JPH01299744A - Method for preventing longitudinal crack on surface of continuous cast slab - Google Patents

Method for preventing longitudinal crack on surface of continuous cast slab

Info

Publication number
JPH01299744A
JPH01299744A JP12964488A JP12964488A JPH01299744A JP H01299744 A JPH01299744 A JP H01299744A JP 12964488 A JP12964488 A JP 12964488A JP 12964488 A JP12964488 A JP 12964488A JP H01299744 A JPH01299744 A JP H01299744A
Authority
JP
Japan
Prior art keywords
mold
casting
slab
carbon steel
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12964488A
Other languages
Japanese (ja)
Inventor
Takashi Kanazawa
敬 金沢
Morio Kawasaki
守夫 川崎
Takeshi Nakai
中井 健
Tsutomu Sakashita
坂下 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12964488A priority Critical patent/JPH01299744A/en
Publication of JPH01299744A publication Critical patent/JPH01299744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent longitudinal crack developing on long side surface of a slab by applying refractory material on part within the specific size to casting direction from upper end of both long side walls in a mold and also within the specific size at both sides from center of the width direction and using the mold having the specific low quantity of heat conductivity. CONSTITUTION:At the time of continuously casting the medium carbon steel slab having 0.09-0.15wt.% carbon content, the continuous casting mold having heat conductivity in the part lower than the other part by 20-50%, is used by applying the refractory on the part within 200mm to the casting direction from the upper ends 10 of both long side walls 9 in the mold 3 and also within 100mm at both sides from the center 11 of the width direction. By this method, the sound cast slab can be stably produced without almost developing the surface crack even in the case of continuously casting the medium carbon steel slab.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、炭素含有量が0.09〜0.15重量%の
中炭素鋼スラブを連続鋳造するに際し、スラブの長辺面
に発生する縦割れを防止する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to the continuous casting of medium carbon steel slabs with a carbon content of 0.09 to 0.15% by weight, which are produced on the long sides of the slabs. This invention relates to a method for preventing vertical cracking.

〈従来技術とその課題〉 炭素含有量が0.09〜0.15重景%の中炭素鋼スラ
ブを連続鋳造する場合、スラブの長辺面中央部に縦割れ
が発生することが多く、特に鋳込み初期の1〜2チヤー
ジ目に多発する傾向がある。この縦割れが生じると、鋳
片の手入れ工程を必要とすることとなって熱間直送加熱
や熱間直送圧延を実施することができず、省エネルギー
化の大きな支障となる。
<Prior art and its problems> When continuously casting a medium carbon steel slab with a carbon content of 0.09 to 0.15%, vertical cracks often occur in the center of the long side of the slab, especially It tends to occur frequently during the first or second charge in the initial stage of casting. When this vertical cracking occurs, a care process for the slab becomes necessary, making it impossible to carry out hot direct heating or hot direct rolling, which becomes a major hindrance to energy saving.

中炭素鋼に割れが発生し易い原因は、この炭素量範囲の
鋼が包晶組成である点に存在するものと考えられる。つ
まり、包晶組成鋼では凝固形態が包晶凝固となるので大
きな収縮を示し、このため鋳型と凝固シェルの間に局部
的な隙間が生じて不均一シェルが生成される。梃って、
熱応力が加わると割れに至り易いのである。
The reason why medium carbon steel tends to crack is thought to be that steel in this carbon content range has a peritectic composition. In other words, in steel with a peritectic composition, the solidification form is peritectic solidification, so it exhibits large shrinkage, and as a result, a local gap is created between the mold and the solidified shell, resulting in the generation of a non-uniform shell. By leveraging
When thermal stress is applied, cracking tends to occur.

更に、高速鋳造時には、鋳型と凝固シェル間へのパウダ
ーの流入が不均一となり易く(流入量が部分的に過大若
しくは過少となり易い)、そのために生成する凝固シェ
ルもスラブ幅方向で不均一となって熱応力による割れが
一層生じ易くなるものと推察される。
Furthermore, during high-speed casting, the inflow of powder between the mold and the solidified shell tends to be uneven (the amount of powder inflow tends to be too large or too small in some parts), and the solidified shell that is thus produced also becomes uneven in the width direction of the slab. It is presumed that cracks due to thermal stress are more likely to occur.

このようなことから、従来、上記割れの防止法として (A)  パウダーの粘度や結晶化温度を適正化してパ
ウダーの均一流入を図る方法。
For this reason, conventional methods for preventing the cracking include (A) a method of optimizing the viscosity and crystallization temperature of the powder to ensure uniform inflow of the powder;

(B)  鋳型を構成する銅板の内面に低熱伝導率の金
属を接合したり、或いは該内面に断熱用空気層を維持す
るための微小溝を設けて溶鋼からの抜熱量を低減する方
法(所謂″緩冷却鋳型”を用いて不均一凝固の防止を図
る方法)。
(B) A method of reducing the amount of heat extracted from molten steel by bonding a metal with low thermal conductivity to the inner surface of the copper plate constituting the mold, or by providing minute grooves on the inner surface to maintain an air layer for heat insulation (so-called A method to prevent uneven solidification using a "slow cooling mold").

(C)  ガス吹込みや溶湯注入方向の調整によって浸
漬ノズルと鋳型長辺との間の未凝固溶湯を流動化させる
方法(特開昭61−172663号)。
(C) A method of fluidizing the unsolidified molten metal between the immersion nozzle and the long side of the mold by blowing gas or adjusting the direction of molten metal injection (Japanese Patent Laid-Open No. 172663/1983).

等の手段が提案されている。Other methods have been proposed.

しかしながら、上記(A)項及び(B)項で示した方法
では、鋳込み速度が比較的遅い場合(特に1.0m/m
in以下の場合)にはかなりの改善効果が認められるも
のの、鋳込み速度: 1,1m/min以上の高速鋳造
になると縦割れを完全に防止することができなかった。
However, in the methods shown in (A) and (B) above, when the casting speed is relatively slow (especially 1.0 m/m
Although a considerable improvement effect was observed in cases where the casting speed was 1.1 m/min or higher, vertical cracking could not be completely prevented when casting was performed at a high speed of 1.1 m/min or higher.

また、上記(C)項で示した方法も、溶鋼を十分に流動
化させることが難しくて精々局部的な流動が確保される
にとどまることから、やはり縦割れを確実に防止するこ
とは困難と考えれるものであった。
In addition, with the method shown in item (C) above, it is difficult to sufficiently fluidize the molten steel and only local fluidity is ensured at best, so it is still difficult to reliably prevent vertical cracking. It was something to think about.

そこで、上記問題を解消すべく本発明者の一人は、先に
、「鋳型両長辺壁の上端から鋳込み方向に200重−以
内であって、かつ幅方向中心から両側100鰭以内の部
分に低熱伝導率の金属を接合したり、断熱用空気層を維
持するための微小溝を設けて緩冷却化部を構成した鋳型
を用い、これによって中炭素鋼スラブを連続鋳造する方
法」を提案した(特願昭62−195281号)。なお
、この提案は、次に示す知見事項(a)〜(C1を基に
なされたものであった。即ち、 (a)  “スラブ表面の縦割れが鋳込みの初期にスラ
ブ幅中央部で多発する原因”が、スラブ幅の中央部では
ノズルからの吐出流が短辺に衝突して生じる反転流の流
速が小さい上、浸漬ノズルによる抜熱があることから、
溶融パウダーが鋳型壁に凝固・付着して生成するスラグ
リムが大きくなり、かつ不均一となる点にあること。つ
まり、スラグリムの生成に係る上記現象のために鋳型壁
と凝固シェルとの間へのパウダーの流入も不均一化し、
これによってスラグリム厚が過大となった部分で凝固シ
ェルが薄くなることが割れの主因となっていること。
Therefore, in order to solve the above-mentioned problem, one of the inventors of the present invention first proposed the following method: We proposed a method for continuous casting of medium-carbon steel slabs by joining metals with low thermal conductivity and using a mold with a slow cooling section configured with minute grooves to maintain an air layer for insulation. (Patent Application No. 1981-1952). This proposal was based on the following findings (a) to (C1): (a) “Vertical cracks on the slab surface occur frequently at the center of the slab width at the early stage of casting. The reason for this is that in the center of the slab width, the flow velocity of the reversed flow that occurs when the discharge flow from the nozzle collides with the short side is small, and there is heat removal by the submerged nozzle.
The slag rim produced by the molten powder solidifying and adhering to the mold wall becomes large and non-uniform. In other words, due to the above-mentioned phenomenon related to the formation of slag rim, the inflow of powder between the mold wall and the solidified shell becomes uneven.
As a result, the solidified shell becomes thinner in areas where the slag rim thickness becomes too thick, which is the main cause of cracking.

第1図(a)は連続鋳造における鋳型部分の鋳込み方向
断面を、そして第1図(blは第1図(alにおけるA
−A断面を示したものであり、溶鋼lが浸漬ノズル2を
介して鋳型3に鋳込まれて凝固シェル4を形成し、その
シェル厚を増しながら凝固する様子を示しているが、こ
のとき一般に鋳造パウダー5の一部は鋳型壁に凝固・付
着してスラグリム6を生成する。しかしながら、第1図
(b)で示したように、浸漬ノズル2の近傍ではノズル
からの溶鋼吐出流7が鋳型短辺に衝突して生じる反転流
8の流速が小さい上、浸漬ノズル2の抜熱作用の故にパ
ウダー温度や溶鋼温度が低くなるため、この部分ではス
ラグリム6の生成が一段と激しく起こり、また凹凸も著
しくなってしまう。
Fig. 1 (a) shows a cross section of the mold part in the casting direction in continuous casting, and Fig. 1 (bl is A in Fig. 1 (al)
-A cross section, showing how molten steel 1 is poured into a mold 3 through an immersion nozzle 2, forms a solidified shell 4, and solidifies while increasing the thickness of the shell. Generally, a portion of the casting powder 5 solidifies and adheres to the mold wall to form slag rim 6. However, as shown in FIG. 1(b), in the vicinity of the immersion nozzle 2, the flow velocity of the reversed flow 8 generated when the molten steel discharge flow 7 from the nozzle collides with the short side of the mold is small, and the molten steel discharge flow 7 from the nozzle collides with the short side of the mold. Since the powder temperature and the molten steel temperature are lowered due to the thermal effect, the formation of slag rim 6 becomes more intense in this area, and the unevenness becomes more pronounced.

(b)  そのため、表面割れのない健全表面の連続鋳
造鋳片を中炭素鋼スラブの連続鋳造においても安定して
製造するためには、鋳型内面に凝固・付着するスラグリ
ムの生成をできるだけ抑え、しかも幅方向に厚みを均一
化することが肝要であること。
(b) Therefore, in order to stably produce continuously cast slabs with a sound surface without surface cracks even during continuous casting of medium carbon steel slabs, it is necessary to suppress the formation of slag rim that solidifies and adheres to the inner surface of the mold as much as possible. It is important to make the thickness uniform in the width direction.

fc)  ところが、浸漬ノズルによる抜熱作用の影響
が大きく、しかも浸漬ノズルからの吐出溶鋼流の流速が
遅い“スラブ用鋳型の長辺の幅方向中心部”における抜
熱量を、鋳型壁の該箇所に低熱伝導率の金属を接合した
り断熱用空気層を維持するための微小溝を設けたりして
低減すると、該部分のスラグリムの厚みはA程度に減少
し、かつ凹凸も小さくなって、得られる鋳片表面の縦割
れ発生頻度が激減する。その上、更に鋳型の抜熱量低減
域や該部分の抜熱量低減度合を特定範囲に調整すれば鋳
造作業能率に格別な支障を来たすこともない。
fc) However, the amount of heat removed at the "widthwise center of the long side of a slab mold" where the influence of the heat removal effect by the immersion nozzle is large and the flow rate of the molten steel discharged from the immersion nozzle is slow is calculated from If the thickness of the slag rim is reduced by bonding a metal with low thermal conductivity or by providing a microgroove to maintain an air layer for heat insulation, the thickness of the slag rim in this area will be reduced to about A, and the unevenness will also be reduced, resulting in a gain. The frequency of vertical cracks occurring on the surface of the slab is drastically reduced. Moreover, if the heat removal reduction range of the mold and the degree of heat removal reduction in the area are adjusted to a specific range, there will be no particular problem in casting efficiency.

しかし、先の提案になる前記「特定部位を低熱伝導率金
属の接合や断熱空気層維持のための微小溝を設けて緩冷
却した連続鋳造鋳型」によると、中炭素鋼に対する優れ
た縦割れ防止効果が得られるものの、実際操業を通した
その後の検討により、スラブの製造コストが高くなるこ
とや、同じ鋳型で炭素含有量が0.05重量%程度の低
炭素鋼を鋳造しようとするとブレークアウト等の操業上
のトラブルを発生し易いとの、更に改善すべき点の存在
することが明らかとなった。
However, according to the previously proposed "continuous casting mold in which specific parts are slowly cooled by providing micro grooves for joining low thermal conductivity metals and maintaining an insulating air layer", it is said that it has excellent vertical crack prevention for medium carbon steel. Although the effect is obtained, subsequent examination through actual operation revealed that the production cost of the slab increases and that breakout occurs when trying to cast low carbon steel with a carbon content of about 0.05% by weight using the same mold. It has become clear that there are points that need to be further improved, as they tend to cause operational troubles such as:

く課題を解決するための手段〉 本発明者等は、上述のような観点から、中炭素鋼スラブ
の縦割れが安定・確実に防止できると共に、中炭素鋼以
外の鋼を連続鋳造する場合にも鋳型交換を必要としない
一段と実用的でコストの安い連続鋳造法を見出すべく更
に研究を続けたところ、以下ア)〜工)に示す如き知見
を得ることができた。
Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have developed a method that can stably and reliably prevent vertical cracking in medium carbon steel slabs, and that can also be used when continuously casting steel other than medium carbon steel. As a result of further research to find a more practical and less costly continuous casting method that does not require mold replacement, we were able to obtain the knowledge shown in a) to step) below.

ア) 中炭素鋼の縦割れが鋳込み初期に多発する傾向に
あることから、スラブの縦割れ防止に有効な前述の“鋳
型の部分的緩冷却化”は鋳込みの初期のみで十分である
こと。
a) Since vertical cracks in medium carbon steel tend to occur frequently at the early stage of casting, the above-mentioned "partial slow cooling of the mold", which is effective in preventing vertical cracks in slabs, is sufficient only at the early stage of casting.

イ)一方、中炭素鋼以外の鋼の鋳造にも、鋳型交換する
ことな(前記“部分的緩冷却化を図った鋳型”を利用す
るためには、該鋳型の緩冷却手段を簡単・容易に着脱し
得るような構成にすれば良いこと。
b) On the other hand, when casting steels other than medium carbon steel, there is no need to replace the mold (in order to use the above-mentioned "mold designed for partial slow cooling", it is necessary to easily and easily change the slow cooling means for the mold). It would be better if the configuration was such that it could be attached and detached.

つ)連続鋳造鋳型の部分的緩冷却化の簡易で安価な手段
として耐火材を塗布して乾燥する方法が考えられるが、
この方法では鋳込みが進むにつれて緩冷却効果は小さく
なり、ついには緩冷却効果が無(なってしまう。しかし
、中炭素鋼の連続鋳造での縦割れ発生域である鋳込みの
初期には十分な緩冷却効果を示すので、縦割れの無い健
全な中炭素鋼スラブの安定製造が十分に可能な上、耐火
材塗布層の着脱を極めて簡単に行えることから、同一鋳
型による中炭素鋼以外の鋼の鋳造も格別な支障無く (
凝固シェルの成長遅れによるブレークアウト等のトラブ
ル発生なく)実施できること。
1) A simple and inexpensive method for partially slow cooling of a continuous casting mold is to apply a refractory material and dry it.
With this method, as the casting progresses, the slow cooling effect becomes smaller and eventually disappears. Because it exhibits a cooling effect, it is possible to stably manufacture sound medium carbon steel slabs without vertical cracks, and since the refractory coating layer can be attached and removed extremely easily, it is possible to manufacture steels other than medium carbon steel using the same mold. There is no particular problem with casting (
(without problems such as breakouts due to delayed growth of the solidified shell).

工)更に、先の提案(特願昭62−195281号)に
係る微小溝を設けたり、低熱伝導率金属板を接合したり
、厚いメツキ層や溶射層を設けて成る緩冷却鋳型では鋳
込み初期だけではなく終了期まで緩冷却が続くため、縦
割れの発生しにくい鋳込み中期成いは末期にやはり凝固
シェルの成長遅れからブレークアウト等の操業上のトラ
ブルを引き起こす可能性のあることが分かったが、耐火
材塗布による緩冷却鋳型では、上述したように鋳込みが
進むにつれて緩冷却効果が無くなることから上記トラブ
ルの心配がないこと。
Furthermore, in the case of a slow-cooling mold made by forming microgrooves, joining metal plates with low thermal conductivity, or providing a thick plating layer or thermal spraying layer according to the previous proposal (Japanese Patent Application No. 195281/1981), it is possible to In addition, since slow cooling continues until the end of casting, it was found that the middle and final stages of casting, where vertical cracking is less likely to occur, can cause operational problems such as breakouts due to delayed growth of the solidified shell. However, with slow cooling molds coated with refractory material, the slow cooling effect disappears as the casting progresses, as described above, so there is no need to worry about the above trouble.

この発明は、上記知見に基づいてなされたものであって
、第2図で示すように、 「鋳型3の両長辺壁9,9の上端10から鋳込方向に2
00 mm以内で、しかも幅方向中心11から両側10
0龍以内の部分(第2図で網目模様を付した部分)に耐
火材を塗布することにより該部分の抜熱量を20〜50
%だけ低くした連続鋳造鋳型を使用して鋼の連続鋳造を
行うことにより、中炭素鋼スラブの連続鋳造においても
表面割れを殆んど発生することなく健全な鋳片を安定し
て製造し得るようにした」点 に特徴を有するものである。
This invention was made based on the above knowledge, and as shown in FIG.
00 mm or less, and from the center 11 in the width direction to both sides 10
By applying refractory material to the area within 0.00 meters (the area marked with a mesh pattern in Figure 2), the amount of heat removed from that area can be reduced by 20 to 50.
By performing continuous casting of steel using a continuous casting mold with a lower %, it is possible to stably produce sound slabs with almost no surface cracks even during continuous casting of medium carbon steel slabs. It is characterized by the fact that it is made in such a way that

ここで、塗布する耐火材の材質や塗布厚みは格別に限定
されるものではなく、結果として鋳型の前記部分の抜熱
量が20〜50%だけ低くなるように適宜選択し、調整
すれば良い。なお、耐火材は、鋳造作業の前に塗布した
後、鋳型の予熱工程を利用して十分に乾燥するのが良く
、塗布厚みはできれば10龍以下とするのが好ましい。
Here, the material and coating thickness of the refractory material to be applied are not particularly limited, and may be appropriately selected and adjusted so that the amount of heat removed from the portion of the mold is reduced by 20 to 50%. The refractory material is preferably applied before the casting operation and then sufficiently dried using a mold preheating process, and the coating thickness is preferably 10 mm or less.

なお、この発明の方法において、鋳型長辺壁の緩冷却領
域を前記の如くに数値限定したのは次の理由によるもの
である。
In addition, in the method of the present invention, the reason why the slow cooling area of the long side wall of the mold is numerically limited as described above is as follows.

即ち、まず鋳型の幅方向中央から両側100 mm以内
に限定したのは、第3図に示すように、スラブ鋳片の縦
割れが幅中央から両側100鶴以内に集中するためであ
り、また、鋳型上端から200鰭以内に限定したのは、
鋳片割れに対するスラグリムの影響は特にメニスカス近
傍でのみ大きいためであって、何れもこの範囲さえ緩冷
却しておけば前記鋳片の縦割れを抑えることができるか
らである。なお、前記第3図は中炭素鋼鋳片(1200
u+幅X270mm厚)を1.5m/minの鋳造速度
で連続鋳造した際の、長辺面における“スラブ幅中央か
らの距離”と“縦割れ長さ″との関係を示すグラフであ
る。
That is, the reason why the cracks were first limited to within 100 mm on both sides from the center in the width direction of the mold was because, as shown in FIG. The area was limited to within 200 fins from the top of the mold.
This is because the influence of slag rim on slab cracking is especially large only near the meniscus, and if even this area is slowly cooled, vertical cracking of the slab can be suppressed. In addition, the above-mentioned FIG. 3 shows a medium carbon steel slab (1200
It is a graph showing the relationship between the "distance from the center of the slab width" and the "vertical crack length" on the long side surface when continuous casting was performed at a casting speed of 1.5 m/min.

一方、鋳型緩冷却部の抜熱量を20〜50%だけ低減す
る理由は、該部分の抜熱量低減程度が20%よりも小さ
い場合には十分な縦割れ抑制効果が得られず、また抜熱
量低減程度が50%を越えた場合にはスラグリム厚さの
低減効果や凹凸抑制効果が飽和してしまう上、凝固シェ
ルの成長遅れが著しくなってブレイクアウト等の操業上
のトラブルを引き起こす可能性が高くなるためである。
On the other hand, the reason why the amount of heat removed from the mold slow cooling section is reduced by 20 to 50% is that if the degree of reduction in the amount of heat removed from this section is less than 20%, a sufficient effect of suppressing vertical cracks cannot be obtained, and the amount of heat removed If the degree of reduction exceeds 50%, the effect of reducing slag rim thickness and suppressing unevenness will be saturated, and the growth delay of the solidified shell will become significant, which may cause operational problems such as breakouts. This is because it becomes expensive.

そして、本発明で規定する条件通りにスラブの連続鋳造
を実施すると、鋳型長辺面の幅方向中央付近上部に凝固
・付着するスラグリムの厚みは他の部分とほぼ同様とな
る上、凹凸状態になることも極力防止されることから鋳
片の凝固シェル厚が均一となり、そのため凝固時の収縮
によっても割れを発生する頻度が極力少なく、また割れ
の程度も軽微となって、健全表面の鋳片が安定して得ら
れるようになる。更に、中炭素鋼以外の綱を鋳造する場
合も、耐火材の塗布を行わないか、或いは耐火材塗布層
を取り除くかすれば(実際には、前の鋳造の途中で耐火
材塗布層は無くなるのでこれを除去する作業は不必要で
ある)、鋳型交換を行うことなく同一鋳型にて安定な操
業を実施することが可能である。
When slabs are continuously cast according to the conditions stipulated in the present invention, the thickness of the slag rim that solidifies and adheres to the upper part of the long side of the mold near the center in the width direction is almost the same as that of other parts, and is uneven. As the thickness of the solidified shell of the slab becomes uniform, the frequency of cracking due to shrinkage during solidification is minimized, and the degree of cracking is slight, resulting in a slab with a sound surface. can be obtained stably. Furthermore, when casting steels other than medium carbon steel, it is possible to avoid applying refractory material or remove the refractory coating layer (actually, the refractory coating layer disappears during the previous casting process). It is possible to perform stable operations using the same mold without replacing the mold.

続いて、この発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

〈実施例〉 鋳込み鋳片寸法が長辺1200mmx短辺270龍で、
その両長辺内面の幅方向中心から両側100關(全幅で
200ffiffl)で上端から鋳込み方向へ200 
能の部分に、第1表に示す組成の耐火材を5 mm厚に
塗布した銅製連続鋳造鋳型を用意し、垂直−湾曲型の連
鋳機にて0.11%C−0,5%Mn鋼スラブを鋳造速
度1.6m/minにて鋳造した。
<Example> The cast slab dimensions are long side 1200 mm x short side 270 mm,
100 meters on both sides (200 ffiffl in total width) from the widthwise center of the inner surface of both long sides, and 200 meters from the upper end in the casting direction.
A copper continuous casting mold was prepared in which the refractory material having the composition shown in Table 1 was coated to a thickness of 5 mm, and 0.11%C-0.5%Mn was cast using a vertical-curved continuous casting machine. Steel slabs were cast at a casting speed of 1.6 m/min.

そして、上記鋳造試験において、メニスカス近傍のスラ
グリム厚を調査し、鋳型を構成する銅板中に埋め込んだ
熱電対によって測定した抜熱量低減度で整理した結果を
第4図に示した。
In the above casting test, the thickness of the slag rim near the meniscus was investigated, and the results were summarized in terms of the degree of heat removal reduction measured by a thermocouple embedded in the copper plate constituting the mold, as shown in Figure 4.

また、得られた鋳片の割れ発生率を調査し、同じく抜熱
量低減度で整理した結果も第5図に示した。
In addition, the crack occurrence rate of the obtained slabs was investigated, and the results are also shown in Fig. 5, which are also organized by the degree of heat removal reduction.

第4図及び第5図に示される結果からも明らかなように
、鋳型の両長辺内面の幅方向中心から両側100龍で上
端から鋳込み方向へ200 mmの部分の緩冷却度(抜
熱量低減度)が20%以上になるとメニスカス近傍のス
ラグリム厚はおよそ%となり、同時にスラグリムの凹凸
も小さくなって、縦割れ発生率も半減することが分かる
As is clear from the results shown in Figures 4 and 5, the degree of gradual cooling (heat removal reduction It can be seen that when the slag rim thickness becomes 20% or more, the slag rim thickness near the meniscus becomes approximately 20%, and at the same time, the unevenness of the slag rim becomes smaller and the incidence of vertical cracks is halved.

更に、第6図は縦割れ発生率及び抜熱量低減度を鋳込み
長で整理したグラフであり、縦割れ発生率については従
来法(通常の水冷銅鋳型を用いる方法)で得られた同一
寸法鋳片(比較鋳片)の結果も示したものであるが、こ
の第6図からは、抜熱量低減効果は鋳込み後1〜2チヤ
ージ目で失われており、塗布した耐火材が無(なったこ
とが窺える。しかし、縦割れ発生率もそれ以降に増加す
ることがなく、鋳込み初期のスラグリム形状の均一化が
縦割れ防止に大きく寄与していることが分かる。なお、
この場合、耐火材の溶出に伴う介在物増加等の鋼への悪
影響は認められなかった。
Furthermore, Figure 6 is a graph that organizes the vertical crack occurrence rate and heat removal reduction degree by casting length. The results for the slab (comparative slab) are also shown, but from this Figure 6, the effect of reducing the amount of heat removed is lost in the first or second charge after casting, and the applied refractory material is not applied. However, the occurrence rate of vertical cracks did not increase after that, indicating that the uniformity of the slag rim shape at the initial stage of casting greatly contributed to the prevention of vertical cracks.
In this case, no adverse effects on the steel, such as an increase in inclusions due to elution of the refractory material, were observed.

勿論、低炭素鋼を鋳造する場合には、耐火材の塗布を行
わないで同一の鋳型を使用することが可能であり、鋳型
を換えることなく低炭素鋼及び中炭素鋼等の鋳造を実施
できることも確認された。
Of course, when casting low carbon steel, it is possible to use the same mold without applying refractory material, and it is possible to cast low carbon steel, medium carbon steel, etc. without changing the mold. was also confirmed.

く効果の総括〉 以上に説明した如く、この発明によれば、中炭素鋼を高
速で連続鋳造する場合においてもスラブ表面の縦割れを
安価に防止することができ、更に本発明に適用される同
一鋳型を用いて炭素含有量の異なる他種の炭素鋼の安定
鋳造も実施可能であるなど、実用上極めて有用な効果が
もたらされる。
Summary of Effects> As explained above, according to the present invention, vertical cracking on the slab surface can be prevented at low cost even when medium carbon steel is continuously cast at high speed, and furthermore, the present invention can prevent vertical cracks on the slab surface at low cost. This brings about extremely useful effects in practice, such as the ability to stably cast other types of carbon steel with different carbon contents using the same mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スラブの連続鋳造における鋳型部分の鋳込み
状況を説明した概略模式図であり、第1図(alは鋳型
部分の鋳込み方向断面を、そして第1図(b)は第1図
(a)におけるA−A断面を示している。 第2図は、本発明の方法にて使用する鋳型の緩冷却部分
を説明した概念図である。 第3図は、連続鋳造スラブ鋳片のスラブ幅中央からの距
離と発生する縦割れの長さとの関係を示すグラフである
。 第4図は、実施例における凝固・付着するメニスカス近
傍のスラグリム厚の測定結果を、一部緩冷却鋳型の緩冷
却部分抜熱量低減度で整理して表わしたグラフである。 第5図は、実施例で得られた連続鋳造スラブ鋳片の縦割
れ発生率の測定結果を、一部緩冷却鋳型の緩冷却部分抜
熱量低減度で整理して表わしたグラフである。 第6図は、連続鋳造スラブ鋳片の縦割れ発生率及び緩冷
却部分抜熱量低減度を鋳込み長で整理して表わしたグラ
フである。 図面において、 ■・・・溶鋼、      2・・・浸漬ノズル。 3・・・鋳型、      4・・・凝固シェル。 5・・・鋳造パウダー、  6・・・スラグリム。 7・・・ノズルからの溶鋼吐出流。 8・・・溶鋼の反転流、  9・・・鋳型の長辺壁、1
0・・・鋳型長辺壁の上端。 11・・・鋳型長辺壁の幅方向中心。
Figure 1 is a schematic diagram illustrating the casting situation of the mold part in continuous slab casting. Fig. 2 is a conceptual diagram illustrating the slow cooling part of the mold used in the method of the present invention. Fig. 3 is a diagram showing a slab of a continuous cast slab FIG. 4 is a graph showing the relationship between the distance from the width center and the length of vertical cracks that occur. Figure 4 shows the measurement results of the slag rim thickness near the meniscus where it solidifies and adheres in the example. This is a graph organized by the degree of reduction in the amount of heat removed by the cooling part. Figure 5 shows the measurement results of the vertical cracking incidence of continuous cast slabs obtained in Examples, with some of the results of the slow cooling of the slow cooling mold. Fig. 6 is a graph showing the vertical cracking incidence of continuously cast slab slabs and the degree of slow cooling partial heat removal reduction, organized by casting length. In the drawing, ■... Molten steel, 2... Immersion nozzle. 3... Mold, 4... Solidified shell. 5... Casting powder, 6... Slag rim. 7... From nozzle. Molten steel discharge flow. 8... Reverse flow of molten steel, 9... Long side wall of mold, 1
0...Top end of long wall of mold. 11... Center of the long wall of the mold in the width direction.

Claims (1)

【特許請求の範囲】[Claims] 炭素含有量が0.09〜0.15重量%の中炭素鋼スラ
ブを連続鋳造するに際して、鋳型両長辺壁の上端から鋳
込み方向に200mm以内で、しかも幅方向中心から両
側100mm以内の部分に耐火材を塗布することにより
、該部分の抜熱量を20〜50%だけ低くした連続鋳造
鋳型を使用することを特徴とする、連続鋳造スラブの表
面縦割れ防止方法。
When continuously casting medium carbon steel slabs with a carbon content of 0.09 to 0.15% by weight, cast iron is applied within 200 mm from the upper ends of both long walls of the mold in the casting direction, and within 100 mm on both sides from the center in the width direction. A method for preventing vertical surface cracks in a continuously cast slab, the method comprising using a continuous casting mold in which the amount of heat removed from the part is reduced by 20 to 50% by coating with a refractory material.
JP12964488A 1988-05-27 1988-05-27 Method for preventing longitudinal crack on surface of continuous cast slab Pending JPH01299744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12964488A JPH01299744A (en) 1988-05-27 1988-05-27 Method for preventing longitudinal crack on surface of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12964488A JPH01299744A (en) 1988-05-27 1988-05-27 Method for preventing longitudinal crack on surface of continuous cast slab

Publications (1)

Publication Number Publication Date
JPH01299744A true JPH01299744A (en) 1989-12-04

Family

ID=15014612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12964488A Pending JPH01299744A (en) 1988-05-27 1988-05-27 Method for preventing longitudinal crack on surface of continuous cast slab

Country Status (1)

Country Link
JP (1) JPH01299744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096811A (en) * 2014-08-04 2014-10-15 秦皇岛首秦金属材料有限公司 Narrow-face copper plate for asymmetric slab continuous casting chamfering crystallizer
CN110640106A (en) * 2019-09-12 2020-01-03 山东钢铁股份有限公司 Casting method for reducing longitudinal cracks on surface of wide and thick plate continuous casting billet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096811A (en) * 2014-08-04 2014-10-15 秦皇岛首秦金属材料有限公司 Narrow-face copper plate for asymmetric slab continuous casting chamfering crystallizer
CN104096811B (en) * 2014-08-04 2016-03-30 秦皇岛首秦金属材料有限公司 A kind of asymmetric sheet billet continuous casting chamfer crystallizer narrow copper plate
CN110640106A (en) * 2019-09-12 2020-01-03 山东钢铁股份有限公司 Casting method for reducing longitudinal cracks on surface of wide and thick plate continuous casting billet
CN110640106B (en) * 2019-09-12 2021-07-13 山东钢铁股份有限公司 Casting method for reducing longitudinal cracks on surface of wide and thick plate continuous casting billet

Similar Documents

Publication Publication Date Title
JPH01202345A (en) Method for casting al-mg alloy twin roll
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JP2950152B2 (en) Continuous casting mold for slab
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JPH01210157A (en) Method for preventing surface longitudinal crack on continuous cast slab
JPH01228645A (en) Method for preventing longitudinal crack on solidified shell surface in continuous casting mold
JPH0523860B2 (en)
US4030532A (en) Method for casting steel ingots
JPS609553A (en) Stopping down type continuous casting machine
JPH03210950A (en) Powder for continuous casting
JP3082834B2 (en) Continuous casting method for round slabs
JPH04224050A (en) Method for preventing solidification of end parts in strip casting
JP3101069B2 (en) Continuous casting method
JPS63154245A (en) Continuous casting method for cast strip
JPH1058093A (en) Method for continuously casting steel
JP2024004032A (en) Continuous casting method
JPH08206787A (en) Continuous casting method of slab of large section and mold for casting
JP3356094B2 (en) Manufacturing method of round billet slab by continuous casting
JPH03264143A (en) Continuous casting method and mold thereof
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPS6121142Y2 (en)
JPH0413471A (en) Method for preventing surface cracking of slab
JP2024035081A (en) Mold for continuous casting
JP3117409B2 (en) Belt type thin slab caster
JP2024047887A (en) Continuous casting mold, manufacturing method for continuous casting mold, and continuous casting method for steel