the difference in heat flux between the center and corner of the short side of the mold reduced, but the heat flux at the bottom of the mold was also the same as in the case of the conventional mold shape (see Figure 2). It is significantly improved compared to . In the above examples, no surface defects such as vertical cracks occurring at the corner portions of the slabs were observed, and the surface properties and inner surface properties of the slabs were very good. As explained above, by using the mold of the present invention, the solidified shell layer of the slab can be uniformly developed, and defects such as vertical cracks that occur at the corners of the slab can be prevented. It also has a great effect in contributing to eliminating the cause of breakouts that occur after leaving the mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラブ連続鋳造機用鋳型における従来
の短辺傾斜機構の説明図、第2図は従来鋳型にお
ける連続鋳造時の銅板熱流束の測定結果を示す図
面、第3図は鋳型コーナー部近傍における凝固殻
層の形成状態を示す説明図、第4図は本発明実施
例のスラブ連続鋳造用鋳型の横断面図、第5図は
第4図で示すA−A矢視図、第6図は第5図で示
すB−B矢視図、第7図は他の実施例鋳型の縦断
面図、第8図は第7図で示すC−C矢視図、第9
図は第4〜6図に示す鋳型での銅板内熱流束測定
結果を示す図面、第10図は第7,8図に示す鋳
型での銅板内熱流束測定結果を示す図面である。 1……短片支持フレーム、2……鋳型短辺銅
板、2′……鋳型長辺銅板、3……空隙、X……
鋳型内面の両短辺間の中央部距離、Y……鋳型内
面の両短辺間のコーナー部距離、Z……鋳型短辺
銅板中央部が上端または下端において突出または
後退する量、L……溶鋼、S……凝固殻、R1
R2,R3,R4……曲率半径、θ,θ,θ……
短辺銅板の傾斜角度。
Figure 1 is an explanatory diagram of a conventional short side tilting mechanism in a mold for a continuous slab casting machine, Figure 2 is a diagram showing the measurement results of copper plate heat flux during continuous casting in a conventional mold, and Figure 3 is near the corner of the mold. FIG. 4 is a cross-sectional view of a continuous slab casting mold according to an embodiment of the present invention, FIG. 5 is a view taken along the line A-A shown in FIG. 4, and FIG. is a view taken along the line B-B shown in FIG. 5, FIG. 7 is a vertical sectional view of another example mold, FIG.
The figures show the results of measuring the heat flux inside the copper plate using the molds shown in FIGS. 4 to 6, and FIG. 10 shows the results of measuring the heat flux inside the copper plate using the molds shown in FIGS. 7 and 8. 1... Short piece support frame, 2... Mold short side copper plate, 2'... Mold long side copper plate, 3... Gap, X...
Center distance between both short sides of the inner surface of the mold, Y... Corner distance between both short sides of the inner surface of the mold, Z... Amount by which the center portion of the copper plate on the short side of the mold protrudes or recedes at the upper or lower end, L... Molten steel, S...solidified shell, R 1 ,
R 2 , R 3 , R 4 ... Radius of curvature, θ, θ 1 , θ 2 ...
Inclination angle of short side copper plate.

Claims (1)

【特許請求の範囲】 1 鋳型内面に対し、鋳造空間が鋳片引抜き方向
に向つて先細り状となる傾斜を付すとともに各辺
部の傾斜角度よりもそれらが互いに接するコーナ
ー部の傾斜の方がより大きくなるように構成した
連続鋳造用鋳型において、 一対の長辺・短辺とからなるスラブ用組立鋳型
につき、鋳型各辺部よりも大きな傾斜とする各コ
ーナー部の傾斜を、長辺に接する短辺の両端に凹
みを設けるとともにその凹み深さを鋳片引抜き方
向に向うにしたがい次第に小さくするか、該短辺
の両端部を除く辺部に対して凹みを設けるととも
にその凹み深さを鋳片引抜き方向に向うにしたが
い次第に大きくすることにより実現形成すること
を特徴とする溶融金属の連続鋳造用鋳型。
[Claims] 1. The inner surface of the mold is sloped so that the casting space tapers in the direction of drawing out the slab, and the slope of the corners where these sides touch each other is greater than the slope of each side. In a continuous casting mold configured to have a large size, for an assembled slab mold consisting of a pair of long sides and short sides, the slope of each corner part, which has a larger slope than each side of the mold, is Either a recess is provided at both ends of the side and the depth of the recess is made gradually smaller in the direction of drawing the slab, or a recess is provided on the side excluding both ends of the short side and the depth of the recess is reduced. A mold for continuous casting of molten metal, characterized in that the mold is formed by gradually increasing the size in the drawing direction.
JP18278980A 1980-12-25 1980-12-25 Mold for continuous casting of molten metal Granted JPS57106449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18278980A JPS57106449A (en) 1980-12-25 1980-12-25 Mold for continuous casting of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18278980A JPS57106449A (en) 1980-12-25 1980-12-25 Mold for continuous casting of molten metal

Publications (2)

Publication Number Publication Date
JPS57106449A JPS57106449A (en) 1982-07-02
JPS6143134B2 true JPS6143134B2 (en) 1986-09-26

Family

ID=16124441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18278980A Granted JPS57106449A (en) 1980-12-25 1980-12-25 Mold for continuous casting of molten metal

Country Status (1)

Country Link
JP (1) JPS57106449A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP5453329B2 (en) * 2011-01-28 2014-03-26 三島光産株式会社 Continuous casting mold

Also Published As

Publication number Publication date
JPS57106449A (en) 1982-07-02

Similar Documents

Publication Publication Date Title
JP5933751B2 (en) Continuous casting mold
JPS6143134B2 (en)
JP2950152B2 (en) Continuous casting mold for slab
JPS6021170A (en) Nozzle for continuous casting
JPH01118346A (en) Casting method and device by twin belt caster of steel
JPH08243688A (en) Mold for continuous casting
JPS6121142Y2 (en)
JPS609553A (en) Stopping down type continuous casting machine
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
US6176298B1 (en) Continuous casting mould
JPH0523857B2 (en)
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JPH0631418A (en) Continuous casting method
JPH0270358A (en) Mold for continuous casting
JPS628259B2 (en)
CA1217314A (en) Tapered mold liner facing
JPS63154245A (en) Continuous casting method for cast strip
JPH08206786A (en) Mold for continuous casting
JP2024035081A (en) Mold for continuous casting
JPS59185548A (en) Continuous casting machine for thin billet
JPH0128661B2 (en)
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPH05261489A (en) Side weir for strip continuous casting machine
JPH1058095A (en) Partition plate in thin cast slab continuous casting apparatus
JPS61245949A (en) Continuous casting method